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Laguna, Torreón, Mexico, 3 Univ. Bordeaux, CNRS, CBMN, UMR 5248, Pessac, France, 4 Cátedras CONACYT, Ciudad de
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In diabetes mellitus (DM) treatment, Continuous Glucose Monitoring (CGM) linked with
insulin delivery becomes the main strategy to improve therapeutic outcomes and quality of
patients’ lives. However, Blood Glucose (BG) regulation with CGM is still hampered by
limitations of algorithms and glucose sensors. Regarding sensor technology, current
electrochemical glucose sensors do not capture the full spectrum of other physiological
signals, i.e., lipids, amino acids or hormones, relaying the general body status. Regarding
algorithms, variability between and within patients remains the main challenge for optimal
BG regulation in closed-loop therapies. This work highlights the simulation benefits to test
new sensing and control paradigms which address the previous shortcomings for Type 1
Diabetes (T1D) closed-loop therapies. The UVA/Padova T1DM Simulator is the core
element here, which is a computer model of the human metabolic system based on
glucose-insulin dynamics in T1D patients. That simulator is approved by the US Food and
Drug Administration (FDA) as an alternative for pre-clinical testing of new devices and
closed-loop algorithms. To overcome the limitation of standard glucose sensors, the
concept of an islet-based biosensor, which could integrate multiple physiological signals
through electrical activity measurement, is assessed here in a closed-loop insulin therapy.
This investigation has been addressed by an interdisciplinary consortium, from
endocrinology to biology, electrophysiology, bio-electronics and control theory. In
parallel to the development of an islet-based closed-loop, it also investigates the
benefits of robust control theory against the natural variability within a patient
population. Using 4 meal scenarios, numerous simulation campaigns were conducted.
The analysis of their results then introduces a discussion on the potential benefits of an
Artificial Pancreas (AP) system associating the islet-based biosensor with
robust algorithms.

Keywords: type 1 diabetes, artificial pancreas, closed-loop simulation, insulin therapy, pancreatic islets, micro-
electrode array, biosensor
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INTRODUCTION

Destruction of pancreatic b-cells leads to absolute insulin deficiency
in Type 1 Diabetes (T1D) and concerns 5 to 10% of the estimated
463 million cases of diabetes worldwide in 2019, expected to rise to
700 million by 2045 according to the International Diabetes
Federation (1). In this context, the development of Artificial
Pancreas (AP) systems, composed of a Continuous Glucose
Monitoring (CGM) sensor fitted with a pump to deliver insulin,
is becoming the standard for T1D treatment (2, 3). CGM relies on
subcutaneous glucose measurement via electrochemical electrodes
and algorithms are used to control the pump and safely manage the
insulin delivery (Figure 1).

In spite of improvements relative to hypoglycaemia prevention
(4) and hyperglycaemia mitigation (5, 6), Blood Glucose (BG)
regulation with the AP is still biased by the limitations of
algorithms (7) and technologies used in commercial glucose
sensors (8). Current electrochemical approaches in glucose
sensors do not consider the whole spectrum of nutrients and do
not respond to all physiological situations (e.g., contribution of
intestinal hormones to insulin secretion after a meal, physical
activity, stress), which all modulate insulin requirements.
Regarding algorithms, variability between and within patients,
also referred to as inter- and intrapatient variability, remains the
main challenge for optimal glycaemia regulation with closed-loop
therapies. As a consequence, only partially automated closed-loop
systems are currently accepted for therapy in the US and Europe,
i.e., the T1D patient still has to announce meals and calculates
carbohydrate intake to command himself the bolus insulin
injections (3). Alleviating some of these issues, specifically in the
case of unstable diabetes, would lower the barriers to closed-loop
therapy for patients, with a mitigation of patient’s workload
and anxiety.

To overcome the shortcomings of enzymatic sensors, our
initiative aimed at developing a biosensor which integrates a
Micro Electrode Array (MEA) containing a few murine or
human islets linked to real-time/online signal processing (9–12).
Frontiers in Endocrinology | www.frontiersin.org 2
Pancreatic islets are the “in-born” sensors and actuators, optimally
shaped by evolution, to ensure regulation of glucose homeostasis
under various natural circumstances and lifestyles. The goal is to
design a sensor capable of “seeing” the whole-body physiological
interactions, as opposed to the classical glucose-only sensors. Islets,
composed of several (hundreds of) excitable cells, display
continuous oscillations, reflecting its orchestrated behaviour.
Action potentials and slow oscillations – named Slow Potentials
(SP) - can be recorded extracellularly using MEAs (Figure 2). Islets
SPs have amplitudes in the range of few tens of microvolts,
frequency components ranging between 0.2 and 2 Hz (11), and
their characteristics are closely correlated to insulin secretion
dynamics (14). Signal treatment raises challenges when processing
it online and in real-time for in vivo applications. Decoding
information from the recorded signals requires analogue pre-
processing by amplifiers and filters, followed by digital processing
with statistical, frequency, or temporal analysis to perform feature
extraction and produce relevant metrics (15). Furthermore, adaptive
decoding is essential to take into account variations in signal and
electrode properties, particularly for chronic recordings (16). This
sensor technology has been patented in 2013 (17).

Building on promising results of the previously developed and
patented glucose bio-device, which integrates multiple physiological
signal information (17, 18), a consortium has been created in 2019
to assess the possibility to integrate this islet-based biosensor in
closed-loop therapies for patients with T1D. This consortium
started the collaboration in a national project named DIABLO,
supported by the French National Agency for Research (ANR).
Preliminary work (19) provided guidelines for the controller tuning
with an in silico methodology based on clinically-relevant criterion:
a meta-heuristic method (genetic algorithm (GA)-based
optimization technique) is used with the BG risk index (20). The
core element of the GA-based protocol is the UVA/Padova T1DM
Simulator (T1DMS - v3.2) (21). This computer model of the human
metabolic system simulates the glucose-insulin dynamics in T1D
patients, and is approved by the US Food and Drug Administration
(FDA) as an alternative for pre-clinical testing of insulin therapies,
FIGURE 1 | Principle of the Artificial Pancreas for T1D treatment. An electrochemical CGM sensor continuously measures subcutaneous glucose concentrations,
which reflect blood glucose concentration. This information is then processed by algorithms (controller, bolus calculator, alarms …), connected to an insulin pump to
deliver the appropriate amounts of insulin.
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including closed-loop algorithms (22). Using the T1D adult cohort
of the simulator, a first comparison between two AP systems (a
biosensor-based one and a CGM-based one) was presented in (13).
Thanks to individualised controller parameters, satisfactory
performance was achieved with the biosensor-based AP system,
even with a simple proportional-derivative controller associated to
continuous basal infusion (PDBASAL). This regulation scheme was as
efficient as standard treatments with unannounced meals (no bolus
strategy was implemented).

