
Frontiers in Endocrinology | www.frontiersi

Edited by:
Jamie Lynn Young,

University of Louisville, United States

Reviewed by:
Li Li,

Sichuan University, China
Haixin Huang,

Liuzhou Workers Hospital, China

*Correspondence:
Chao Guo

guo1980chao@163.com
Bin Yang

gxmu_yangbin@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Clinical Diabetes,
a section of the journal

Frontiers in Endocrinology

Received: 07 October 2021
Accepted: 23 May 2022
Published: 08 July 2022

Citation:
Xu H, Qin J, Qin L, Guo C and Yang B

(2022) Bioinformatics and In Silico
Findings Uncover Bio-Targets of
Calycosin Against Heart Failure

and Diabetes Mellitus.
Front. Endocrinol. 13:790619.

doi: 10.3389/fendo.2022.790619

ORIGINAL RESEARCH
published: 08 July 2022

doi: 10.3389/fendo.2022.790619
Bioinformatics and In Silico
Findings Uncover Bio-Targets
of Calycosin Against Heart
Failure and Diabetes Mellitus
Hongyuan Xu1†, Jingru Qin2†, Lixiu Qin2, Chao Guo3* and Bin Yang2*

1 Cardiology Department, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University,
Guigang, China, 2 College of Pharmacy, Guangxi Medical University, Nanning, China, 3 Department of Pharmacy, Guigang
City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China

Background: Heart failure (HF) and diabetes mellitus (DM) are life-threatening diseases.
However, existing clinical drugs to treat HF complicated with DM are relatively limited. In
this study, we performed a viable bioinformatics strategy combining network
pharmacology and molecular docking to identify potential anti-HF and -DM targets and
therapeutic mechanisms of calycosin, a functional phytoestrogen.

Methods: Web-based databases were used to collect candidate genes/targets of
calycosin and HF/DM and then identify the hub bio-targets of calycosin against HF/DM.
Using the online-available database, all functional processes and signaling pathways of
calycosin against HF/DM were screened and identified before further visualization.

Results: All potential bio-targets of calycosin and HF/DM were collected, and 20 hub
targets of calycosin against HF/DM were identified. Interestingly, molecular docking
findings indicated that mitogen-activated protein kinase-1 (MAPK1), b-arrestin 1
(ARRB1), and homologue-1 (ABL1) may be potent pharmacological targets of calycosin
against HF/DM. In addition, all primary molecular functions of calycosin against HF/DM
were identified, including regulating protein binding, ubiquitination, and the metabolic
process. Furthermore, the top molecular pathways of calycosin against HF/DM were
revealed, including cardiomyocyte and chemokine signaling pathways.

Conclusion: Our bioinformatics analysis uncovered the network targets and therapeutic
mechanisms of calycosin against HF/DM. For the first time, the current in silico findings
revealed that the identified hub targets may be used to screen and treat HF/DM.

Keywords: heart failure, diabetes mellitus, calycosin, target, mechanism, network pharmacology
BACKGROUND

Heart failure (HF) refers to the inability of the heart to circulate sufficient blood to sustain normal
functions in the body (1). As an emerging health issue, the annual cases of HF are increasing
worldwide (2). In China, a rising prevalence of HF is reported, presenting an economic burden (3).
Clinically, patients with HF show visible symptoms of lethargy, dizziness, and dyspnea, and the risk
factors include aging, hypertension, and chronic metabolic disorders (4). In acute HF, the medical
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treatment includes oxygen supply, inotropic agents, and other
supportive therapies (5). The common treatment for chronic HF
involves prescribing neuroendocrine inhibitors as long-term
restorative strategies (6). Diabetes mellitus (DM), characterized
by hyperglycemia, is caused by a relative or absolute deficiency of
insulin in the body (7). In China, DM cases have been increasing
in recent years, especially in the young population (8). Clinically,
patients with DM may have an increased risk of developing HF,
and thus, the therapeutic effectiveness and prognosis of HF
associated with DM are poor (9). In addition, some adverse
effects of chemotherapeutic-based therapy for HF/DM are
reported in clinical practice. In further investigations, potential
pharmacologically effective components for managing HF/DM
will be screened and identified. In China, Radix Astragali is
traditionally used in treating chronic HF (10). Calycosin, a
functional phytoestrogen chemically extracted from Radix
Astragali, has potent pharmacological actions, such as
anticancer, neuroprotection, cytoprotection, and anti-diabetes
activity (11–13). However, reports regarding calycosin-exerted
anti-HF/-DM activity are lacking. Along with the development
of modern bioinformatics, systematic pharmacology is currently
used for identifying the candidate targets and therapeutic
pathways of existing agents for treating clinical diseases (14,
15). Interestingly, our previous study showed the bioinformatic
findings of vitamin C effects against liver injury and revealed the
therapeutic targets and biological mechanisms for
perfluorooctanesulfonate-associated leukemia (16, 17). As the
anti-HF/-DM mechanisms remain uninvestigated, we used an
effective strategy combining network pharmacology and
molecular docking to identify the functional bio-targets and
therapeutic mechanism of calycosin effects against HF/DM.
MATERIALS AND METHODS