Another objective of the DIABLO project lies in the use of
control theory to tackle the variability observed between and within
patients in a real T1D population. For that purpose, it is necessary to
have a relevant model capable of accurately capturing glucose-
insulin dynamics. This topic has received a great attention in the last
decade, with different type of models: from Linear Time Invariant
(LTI) (23, 24) to Linear Parameter Varying (LPV) ones (25–27). In
the DIABLO project, it has been proposed to derive a family of LTI
models of thirteen-order from the UVA/Padova simulator to
capture the dynamics from the subcutaneous insulin to the
subcutaneous glucose in T1D patients. This set of LTI models is
composed of a nominal LTI model fitted with an uncertainty block
and it can be used for design and analysis purpose. Based on this
modelling, a unique and robust Proportional-Integral-Derivative
(PID) has been designed for the T1DMS adult cohort in (28).
Results reported in (28) showed that BG regulation fitted with a
basic bolus strategy of 2 units of insulin applied during the meal
announcement, provided quite similar performances with respect to
the individualised PID controllers of (29). These results motivated
the use of a unique and robust controller to generate a continuous
basal insulin injection. With the current technology of CGM
sensors, it appears, however, necessary to couple this basal
Frontiers in Endocrinology | www.frontiersin.org 3
delivery with a bolus insulin injection protocol to improve the time
in the so-called normo-glycaemic range (70mg/dl < BG < 180mg/dl)
for counteracting the meal intakes. From (3, 30), this strategy
has been adopted by the current commercial AP systems on the
market like MiniMed 780G (CE and FDA approval), Diabeloop
(CE approval), Tandem t:slim X2 (FDA approval, CE approval
in progress) and Omnipod Horizon (FDA approval in progress)
where the bolus strategy involves assistance from the T1D
patient, i.e. the patient has to calculate carbohydrate intake to
precisely dose insulin boluses.

In the present work, we intend to highlight the benefits of
numerical simulation (with the UVA/Padova T1DMS) to address
this issue and establish in silico proofs of concept for the DIABLO
project. In particular, we propose a method to define meal scenarios
based on patients’ body weight to better account for the interpatient
variability in energy requirements and define more realistic meal
scenarios. These scenarios are then used to assess the two different
closed-loop solutions we alreadymentioned: the first one uses a GA-
based controller tuning method (13, 19) and the other one based on
a robust control theory approach (28, 31). With this second
approach, we also propose a meal size-independent bolus strategy,
slightly individualised by integrating the Carbohydrate-to-Insulin
Ratio (CIR) in the bolus calculator rule. The objective here is to
alleviate patient’s workload and anxiety, while keeping him involved
in the therapy management, i.e., the patient still has to announce
sizeable glucose intakes (meals). From an analysis of the in silico
results, we will finally discuss the proposal of an original AP
paradigm where the dissimilarity between a commercial CGM
sensor and our biosensor could be used advantageously, to better
handle inter- and intrapatient variability in diabetes treatment
and care.
A B

FIGURE 2 | Biosensor principle: acquisition and processing of electrical biosignals generated by pancreatic islets cultured on MEAs and stimulated by increasing
glucose levels. (A) Pancreatic islets cultured on MEAs. Glucose can be introduced in the culture chamber to stimulate the cells. Each electrode in the MEA captures
a combination of uni- and multicellular activity generated by the neighbouring islets. A custom electronic board performs online digital signal processing on the
recorded biosignals to extract features of interest for each electrode. (B) The electrical activity is modulated by glucose concentration. Low glucose inhibits activity
and high glucose induces two signals of interest generated by b-cells, representative of uni- and multicellular activity: action potentials and SPs. Action potentials are
mainly characterized by their frequency and organisation in bursts, and SPs by both their frequency and amplitude. [From (13)].
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MATERIALS AND METHODS

UVA/Padova Simulator
Simulators of humanmetabolic system based on the glucose-insulin
dynamics, have been shown to be useful in developing diabetes
treatment solutions (32). Such testing environments give the
opportunity to assess the performance of algorithms with costs
and time savings, and avoid ethical questions. In particular, the
UVA/Padova T1DMS is the only simulation tool, approved by the
US Food and Drug Administration (FDA), as an alternative for pre-
clinical testing of closed-loop algorithms (22, 33). T1DMS includes
mathematical models of glucose-insulin dynamics, and several types
of CGM sensors with realistic imperfections on the glucose
measurement, insulin pumps and a simulation block dedicated to
algorithm assessment. We used here the latest commercial version
(v3.2) based on the equations given in Dalla Man et al. (21). This
version includes a cohort of 33 T1D patients (11 adults, 11
adolescents, and 11 children). Hence, it is possible to simulate the
effect of realistic meal scenarios on various virtual patients treated
with the proposed closed-loop insulin solutions. However, it has to
be noted that the considered version (v3.2) of the T1DMS involves
the following working assumption:

Assumption 1: The glucose-insulin dynamics are not
modulated by the circadian variability of insulin sensitivity.

The authors are aware that such assumption can limit the
significance of multi-meal simulations. This choice has been
made to not question or alter the human metabolic model
approved by the FDA. A deeper analysis of this topic will be
given in the discussion section.

A Meta-Heuristic Method to Design an
Islet-Based Closed-Loop Therapy
In real T1D populations, a large inter-patient variability is
observed in terms of sensitivity to insulin, body weight, and
T1D duration. This variability is a serious issue in designing
easily adjustable AP systems as the amount of insulin required to
mitigate postprandial hyperglycaemia greatly varies among
patients. To account for this variability as well as to ensure
reliability and stability of the closed-loop system, a fine tuning of
the AP controller’s parameters is necessary.

Controller Tuning
In the first part of this work, a GA1-based optimization technique is
used to tune a PDBASAL controller for each adult patient of the
T1DMS cohort with respect to a clinically-relevant objective metric:
the Blood Glucose Index (BGI) (Figure 3). This metric is a known
indicator of the clinical risk associated with a given blood glucose
level (20). The BGI risk function is defined as follows:

BGI(G) = 10� (1:509� (ln(G)1:084 − 5:381))2 (1)

where G is the glucose level measured in mg/dl. By minimizing the
mean BGI over a series of single meal scenarios, our GA-based
algorithm can find controller parameters, which minimizes the
1GA, Genetic Algorithm.

Frontiers in Endocrinology | www.frontiersin.org 4
clinical risk associated with the closed-loop regulation of the
patient’s glycaemia.

Controller Design
As a first step, this method was applied to the tuning of simple
Proportional-Integral-Derivative (PID) controllers to handle the
diffusion delays induced by subcutaneous glucose measurement
and insulin infusion. Prior to (19), many variants of the
traditional PID architecture were tested and a PD architecture
associated with a subject specific basal infusion of insulin
(PDBASAL) was finally selected. This controller architecture
provided good performance and allowed us to reduce the
number of parameters to tune to 2, thus increasing the GA
convergence speed. The corresponding discrete-time controller
is represented by:

C(z) = Kp 1 +
Td

Ts
� z − 1

z

� �
(2)

where Ts = 5 min is the sampling period of the PDBASAL controller,
Td its derivative time constant, and Kp its proportional gain. A
constant patient-specific basal insulin infusion rate provided by
the T1DMS for each patient, is then summed to the controller
output. More details about the islet-based sensor and its
integration in a BG regulation closed-loop are given in (13);
more details about the controller tuning methodology are given
in (13, 19).
Body Weight-Dependent Meal Scenario Definition
The tuning method presented above has already proven its
efficiency to individually tune the controller parameters of a
CGM-AP for the 11 virtual T1D adults of the T1DMS patient
cohort (19). The method was then refined to better handle the
CGM sensor noise and applied to the tuning of our biosensor-
based AP (Bios-AP) controller (13).

Real T1D patients have specific energy needs related to their
individual metabolisms, ages, sexes and lifestyles. Using a unique
meal scenario to evaluate the performance of closed-loop systems
on a T1D population (either in vivo or in silico) therefore seems
inadequate as most of the patients would receive either an under- or
overstimulation by the unique meal scenario relative to their specific
needs. To address this issue, and thus better account for the
interpatient variability of energy requirements, we propose here a
method to individualise the meal scenarios. To keep it simple,
individualisation was performed using a single parameter. Among
the patient’s parameters provided by the T1DMS we chose the
body-weight as it is the parameter which best represents patient’s
singularity, i.e., age, sex, metabolism, and lifestyle. To achieve meal
scenario individualisation, each glucose intake of the user-defined
scenario is divided by the average body weight of the 11 adults to
obtain a meal scenario whose glucose intakes are defined in grams
of glucose per kilogram (of body weight). The individualised
scenarios which are actually simulated are then generated
proportionally to each patient’s body weight, see Figure 4. This
method is implemented as a MATLAB function which seamlessly
integrates the simulator execution flow. The function reads the user-
defined meal scenario and generates individualised scenarios, while
April 2022 | Volume 13 | Article 795225

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


2CIR, Carbohydrate-to-Insulin Ratio.
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ensuring that the average daily glucose intake computed on all
generated scenarios is the daily glucose intake of the user-defined
scenario. In our previous work (13), validation scenarios were
designed to match the daily glucose intake reported in the
literature for American T1D adults (235 grams of glucose in
average) (34). The main advantage of this method is that it
maintains, by design, this realism as the scenario defined by the
user serves to set the average scenario on the whole adult
population. Note that such “normalization” to the body weight is
also commonly used for animal in vivo glucose tolerance tests to
avoid inter-individual bias (35).

Using the GA-method presented in (13, 19) with individualised
scenarios, a new set of controller parameters was generated for the
Bios-AP, and for the 10 virtual T1D patients of the T1DMS (the 11th

adult#average patient was not used in this study).

Simulation Benefits for Robust Control
Problem Formulation
In parallel to the development of an islet-based closed-loop
architecture for BG regulation, we also attempted to formulate a
control problem compliant with a robust solution. For that purpose,
it has been proposed to derive a family of LTI models of thirteen-
order from the UVA/Padova simulator able to capture the
interpatient variability in the glucose-insulin dynamics. These
models were then used to design a unique feedback controller
K(s), for a population of T1D patients, which delivers a control
signal called insulin basal. To quickly react to food intake, a meal
announcement feature was implemented in this second part to
trigger the delivery of meal boluses. Contrary tomore standardmeal
bolus features involving a patient-provided estimation of the
quantity of ingested carbohydrates (36), we developed a bolus
strategy which diminish patient’s workload and anxiety by only
requesting a meal announcement, i.e., a constant insulin bolus is
delivered for each sizeable meal (breakfast, lunch and dinner). This
meal-independent bolus feature was individualised by integrating
Frontiers in Endocrinology | www.frontiersin.org 5
the patient CIR2 knowledge of the clinician in charge of the T1D
patient. The control algorithm, proposed in this subsection, thus
delivers the following insulin signal u(t):

u(t) =
K(r(t) − SG(t)) + ubolus for one minute at meal announcement

K(r(t) − SG(t)) otherwise

(
(3)

where SG(t) is the subcutaneous glucose signal delivered by a
CGM sensor. r(t) is the glucose target. With a duration of one
minute after a sizeable meal announcement, the signal ubolus is
given by the following mathematical expression:

ubolus = 12000L(CIR),   L(CIR) =
1  if CIR > 15g=U

2  if CIR ≤ 15g=U

(
(4)

where the value of 12000 pmol/min (2 unities of fast insulin) has
been chosen to be compliant with the requirements of (29). This
magnitude can be adapted by considering the CIR of the T1D
patient to schedule the adaptive gain L, see equation (4). Hence, the
retained closed-loop insulin setup in this sub-part obeys to the
architecture shown in Figure 5.

In the following subsection, we first provide guidelines
showing how it is possible to derive a family of linear models
for the considered population of T1D patients. Next, a robust
control technique was used for control design purpose.

Getting a Family of Linear Models of T1D Patient
Population
From (21), the nonlinear dynamical model of a T1D patient can
be written according to:

_x(t) = f (x(t), u(t), q(t))

y(t) = C0x(t)

(
(5)
A B

FIGURE 3 | (A) Working principle of the Genetic Algorithm-based controller tuning method. 5 single meal scenarios are simulated for various controller parameter
combinations. The closed-loop performance of each combination (averaged on the 5 scenarios) is assessed with a BGI-based cost function to iteratively tune the
parameters of a PDBASAL controller. SC glucose denotes the subcutaneous glucose concentration. (B) Blood Glucose Index (BGI) risk unction plot.
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where C0 = (01�12V
−1
G   01�5) with x(t) ∈ R18, u(t) ∈ R3, q(t) ∈ R9

and y(t) ∈ R are respectively the model state, input, time-varying
parameter and output vectors, with the functional f: R18 × R3 × R9

!R18. All time-varying parameters and the physiological parameter
VG are defined in (21). As we were considering closed-loop insulin
systems, the model given by equation (5) was reduced to a state
Frontiers in Endocrinology | www.frontiersin.org 6
vector of 13 states by taking out the contribution of the last 5 states
(x14, x15,…, x18) relative to the glucagon dynamics. Hence, the
reduced model became

_xr(t) = fr(xr(t), ur(t), qr(t))

y(t) = Cxr(t)

(
(6)
FIGURE 5 | Standard setup for closed-loop insulin therapy. In this work, the controller K is a unique robust controller for the whole T1D patient population.
Personalization is deported in the bolus calculator rule.
FIGURE 4 | Body weight-dependent definition of the glucose intake scenarios. Example for adult#005 of the T1DMS.
April 2022 | Volume 13 | Article 795225
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where C = (01�12V
−1
G ) with xr(t) ∈R13, ur(t) ∈R2, qr(t) ∈R7 and

fr: R13 × R2 × R7 !R13. ur(t) = (u1(t) u2(t))
T where u1 refers to

the carbohydrate intake (i.e. the meal) and u2 corresponds to the
insulin infusion rate, which is delivered to the patient through an
insulin pump.

To obtain a family of linear models able to fit the nonlinear
model equation (6), the set of operating points (x∗r , u

∗
r ) had to be

choosen judiciously, i.e., the time-varying parameters qr were
constant on a time interval described later. For each operating
point (x∗r , u

∗
r ), a first-order Taylor approximation was thus

performed and the nonlinear model equation (6) were
reformulated as follows:

d _xr(t) = A(x∗r , u
∗
r )   dxr(t) + B(x∗r , u

∗
r )   dur(t)

dy(t) = Cdxr(t)

(
(7)

where dxr(t) = xr(t) − x∗r and dur(t) = ur(t) − u∗r . dy(t) is the
variation of the output with respect to the fasting basal glucose
Gb and A, B are the Jacobian matrices of vector field fr with
respect to xr and ur, evaluated at (x∗r , u

∗
r ). The key element was

then to define a set of values (x∗r , u
∗
r ) sufficiently dense to obtain

an accurate approximation of equation (6) with (7). To proceed,
the nonlinear model of the T1DMS was used to simulate a single
meal scenario with basal insulin input (u2 = Ib). The meal
corresponded to 50 g of carbohydrates, ingested during 15 min
(i.e. u1 = 3333 mg/min). The basal insulin Ib is the proper
quantity of insulin that allows to reach a steady-state condition
during fasting periods (37). For the considered population of
adult T1D patients, we have 94.6 pmol/min ≤ Ib ≤ 150.0 pmol/
min. From this simulation, the spatial discretization is achieved
on xr and ur in order to produce a set of adequate values for
(x∗r , u