Detection of Candidate Genes/Targets
Preliminary data were collected from the PubMed database.
Retrieval keywords were subjected with “calycosin,” “heart
failure, and “ “diabetes mellitus” (MeSH) terms. In addition,
literatures were restricted to the journal original paper and
English language. The databases Traditional Chinese Medicine
Systems Pharmacology Database and Analysis Platform
(TCMSP), Chemical-Protein Interaction Networks (STITCH;
http://stitch.embl.de/), Swiss Target Prediction, SuperPred
webserver, Bioinformatics Analysis Tool for Molecular
mechANism of Traditional Chinese Medicine (BATMAN-
TCM; http://bionet.ncpsb.org/batman-tcm/), ChemMapper,
and Drug Target Prediction System were collectively used to
screen the functional genes/targets of calycosin. Furthermore, the
HF- and DM-driven genes/targets were acquired from the
detection databases DisGeNET, GeneCard, DrugBank (www.
drugbank.ca), PharmDB-K, and Therapeutic Target Database
(TTD). After mapping the genes/targets of calycosin and HF/DM
using an online website (http://bioinformatics.psb.ugent.be/
webtools/Venn/), the predictive targets of calycosin against HF
were determined (18, 19).
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Screening Hub Targets and Constructing
Protein–Protein Interaction Network
In brief, all mapped predictive targets were further analyzed after
creating a target–target-associated functional interprotein
network and protein–protein interaction (PPI) network using
TSV data from the STRING database. The final hub targets of
calycosin against HF/DM were obtained using the Network
Analyzer tool in Cytoscape (v3.7.1) software, calculating from
the degree values of topology parameters (20, 21).

Molecular Docking Analysis
The molecular structure of the niacin compound was obtained
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/).
The protein structures of HF/DM targets were obtained from the
Protein Data Bank database (https://www.rcsb.org/). Molecular
mechanics-2 force field optimization was conducted using the
three-dimensional structure of the compound downloaded using
the ChemBio3D Draw module in the ChemBioOffice software
(version 2010). The pdbqt structure file necessary for virtual
screening was created using the Raccoon software. Next, the
docking active center (including all residues around the original
ligand) was set using the grid box function in the software,
according to the root mean square deviation (RMSD) between
the docked ligand and original ligand molecules with appropriate
docking parameters. RMSD ≤4 is generally believed to be the
threshold for the ligand conformation after docking to match the
original ligand conformation (22, 23).

Gene Ontology Biological Processes and
Kyoto Encyclopedia of Genes and
Genomes Enrichment Analyses
Briefly, the ClusterProfiler, ReactomePA, and AnnotationHub
packages in R software (3.6.1) were used to perform a gene
ontology (GO)–based biological process and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analyses of
hub targets. Finally, the bubble charts, graphs, and histograms
were obtained and visualized (24, 25).

Visualization of Network Relationships
Furthermore, using the Cytoscape software (https://cytoscape.
org/), the data of hub targets in the biological processes and
pathways of calycosin against HF/DM were used to construct
drug–target–GO and function–pathway–disease visualization
graphics (26, 27).
RESULTS

Candidate and Functional Genes
Following the bioinformatics analysis, the accessible data
revealed 1,499 and 2,359 HF- and DM-related genes,
respectively. Furthermore, 113 genes of calycosin were found
after screening and removing duplicates using the UniProt
database (https://www.uniprot.org/). As shown in Figure 1, 39
mapped targets are displayed in a Venn diagram. Furthermore,
July 2022 | Volume 13 | Article 790619
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these PPI data with 39 targets were collected for constructing a
target–target functional interaction network.

Protein–Protein Interaction Topology
Parameters and Hub Targets
The mapped intersection proteins were imported into Cytoscape
software to determine the topological parameters of calycosin
against HF/DM. Screening parameters included betweenness,
closeness, and connectivity, and the yellow node represented the
final screening result. Twenty hub targets highly correlated with
calycosin against HF/DM were obtained. These included
mitogen-activated protein kinase-1 (MAPK1), ARRB1, ABL1,
CDK1, MAP3K3, STUB1, PPP1CA, STAT3, PML, IQGAP1,
HSPA9, CAV1, KPNB1, SQSTM1, RUVBL1, SFPQ, PPP2CA,
PCBP1, ANXA2, and PAK1 (Figure 2).