∗
r ) such that time-varying parameters qr are constant on the

considered interval, i.e. let the simulation time horizon [0, T] be
divided into subintervals as follows: 0 = t0 < t1 < ··· tn = T. The set
l = (l0,l1,…, lk,ln) is defined such as:
Frontiers in Endocrinology | www.frontiersin.org 7
l0 ∈ t0,
t1
2

� �
lk ∈

tk+tk−1
2 , tk+1+tk2

� �
 

ln ∈
tn+tn−1

2 , tn
� � for   1 ≤ k < n

8>><
>>: (8)

On each subinterval, t ∈ lk for k ∈{0,…, n}, a linear model for
each patient denoted with patient index i = {1,…,11} is
deduced as

d _xir(t) = Ai
k   dx

i
r(t) + Bi

k   du
i
r(t)

dyi(t) = Ci
k   dx

i
r(t)

(
(9)

where Bi
k = (Bi

1kB
i
2k ) with Bi

1kB
i
2k ∈ R13�1. Figure 6A shows the

spatial discretization for the considered scenario. This protocol
was thus repeated several times (a total of n = 222 models per
patient) in order to have a family of linear models able to
guarantee a good approximation of the nonlinear model
equation (6), see (28) for more details.

Before formulating the control design problem, two sources of
uncertainty must be considered: i) the inter- and intra-patient
variability within a T1D population due to patient’s characteristics
(e.g., fasting basal, total daily insulin need, weight) and ii) the
dynamics of the glucose diffusion from the intravascular space to the
subcutaneous one. Note that the output of model equation (9) gives
information on the 13th model state corresponding to the level of
subcutaneous glucose (SG(t)). To have information of BG level, it is
necessary to refer to the 4th model state.

Regarding the uncertainty of patient’s characteristics, the so-
called unstructured multiplicative uncertainty form (38) is used to
derive the family of linear models (Equation 9), which can be
rewritten by using the Linear Fractional Transformation (LFT)
representation according to:

Gbik(s) = Ci
k(sI − Ai

k)
−1Bi

2k   ∀ i, k

= Gb0(s)(1 +Wunc(s)Db(s)) = ℱu(Pb(s),Db(s))
(10)
A B

FIGURE 6 | Use of the T1DMS for modelling purpose: two important steps (A) Spatial discretization for the considered single meal scenario on the 13th states of
the nonlinear model in UVA/Padova simulator for the patient adult#001 of T1DMS. (B) Results of the constructive solution to obtain the upper LFT of the entire family

of linear models. In blue, it is the frequency behaviour of jGi
k  (jw )=G0 (jw) − 1j ∀ i, k,w. The optimal solution W∗

unc is plotted in green and the retained value Wunc for
this study case is plotted in red.
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Olçomendy et al. Biosensor in Closed-Loop Therapies
where the matrix Ci
k is used to refer to the 4th state of equation

(9). Fu is the upper LFT defined as Fu(M, N) =M22 +M21 N(I –
M11N)

–1M12. Wunc(s) is a wheigting function used to normalize
the uncertainty Db, ||Db||∞≤1. Hence, Wunc has to guarantee:

Wunc(jw)j j   ≥  
Gbik(jw)
Gb0(jw)

− 1

����
����   ∀ i, k,w (11)

Equation (11) gives a constructive solution to determine the
couple (Gb0, Wunc). To have the smallest conservative LFT, the
optimal solution (Gb∗0,W

∗
unc) is constructed such that ||Wunc||∞ is

minimal. This optimization problem leads to the results given in
Figure 6B, where W∗

unc is found of order 11 to perfectly fit the
upper bound. However, choosing a simple constant for Wunc ≈
0.45 leads to a LFT Fu(Pb(s), Db (s)), which is less complex
(dimension of Db is one), with a small conservativeness since the
maximum gap between the optimal solution W∗

unc and Wunc is
inferior to 1.5dB. Towards this end, the constant solution is
retained in this study case.

Next, a parametric uncertainty is considered to integrate the
time lag variability in T1D patients (between 6.83 and 10.83 min
for the adult cohort of T1DMS) of glucose from intravascular to
interstitial space (39). A deeper analysis of the equation (4)
reveals that this variability is reflected by a gain variation of the
transfer between the 4th (BG level) and the 13th (SG level) state.
Such variation can be easily captured by an upper LFT so that

Gsc
i
k(s) = Fu(PSC(s),DSC),∀ i, kDSC ∈ R :jjDSC j∞ ≤ 1j (12)

where Dsc is the uncertainty block used to capture this variability.
The input of Gsc

i
k(s) must be the BG level and its ouptut

corresponds to the SG one.

Design of the Unique Controller K
We then aimed to design a unique controller K(s) for a
population of T1D patients – the adult cohort in this study
case – able to maintain the BG level in a specified range despite
T1D patient variabilities. For feedback controller design purpose,
it is proposed to work on the feedback architecture given in
Figure 7. The block Gzoh(s) has been introduced to model the
digital-analogue converter integrated in the insulin pump, as a
delay of Ts/2 where Ts is the considered sample time. Here, we
modelled Gzoh(s) by a Pade approximation of first order. Hence,
the unique controller K(s) must be designed to control the
Frontiers in Endocrinology | www.frontiersin.org 8
augmented system ~GD(s) shown in Figure 7. In this work, the
loop shaping method fitted with an H∞ optimization problem
was used to guarantee robustness and the closed-loop stability
(40). Such robust technique usually involves two main steps, i)
define a pre-compensator W1(s) and a post-compensator W2(s)
to enforce the desired open-loop specifications on the shaped
plant ~Gs(s) = W2(s)~GD(s)W1(s) and ii) use the normalized
coprime factor (41) to solve an H∞ optimization problem
according to (40). All theoretical justifications dedicated to the
considered Glover-McFarlane H∞ normalized coprime factor
loop-shaping algorithm are given in (40, 41).

According to (40), we consider the nominal plant ~G0(s) (Dsc = 0
and Db = 0) for design purpose. Thereby, the constructive solution
based on equation (11) becomes a crucial step to obtain the smallest
conservative LFT. To design a controller Ks(s) able to stabilize a
family of systems of the nominal shaped plant ~Gs0(s) = W2(s)~G0(s
)W1(s), weighting functionsW1(s) andW2(s) have to be defined. In
a preliminary study (28), PID controllers achieved acceptable
performance and the worst-case performance was observed for
the patient 8 of the adult cohort. Thus,we selectedW2 = 1 and chose
the continuous state-space representation of the individualised
Proportional-Integral-Derivative (PID) controller dedicated to
the eighth T1D patient for W1(s). Interested reader can refer to
(29) to have the guidelines for PID tuning with two physiological
parameters: the bodyweight and the total daily insulindose.The last
optimization step can be applied to improve worst-case results and
be robust against the uncertainty ball in the normalized coprime
factors. With the following H∞ cost function:

g (Ks(s)) =
1

Ks(s)

" #
1 − ~Gs0(s)Ks(s)
� �½1 ~Gs0(s)�

					
					
∞

(13)

the optimal performance is obtained by minimizing the
following cost:

g : = min
Ks

g (Ks(s)) (14)

g is linked with the normalized coprime stability margin. In the
range 1<g<3, stability margins are judged satisfactory to be
robust against the considered unstructured uncertainties. In
our case, we are in this expected range (g = 1.69). Hence, the
unique robust feedback controller K(s) for a population of T1D
patients is finally built by combining the H∞ controller Ks(s)
FIGURE 7 | Feedback control setup for design purpose.
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designed on the worst-case results, with the shaping functions
W1(s) and W2(s) according to K(s) = W1(s)Ks (s)W2(s).

Note that the authors are aware that a µ-analysis should be
required to know if the resulting controller is able to theoretically
satisfy the control specifications for all uncertainties Dsc and Db.
Due to the scope of the journal, it is proposed here to only
perform several simulations in the result section to assess this
requirement. Interested readers can however consider the
preliminary works (28, 31) to know how this concern can be
theoretically addressed.

Metrics for Closed-Loop
Therapy Assessment
In this study, eight of the metrics recommended in (42–44), i.e.
the Time Below Range (TBR) with too different levels, the Time
In Range (TIR), the Time Above Range (TAR) with also two
different levels, the Low Blood Glucose Index (LBGI), the High
Blood Glucose Index (HBGI), and the mean BG, were used for
performance assessment. In addition, we also considered the
Total Daily Insulin (TDI). For the time spent in the different
glycaemic ranges the targets recommended in (45) for normal
T1D adult patients were used. Definitions of these metrics and
recommended targets are provided as Supplementary Material.
Note that there is no official recommended value or target for the
TDI metric. Indeed, the insulin need is highly dependent on the
physiological status (e.g., stress, physical activity) and
characteristics of the patients. This metric was therefore used
to monitor the aggressiveness of the studied closed-loop
solutions, and for comparison purpose.

Statistical Analysis
To complete the performance analysis, normality of datasets was
tested using the Shapiro-Wilk test and statistical significance was
then assessed using either the two-sided paired sample t-test or
the two-sided Wilcoxon signed rank test. P-values lower than
0.01 were considered significant.
3HbA1c, glycosylated hemoglobin A1c.
4The conversion was computed using the online eAG/A1C Conversion Calculator
provided by the American Diabetes Association.
RESULTS

As mentioned above, the objective of this work is to present and
assess two different manners to handle the interpatient variability,
which still challenges AP systems. The first subsection presents the
results of a highly individualised approach with the islet-based
closed-loop (Figure 3). In contrast, the second subsection presents
the results obtained with a more common CGM-based AP system
where a unique controller is tuned, for the whole adult cohort of
the T1DMS, using a robust control theory approach (Figure 5).
The results presented in both subsections are based on meal
scenarios individualised with the method presented in
subsection 2.2. Two realistic 48-hour scenarios, where the same
meal pattern is repeated on two consecutive days, are simulated.
The first pattern, referred to as the “standard scenario”, consists in
five carbohydrate intakes, 0.62, 0.96, 0.27, 1.10 and 0.27 grams of
glucose per kilogram of body weight respectively at time t = 180,
480, 720, 900, and 1080 minutes (corresponding, on average, to 45,
Frontiers in Endocrinology | www.frontiersin.org 9
70, 20, 80 and 20 grams of glucose over the whole adult
population, see section 2.2). The second pattern, referred to as
the “challenging scenario”, consists in three large carbohydrate
intakes, 0.89, 1.24, and 1.10 grams per kilogram of body weight
respectively at time t = 180, 480, and 960 minutes (corresponding
to 65, 90 and 80 grams on average). The default meal duration of
15 minutes was used for all meals.

Islet-Based Closed-Loop
Therapy Assessment
Our GA-based tuning method was used to tune the parameters
of a PDBASAL controller for each adult patient of the T1DMS
cohort. Contrary to our previously published works, the
controllers are tuned here using individualised single meal
scenarios (see Methods section). These controllers are
associated with the biosensor model presented in (13) to form
the islet-based closed loop. To assess the performance of this
system, the ten T1D adults were submitted to the “standard
scenario”. Figure 8 presents the BG profiles obtained for each
patient during the last 24 hours of this realistic 3-meal 2-snack
scenario. For every patient, the BG regulation system provided
satisfactory performance with limited postprandial hyperglycaemia
and no hypoglycaemic event during the 48 hours. To complete
the assessment of our islet-based closed-loop system, we
computed the performance metrics detailed in the Methods
section. Concerning the time spent in the 5 glycaemic ranges
defined by Danne and colleagues (44), the islet-based closed loop
permitted to all patients to reach the recommended targets (45).
Excellent results were obtained for all the patients (TIR ranging
from 78.7% to 97.0%) with a particularly satisfactory mitigation of
the hypoglycaemic risk (TBR = 0% for every patient), see
Figure 9. According to the T1DMS User Manual, the mean
LBGI and HBGI are minimal for all patients (see Table 1).
Concerning the mean BG, most patients present levels below
140 mg/dl, which allow them to achieve the recommended
HbA1c3 target level of 6.5%4.

Assessment of the Robust
Closed-Loop Therapy
We integrated the unique robust controller K and the bolus
calculator rule (4) (both described in the Methods section) in the
UVA/Padova T1DMS according to the setup shown in Figure 5.
Closed-loop was assessed with respect to standard
recommendations introduced previously. A standard CGM sensor
model was used for these simulations. Ten T1D adults were
submitted to two multi-meal scenarios: the first one is the
“standard scenario” mentioned above (a 3-meal 2-snack pattern
repeated on two consecutive days) and the second is the
“challenging scenario” (three heavy meals daily for 48 hours).
Scenarios were also individualised using the patient body weight.
As for the islet-based closed-loop, the performance assessment was
made on the last 24 hours (second day). In addition, scenarios were
April 2022 | Volume 13 | Article 795225
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repeated 25 times to account for the random inaccuracies of the
CGM sensor (46).

For both scenarios, three closed-loop therapies were
evaluated. In all cases, the unique robust controller designed in
subsection 2.3 was used. The changes only concern the insulin
bolus delivery triggered by the announcement of a sizeable meal.
First, we considered the standard of Medtronic’s bolus rule [see
for instance the equation (6) of (46)] with a perfect estimate of
carbohydrate (CHO) intakes, i.e. the patient enters, to the nearest
gram, the exact carbohydrate content of the meal into the AP
device. Since it has been reported that errors in carbohydrate
counting by patients can range from -30% to +40% (47), a second
series of simulations is performed with the same therapy, but
with random CHO estimation errors. Finally, the third closed-
loop therapy evaluated here, integrates the proposed meal bolus
solution called “adaptive bolus”, and whose bolus rule is given in
the equation (4). Figure 10 and Table 2 show the simulation
results and the corresponding performance metrics.

For the “standard scenario” (left plots of Figure 10), the BG
levels remained mostly in the TIR interval without snack bolus.
The same trend occurred for the “challenging scenario” reported
on the right side of Figure 10. For the so-called “standard
scenario”, the three assessed closed-loop insulin therapies
presented a mean TIR above 90% (see Table 2). Moreover, the
unique controller fitted with the adaptive meal-independent
bolus rule possessed the smallest TDI, causing de facto a small
increase of TAR1, TAR2 and HBGI metrics. Nevertheless, all
metrics followed the recommended values, see Supplementary
Material. These data motivated the use of a unique robust
controller designed according to the protocol introduced in
Frontiers in Endocrinology | www.frontiersin.org 10
section 2.3. As one would expect, the best TIR (97.1%) was
obtained with the standard rule of Medtronic bolus delivery,
without CHO errors. Removing the CHO estimation in the bolus
calculator (i.e., using the adaptive bolus) caused a performance
drop of 6.5% for the TIR. An equivalent gap (6.4%) can be
observed with the second scenario. However, this gap was
attenuated when the CHO counting errors were considered:
the drop decreased to 5.2% between the Medtronic bolus with
CHO errors and the adaptive one in the standard scenario, and
was further reduced to 2.8% in the challenging one. In other
words, when realistic CHO counting is considered, the price to
pay to mitigate the patient’s workload and anxiety is a
deterioration of the time spent in the TIR of 2.8% on the last
24 hours, with slightly better results for the TBR2, TBR1 and
LBGI metrics.