Gene Ontology Biological Processes and
Kyoto Encyclopedia of Genes and
Genomes Pathways Involving Hub Targets
The enrichment analyses showed that the main GO-based
biological processes of hub targets were involved in the positive
regulation of protein phosphorylation, apoptotic process,
regulation of cell adhesion, regulation of circadian rhythm,
proteasome-mediated ubiquitin-dependent protein catabolic
process, positive regulation of fibroblast proliferation, negative
regulation of protein binding, positive regulation of protein
ubiquitination, positive regulation of peptidyl-serine
phosphorylation, MAPK cascade, cell–cell adhesion, caveolin-
mediated endocytosis, activation of MAPK activity, Fc-gamma
receptor signaling pathway involved in phagocytosis, Bergmann
glial cell differentiation, negative regulation of the apoptotic
process, response to hypoxia, protein autophosphorylation,
Janus Kinase (JAK)-Signal Transducer and Activator of
Transcription (STAT) cascade involved in the growth hormone
signaling pathway, and positive regulation of dendrite
Frontiers in Endocrinology | www.frontiersin.org 3
development. The cellular components (CCs) of hub targets
were related to cytosol, cytoplasm, nucleoplasm, extracellular
exosome, ruffle, focal adhesion, cell–cell junction, nuclear
membrane, cell–cell adherens junction, nuclear matrix, midbody,
nuclear chromosome, telomeric region, protein complex,
microtubule cytoskeleton, nucleus, basolateral plasma
membrane, pseudopodium, membrane raft, membrane, and
axon. The molecular functions (MFs) of the hub targets
included protein binding, ubiquitin–protein ligase binding,
protein kinase binding, cadherin binding involved in cell–cell
adhesion, ATP binding, protein kinase activity, protein serine/
threonine kinase activity, S100 protein binding, RNA polymerase
II carboxy-terminal domain kinase activity, mitogen-activated
protein kinase binding, transcription regulatory region DNA
binding, Hsp90 protein binding, poly(A) RNA binding,
Hsp70 protein binding, transcription factor binding, Rac
Guanosine Triphosphatase (GTPase) binding, Smad binding,
phosphoprotein phosphatase activity, identical protein binding,
and protein kinase C binding (Figures 3A–C). In addition, 16
KEGG pathways involving hub targets were determined (P < 0.05).
The primary signaling pathways comprised proteoglycans in
cancer, oocyte meiosis, acute myeloid leukemia, the chemokine
signaling pathway, focal adhesion, regulation of actin cytoskeleton,
Epidermal Growth Factor Receptor (ErbB) signaling pathway,
MAPK signaling pathway, neurotrophin signaling pathway,
axon guidance, hepatitis C, adrenergic signaling in
cardiomyocytes, pathways in cancer, herpes simplex infection,
Cyclic Adenosine Monophosphate (cAMP) signaling pathway,
and viral carcinogenesis (Figures 4A–C). The network
visualization of calycosin–target–GO–KEGG–HF/DM was
achieved using Cytoscape software (Figure 5).

Molecular Docking Findings
As shown in Figure 6A, the active cavity box model of MAPK1
has parameter settings of center-x-y-z as 6.89, -3.188, and 16.85
FIGURE 1 | Venn diagram of calycosin effects against heart failure (HF) and diabetes mellitus (DM). Mapped targets of calycosin and HF/DM for constructing a
protein–protein interaction network.
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FIGURE 2 | Hub targets of most important molecules of calycosin against HF and DM.
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and size-x-y-z as 15, 15, and 15, and the RMSD of the original
ligand is 2.73 Å. The hydrogen bonding of the pro-ligand FRZ to
the 1Tvo protein involved the amino acid residues ASP-106
(3.0Å), LYS-54 (3.5Å), GLN-105 (3.3Å), and CYS-166 (2.5 Å)
and the hydrogen bond formation with calycosin included SER-
Frontiers in Endocrinology | www.frontiersin.org 4
153 (1.8 Å), ASN-154 (2.8Å), LYS-54 (3.0Å), ILE-103 (2.3Å),
GLN-105 (3.3Å), and CYS-166 (2.5 Å) (Figure 6B).