Comparison With Other Works
During the last decade, many algorithms have been proposed for
the Artificial Pancreas controller and tested with the UVA/
Padova T1DMS (48–51). Varying levels of closed-loop
performance have been achieved in silico depending on the
complexity of the control algorithm and on the degree of user
input (meal and exercise announcement). To compare our
results to the literature, we selected recent works, published by
Gondhalekar et al. (50) and Colmegna et al. (51), for their
similarities with our work and their use of the same simulator
version, which enables a fair comparison. The meal scenarios
used in these works were simulated 25 times for each adult of the
T1DMS cohort (note that the individualisation function
presented in section 2.2 was not used here). In (50), a MPC
FIGURE 8 | Simulation results for the ten T1D adults submitted to a 48-hour, 3-meal 2-snack scenario (last 24 hours are displayed) and treated with the islet-based
closed-loop therapy (via subcutaneous routes). Meal intakes are labelled in g/kg and marked with black vertical bars on the chart. Regions with no glycemic risk,
moderate glycemic risk and high glycemic risk are color-coded, respectively in white, pink and red.
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law which uses a discrete-time LTI model of glucose-insulin
dynamics is proposed. The control algorithm integrates two
main features: a velocity-weighting to mitigate controller-
induced hypoglycaemia and a velocity-penalty to correct
postprandial hyperglycaemia. For this comparison, our unique
controller K was associated with the Medtronic bolus rule. The
27-h meal scenario consisted in three large glucose intakes of 90
grams each. Contrasting results were obtained as the TIR
increased by 8.8% with our controller but with a poorer
mitigation of the hypoglycaemic risk (2.53% vs 0.07% - see
Table 3). Of note, this comparison presents two limitations
lying in the number of patients used [the full cohort of 111
patients was used in (50)] and the different premeal bolus
strategies. In (51), Colmegna and colleagues proposes a control
strategy based on hyperglycaemia detection to switch between
two controllers of varying aggressiveness, both designed using an
LPV model of the glucose-insulin dynamics and the H∞

framework. This second comparison permitted to assess the
performance of our unique robust controller alone, i.e.,
without premeal bolus. The 28-h meal scenario consisted in 3
glucose intakes of 40, 70 and 60 grams of glucose. Here, our
controller was outperformed by the switching controller which
permitted both a lower TBR (respectively 2.96% vs 0.00%) and a
better TIR (88.0% vs 73.4%). This result did not come as a
Frontiers in Endocrinology | www.frontiersin.org 11
surprise since the design of a unique controller for the whole
adult cohort (our work), compared to two individualised
controllers per patient in (51), induces reduced closed-loop
performance due to an increased conservatism.
DISCUSSION

Modelling the Biological Diversity to
Improve Simulation Realism
Variability in diabetes takes many forms, which can be classified
as inter- and intra-patient variabilities. Intra-patient variability is
linked to the evolution, over time, of the general body status and
physiological features for each T1D patient. Interpatient
variability corresponds to the variation of body characteristics
between patients, by genetic differences and environmental
factors, since past and present lifestyles shape the body and its
response to nutrient intake. These variabilities result in a very
specific response to meal intake which, paired with the individual
response to insulin therapy, still constitute major hurdles to the
development of fully automated Artificial Pancreas systems able
to truly restore glucose homeostasis. In this context, numerical
simulation tools are now commonly used to assess control
algorithms with respect to different sources of variability in a
FIGURE 9 | Time spent in the different glycemic ranges for the ten adults of the T1DMS treated with the islet-based BG regulation closed loop and submitted to the
“standard scenario”. The recommended targets [see Battelino et al. (42)] are plotted on the right side of the chart.
TABLE 1 | Performance metrics for the 10 T1D adults treated with the islet-based closed loop and submitted to the “standard scenario”.

Patient LBGI (-) HBGI (-) TDI (U) Mean BG (mg/dl)

1 0.1 2.3 42.4 131.4
2 0.2 1.6 44.9 124.4
3 0.5 1.2 55.3 122.3
4 0.3 1.5 33.3 125.5
5 0.4 1.6 39.1 123.3
6 0.2 2.8 68.3 134.7
7 0.6 1.6 39.5 120.4
8 0.2 4.1 59.7 146.6
9 0.1 2.4 32.0 132.4
10 0.1 1.6 44.8 125.2
April 2022 | Volume 1
The metrics extracted for this analysis are the Low Blood Glucose Index (LBGI) (unitless), the High Blood Glucose Index (HBGI) (unitless), the Total Daily Insulin (TDI) units injected, and the
mean BG level (Mean BG).
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cost-effective manner. In particular, the UVA/Padova T1DM
Simulator accurately models the interpatient variability observed
in response to meal intake in real T1D patients (52).

Concerning the intrapatient variability, we are aware that one
limitation of the version 3.2 of the UVA/Padova T1DMS (the
Frontiers in Endocrinology | www.frontiersin.org 12
version used in this work), is the time-invariant definition of
some important physiological parameters, e.g., Insulin Sensitivity
(IS), which has been clearly stated in the Assumption 1. This
limitation led the US FDA to approve the simulator for single-
meal simulations only (21). Several methods were proposed to
FIGURE 10 | Simulation results for two realistic 48-hour multi-meal scenarios in adults (last 24 hours are displayed), for three closed-loop therapies. The proposed
robust controller is assessed with three different meal bolus solutions: the Medtronic bolus, the Medtronic bolus with errors introduced in the patient-provided
carbohydrate (CHO) counting, and the proposed adaptive bolus. Mean glucose profile (curve) and standard deviation (coloured patches) are displayed on the top
panels. Regions with no glycaemic risk, moderate glycaemic risk and high glycaemic risk are color-coded, respectively in white, pink and red. Bottom panels display
the basal and bolus insulin infusion for the three evaluated closed-loop (left axis for the basal and right axis for the bolus).
TABLE 2 | Metrics for closed-loop therapy assessment - Robust control laws - Adult cohort.

Standard scenario

Category TBR 2 (%) TBR 1 (%) TIR (%) TAR 1 (%) TAR 2 (%) LBGI (.) HBGI (.) Mean BG (mg/dl) TDI (U)

MED 0.0 (0.1) 0.5 (1.6) 97.1 (3.5) 2.4 (3.2) 0.0 (0.0) 0.6 (0.4) 1.0 (0.5) 117.9 (5.6) 48.4 (12.3)
MED-ERR 0.5 (2.1) 1.8 (4.0) 95.8 (5.6) 2.4 (3.3) 0.0 (0.0) 0.9 (1.0)* 1.0 (0.5) 116.3 (6.5)* 48.8 (12.8)*
ADAPT 0.2 (0.8) 3.0 (4.4) 90.6 (10.1) 6.4 (7.6) 0.6 (1.8) 1.1 (0.7)* 1.7 (1.3) 121.5 (9.8) 46.8 (10.7)*†

Challenging scenario

Category TBR 2 (%) TBR 1 (%) TIR (%) TAR 1 (%) TAR 2 (%) LBGI (.) HBGI (.) Mean BG (mg/dl) TDI (U)

MED 0.5 (1.7) 4.6 (6.4) 90.5 (11.3) 4.8 (6.3) 0.0 (0.0) 1.6 (0.9) 1.3 (0.6) 113.7 (3.5) 48.9 (12.7)
MED-ERR 1.9 (4.1) 8.0 (7.5)* 86.9 (10.8) 5.0 (5.7) 0.0 (0.0) 2.2 (1.7)* 1.3 (0.6) 112.6 (5.8) 49.5 (13.1)*
APAPT 1.1 (3.0) 6.5 (8.9) 84.1 (16.4)* 9.4 (9.5)*† 0.8 (2.4) 2.0 (1.3)* 2.2 (1.5) 119.2 (8.5)*† 46.6 (10.7)*†
Ap
ril 2022 | Volume 13 | A
Simulation results were obtained with the 10 adult patients of the T1DMS. Three closed-loop strategies are compared: the unique robust controller K fitted with the bolus calculator of
Medtronic without (MED) and with CHO counting errors (MED-ERR), and the proposed meal-independent adaptive bolus rule associated to the unique robust controller K (ADAPT) shown
in Figure 5. Standard and challenging individualised meal scenarios consider realistic daily glucose intakes of a five-meal intakes (45g, 70g, 20g, 80g and 20g) and three heavy meals (65g,
90g, 80g). The metrics extracted for this comparison are the Time Below Range (TBR) (level 1 and 2), Time In Range (TIR), Time Above Range (TAR) (level 1 and 2), the Low- and High-
Blood Glucose Index (LBGI and HBGI), mean Blood Glucose (Mean BG) concentration in mg/dl, and the Total Daily Insulin (TDI) in units of insulin. Standard Deviations (SD) are displayed for
all metrics, see values into the parentheses. Symbol * indicates statistical significance (p<0.01) with respect to MED and symbol † indicates statistical significance (p<0.01) with respect
to MED-ERR.
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address this issue (53–55). In particular, Visentin et al. proposed
in (55) an upgrade of the T1DMS where a time-varying
definition of the model parameters kp3 and Vmx is used to
account for the intraday and interpatient variabilities of IS.
This version of the T1DMS is however not commercially
available yet.

In the context of the DIABLO project, other limitations of the
T1DMS were highlighted in a precedent in silico work, where the
simulator was used to validate the concept of an islet-based
closed-loop therapy (13). The current metabolic model of the
UVA/Padova T1DMS cannot model the dynamics of lipids,
amino acids and hormone concentrations in blood, besides
insulin and glucagon, which all reflect the general body status.
As we already demonstrated in vitro that our biosensor properly
captures the modulation of islet responses induced by GLP-1,
adrenaline, and amino acids (11, 14), it is impossible to fully
assess in silico the potential of our biosensor with the current
metabolic model of the T1DMS. The secretion of GLP-1 by
intestinal cells is closely related to nutrient intake (56). GLP-1
concentration variations could thus be extrapolated from
variables already modelled in the simulator, e.g., glucose mass
in intestine, rate constant of intestinal absorption. However, it
appears more complicated to include adrenaline, fatty acids or
amino acids concentration variations to the T1DMS metabolic
model without new clinical data. Despite the above-mentioned
limitations, the version 3.2 of the UVA/Padova T1DMS still is a
powerful tool to assess different approaches to handle
interpatient variability and compare control strategies towards
the integration of our islet-based biosensor in an AP system.

Result Analysis and Learnt Lessons for
Interpatient Variability Management
To elaborate further on the modelling of interpatient variability,
we developed a method which accounts for the specific energy
need of each T1D patient by individualising meal scenarios based
on patient body weight. Our meal scenario individualisation
method is not a built-in feature of the T1DMS, and therefore
needs to be discussed further. To ascertain that the method yields
realistic glucose intake distributions for T1D adults, we
computed the daily energy intakes corresponding to the daily
glucose intakes outputted by the individualisation function. We
considered three hypotheses regarding the proportion of daily
energy intake provided by carbohydrates: 45%, 55% and 65%.
These hypotheses are in line with the American Diabetes
Association recommendation for T1D adults: 45-60% of energy
Frontiers in Endocrinology | www.frontiersin.org 13
requirements covered by carbohydrates (57). The corresponding
daily energy intakes are plotted in Figure 11 for each hypothesis.
Unsurprisingly, the total energy intake increased when the
proportion of carbohydrates decreased, and fell between 1300
to 2800 kcal/day depending on the carbohydrate proportion
hypothesis. As this result is consistent with the range of daily
energy intakes reported in the literature for T1D adults (34, 58),
we can conclude that the weight-dependent definition of meal
scenarios is functional for adult patients, and does not yield
aberrant results.

Furthermore, the benefits of numerical simulation were
exploited to assess two different approaches to handle
interpatient variability. First, controllers highly individualised
using our GA-based optimisation method and individualised
meal scenarios were used to define the best performance that
could be achieved with a biosensor-based closed loop and
unannounced meals. In so doing, we intended to investigate
the relative contribution of controller individualisation and
control algorithm complexity. The results obtained with these
highly individualised controller parameters were satisfactory as
excellent regulation performance was observed without meal
announcement. Compared to our previous work (13), the
weight-dependant definition of our “standard scenario”
resulted in a TIR improved by 1.0% on average (88.1% in (13)
vs 89.1% here) with a similar standard deviation (5.4% vs 5.0%),
thanks to a better mitigation of the hypoglycaemic risk, - 1.3% on
average (1.6% vs 0.3%). In both cases, the adult cohort was
submitted to a very similar 3-meal 2-snack scenario with an
average daily glucose intake of 235 grams. As there is no other
obvious reason why our controller tuning methodology would
yield better performing controllers in the second case, we
conclude that the use of a unique scenario for all patients
could introduce a bias when assessing closed-loop systems with
the T1DMS.

As the level of individualisation obtained with the GA could
not realistically be achieved in vivo, controllers need to be tuned
more conservatively. Through the DIABLO project, we thus
investigated a second approach based on the design of a
unique H∞ robust controller tuned for all virtual T1D adults
and the infusion of a bolus to reduce postprandial
hyperglycaemia. Note that we firstly developed this approach
with a traditional CGM sensor. The advantage of this approach is
that it could theoretically handle both intra- and interpatient
variabilities. To manage trade-offs of control requirements, H∞

control theory is known as a powerful tool. Among the
TABLE 3 | Performance indicators for the comparison with literature.