As shown in Figure 6C, the active cavity box model of ARRB1
has center-x-y-z as -22.343, 57.812, and 3.635 and size-x-y-z as
14, 14, and 14, and the RMSD of the original ligand is 2.18 Å.
B C

A

FIGURE 3 | Key functional and biological functions of calycosin against HF and DM, characterized in bar diagram (A), bubble chart (B), and circle diagram (C).
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Hydrogen bonding was formed between the pro-ligand IHP and
1ZSH protein through the amino acid residues LYS-326 (2.4Å),
LYS-232 (3.2Å), LYS-324 (3.5Å), ARG-236 (2.0 Å), and LYS-250
(2.1 Å), and calycosin formed hydrogen bonds with LYS-326
(2.4Å), LYS-232 (3.2Å), and LYS-324 (3.5Å) (Figure 6D).

As shown in Figure 6E, the active cavity box model of ABL1
has center-x-y-z as 13.039, 95.919, and 58.059 and size-x-y-z as
30, 30, and 30, and the RMSD of the original ligand is 1.97Å. The
hydrogen bonding between the pro-ligand Polycomb Repressive
Complex (PRC) and 1FPU protein involved the amino acid
residues MET-318 (1.9 Å), VAL-379 (3.1 Å), and GLU-286 (3.4
Å), and calycosin formed hydrogen bonds with MET-318 (2.4 Å)
and GLY-321 (2.7Å) (Figure 6F).
DISCUSSION

The epidemiological data suggest that the incidence of HF is
increasing due to a growing population with metabolic
Frontiers in Endocrinology | www.frontiersin.org 5
disorders worldwide (28). Furthermore, both HF and DM
may increase mortality rates because clinical treatment using
chemotherapy is medical ly insufficient . Hence, the
pharmacological activity of potential therapeutic compounds
warrants to be investigated. In the current network
pharmacology and molecular docking-based approach, the
candidate targets, functions, and signaling pathways of
calycosin against HF/DM were identified. Furthermore, the
hub bio-targets of calycosin against HF and DM were
screened, namely, MAPK1, ARRB1, ABL1, CDK1, MAP3K3,
STUB1, PPP1CA, STAT3, PML, IQGAP1, HSPA9, CAV1,
KPNB1, SQSTM1, RUVBL1, SFPQ, PPP2CA, PCBP1,
ANXA2, and PAK1. In further determination using the
molecular docking analysis, the core targets of MAPK1
(1TVO), ARRB1 (1ZSH), and ABL1 (1FPU) in HF and DM
showed the best binding activities with calycosin, indicating
that these three genes may be potent pharmacological targets
of calycosin against HF and DM. Overall, these identifiable
genes may be potential therapeutic bio-targets for treating HF
B C

A

FIGURE 4 | Top target–pathway associations for anti-HF/-DM activity exerted by calycosin associated with hub targets, characterized in bar diagram (A), bubble
chart (B), and circle diagram (C).
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and DM using calycosin. MAPK1 affects translation, mitosis,
and apoptosis in differentiated cells via phosphorylating
several transcription factors (29). ARRB1, an adaptor
molecule, is essential for mitogenic signaling, and its
function may be induced through ERK1/2 activation (30).
ABL1, a non-receptor tyrosine kinase, mainly exerts a key role
in the development of solid tumors, including ovarian cancer,
breast cancer, and lung cancer (31). However, there is a
limited investigation of these three targets regarding
calycosin action against HF and DM. Based on the present
Frontiers in Endocrinology | www.frontiersin.org 6
bioinformatic findings, we concluded that calycosin exerts a
potential pharmacological activity to treat HF and DM, likely
through regulating hub bio-target expression. In addition,
some of the newly identified hub bio-targets, including
MAPK1, ARRB1, and ABL1, may be promising candidates
for screening the development of HF and DM. Furthermore,
the top biological processes and KEGG signaling pathways of
calycosin were highlighted, revealing the anti-HF/-DM
pharmacological mechanisms of calycosin. These network
pharmacology-based findings may immensely promote anti-
FIGURE 5 | Interaction network of calycosin–target–gene ontology– Kyoto Encyclopedia of Genes and Genomes –HF/DM.
B

C

D

E

F

A

FIGURE 6 | Molecular docking analysis showing the best binding activities of calycosin with 1TVO (A), 1ZSH (C), and 1FPU (E) ligands in the identified core targets
of MAPK1 (B), ARRB1 (D), and ABL1 (F) in HF and DM.
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HF/-DM research using calycosin clinical treatment. However, as
potential limitations in the current bioinformatics report,
experimentative validation in vivo and in vitro should be
conducted accordingly in future studies.
CONCLUSIONS

For the first time, using network pharmacology and a molecular
docking–based approach, this study revealed the candidate hub
bio-targets, biological functions, and KEGG pathways of
calycosin against HF and DM. In further investigations, more
validated experiments will be conducted in a preclinical study.
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