Ref. Controller Premeal Bolus Mean BG [mg/dl] TBR 2 [%] TBR 1 [%] TIR [%] TAR 1 [%] TAR 2 [%] Risk index

LBGI HBGI

This worka H∞ Yes 119.7 0.09 2.53 88.1 9.33 0.00 1.11 1.77
(50)b MPC Yes N/A 0.00 0.07 80.8 19.2 1.80 0.12 3.63
This worka H∞ No 145.2 1.33 2.96 73.4 23.7 2.91 1.00 4.59
(51)a Switched H∞ No 133.2 0.00 0.00 88.0 12.0 N/A 0.32 2.49
April 202
2 | Volume 13
 | Article 7
aSimulated in T1DMS S2013 with 10 adult patients.
bSimulated in T1DMS S2013 with 111 adult patients.
N/A, not applicable.
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pioneering works, Kienitz et al. (59) addressed for the first time
the BG regulation with H∞ control theory to manage the
considerable amount of model uncertainty. This work has been
followed by (60) where a sensitivity analysis provides the three-
parameter set having the most significant effect on insulin and
glucose dynamics. In spite of advances in the H∞ framework, it is
important to underline that an efficient robust control solution
can be obtained if and only if it is designed on an accurate model
able to capture all variabilities. In this context, the work reported
in (23) highlights the benefits of simulation by providing control-
relevant nonparametric models identified from the UVA/Padova
simulator. Based on the structure of LTI models, the authors
proposed to model glucose-insulin dynamics by a unique LTI
model of third order. This work encouraged us to develop the
methodology introduced in section 2.3 where a family of
thirteen-order linear models is derived by using mathematical
formalisms like the unstructured multiplicative uncertainty and
the LFT representation. From the results obtained with the
proposed closed-loop architecture (Figure 5), acceptable
performances (TIR above 90%) were reached thanks to the
announcement of sizeable meals. The price to pay to be robust
(or as insensitive as possible) against variabilities within a
population of T1D patients with a standard CGM sensor (the
default sensor configuration of T1DMS (21), with a sampling
time of 5 min), is to include the patient in the loop.

To better assess the performance of our unique controller, we
compared its performance to two control laws published
recently: the velocity-weighting and velocity-penalty MPC law
Frontiers in Endocrinology | www.frontiersin.org 14
proposed by Gondhalekar et al. (50) and the switching LPV
approach proposed by Colmegna et al. (51). The first conclusion
of these comparisons introduced in section 3.3 is that safety
features to prevent hypoglycaemia are necessary (an Insulin-On-
Board (IOB) limitation in the control algorithm is implemented
in both cases), even when meal announcement lessen the
constraint on the controller. The second conclusion is that the
need to include the patient in the loop could be relaxed by
individualising the H∞ controller using the patient’s previous
therapy parameters (e.g., the Total Daily Insulin as in (24)). In
addition, control-oriented models have to be designed to capture
other physiological factors than the ones included in the v3.2 of
T1DMS. This statement motivated other investigators to develop
LPV models capable to integrate the variability of insulin
sensitivity in models used for control design purpose (27).
Bridging Model-Based Control Theory and
the Islet-Based Biosensor
As previously mentioned, the overall objective of the DIABLO
project is to gather the sensing capabilities of pancreatic islets
and the benefits of robust control theory in a biosensor-based AP
system. Thanks to its sensitivity to other insulin secretion
modulators, the biosensor could alleviate the patients’ burden
by reducing the need for meal and physical activity
announcement, while providing a new insight on the very
specific response of each patient to nutrients. By providing a
finer image of the patient’s physiological status and multiple
FIGURE 11 | Boxplots of the daily energy intake corresponding to the individualised “standard scenario” of each virtual adult. Three hypotheses are considered for
the proportion of energy intake covered by carbohydrates: 45%, 55%, and 65%. For each box, the central mark and the edges of the box are respectively the
median and the 25th and 75th percentiles. Data points, without outliers, are delimited by the whiskers, and outliers are plotted individually as red crosses.
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signals, we hope that this sensor could also help solving the well-
known problem of unstable diabetes. The different simulation
campaigns presented in this paper allowed us to highlight the
relative contribution of algorithms to the overall closed-loop
performance of AP systems. From the first conclusion of the
comparison study, hypoglycaemia-prevention features, such as
IOB, seem to be necessary. In addition, modern hybrid closed-
loop systems frequently integrate a hypoglycaemic alarm to
trigger the suspension of basal insulin delivery, referred to as
Low Glucose Suspend (LGS). Although the biosensor response
presents a natural glucose-dependent hysteresis protecting from
hypoglycaemia (11, 61), it may have a shortcoming that is worth
mentioning: b-cell activity at low glucose, i.e., the SP frequency,
is not yet fully explored and the biosensor output may eventually
not suffice, when the patient BG level is below the islet glucose
stimulation threshold, to trigger such hypoglycaemia-prevention
feature. The co-integration of a CGM technology and our
biosensing one into a single device, may thus be necessary.
This proposal appears reasonable from a technological
standpoint as a glucose-oxidase electrode could be placed on
the same MEA as the pancreatic islets embedded in the
biosensor, and meets the recommendation expressed in (2) to
integrate new signals for algorithm improvement. The combined
use of multiple input signals with an LPV formalism to capture
other physiological factors (see the second conclusion of the
comparative study), would also further highlight the benefits of
H∞ robust control theory for the regulation of T1D patient’s BG
level. In particular, this method could permit the development of
a Multi-Input Single-Output (MISO) controller, involving a
better dimensioning of the control problem and a possible
improvement to manage variability.

At our current state of knowledge and advance of the
biosensor, we thus propose the following setup for a realistic
biosensor-based Artificial Pancreas (Figure 12). The integration
of this two-sensor device could provide multiple signals to
improve the performance of control algorithms (e.g.,
controller, bolus calculator, Insulin-On-Board estimation, fault
Frontiers in Endocrinology | www.frontiersin.org 15
detection). A data fusion algorithm could also be developed, to
improve the real-time monitoring of patient’s physiological state,
like in aeronautical systems (62). Such a system would be
perfectly in line with the conclusions DCCT-EDIC study (63)
concerning the need to mitigate hypoglycaemia in intensive
insulin therapy and the recommendations formulated in (2) to
integrate new signals to the Artificial Pancreas. Depending on
our ongoing research, the set-up may in the long-term be
simplified to a pure biosensor capable of detecting
hypoglycaemic states by fully using the multiple inborn
detection capacity of pancreatic islet sensors.
CONCLUSION AND PERSPECTIVES

Our previous work (13) presented an in silico proof-of-concept
where a model of our biosensor was introduced in a closed-loop
insulin delivery setup with PDBASAL controllers individualised to
meet patient’s specific insulin need and without meal
announcement. In the current study, this control approach was
assessed again, but with an important new aspect: the use of
individualised meal scenarios. Concurrently, a model-based
control approach was also introduced to tackle the variability
observed within a real patient cohort with a unique robust
controller and an adaptive meal announcement feature. As a
first step, this approach was developed with a traditional CGM
sensor and in a LTI context. The simulation results thereby
obtained are discussed to highlight both the advantages and
limitations of our biosensor, and the contrasted performance of
our unique robust controller, which struggled to mitigate
hypoglycaemia although providing satisfactory TIR for the
whole adult T1D cohort. A conceptual work was finally
conducted to sketch the outline of a realistic biosensor-based
Artificial Pancreas where robust control theory could help to
manage the integration of new signals. In line with the
conclusions of this work, future investigations shall focus on
the development of a MISO control algorithm, paired with LPV
FIGURE 12 | An Artificial Pancreas system based on two dissimilar sensors for insulin therapy of T1D patients.
April 2022 | Volume 13 | Article 795225
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modelling of the glucose-insulin dynamics, and integrating
hypoglycaemia-prevention features (e.g., IOB, LGS). The
realism of simulations could be improved in future works via
the introduction of additional variability sources (e.g., circadian
insulin sensitivity variation, random meal time and content) to
better model the real-life challenges of diabetes treatment, and
enable the assessment of closed-loop therapies through multiple
day/week simulation campaigns.
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