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Aim: Bone collagen matrix makes a crucial contribution to the mechanical properties of
bone by imparting tensile strength and elasticity. The collagen content of bone is
accessible via quantification of collagen bound water (CBW) indirectly. We prospectively
study the performance of the CBW proton density (CBWPD) measured by a 3D short
repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE)
magnetic resonance imaging (MRI) sequence in the diagnosis of osteoporosis in human
lumbar spine.

Methods: A total of 189 participants with a mean age of 56 (ranged from 50 to 86) years
old were underwent MRI, quantitative computed tomography (QCT), and dual-energy X-
ray absorptiometry (DXA) in lumbar spine. Major fracture risk was also evaluated for all
participants using Fracture Risk Assessment Tool (FRAX). Lumbar CBWPD, bone marrow
fat fraction (BMFF), bone mineral density (BMD) and T score values were calculated in
three vertebrae (L2–L4) for each subject. Both the CBWPD and BMFF were correlated
with BMD, T score, and FRAX score for comparison. The abilities of the CBWPD and
BMFF to discriminate between three different cohorts, which included normal subjects,
patients with osteopenia, and patients with osteoporosis, were also evaluated and
compared using receiver operator characteristic (ROC) analysis.

Results: The CBWPD showed strong correlation with standard BMD (R2 = 0.75, P <
0.001) and T score (R2 = 0.59, P < 0.001), as well as a moderate correlation with FRAX
score (R2 = 0.48, P < 0.001). High area under the curve (AUC) values (≥ 0.84 using QCT as
reference; ≥ 0.76 using DXA as reference) obtained from ROC analysis demonstrated that
the CBWPD was capable of well differentiating between the three different subject
cohorts. Moreover, the CBWPD had better correlations with BMD, T score, and FRAX
score than BMFF, and also performed better in cohort discrimination.
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Conclusion: The STAIR-UTE-measured CBWPD is a promising biomarker in the
assessment of bone quality and fracture risk.
Keywords: osteoporosis, ultrashort echo time, collagen bound water proton density, bone mineral density, bone
marrow fat fraction
INTRODUCTION

Osteoporosis (OP) has become a major public health burden as
the population continues to age (1, 2). Each year, about 200
million people worldwide suffer from OP, with approximately 89
million fractures occurring on an annual basis (3). OP is
characterized by a decrease in bone strength combined with an
increased risk of fracture as a result of low bone mass and
microarchitectural deterioration of bone tissue (4).

Bone mineral density (BMD) plays a major role in bone strength
and itsmeasurement of trabecular bone in the spine and/or hip using
dual-energy x-ray absorptiometry (DXA) is the clinical standard for
assessments of both OP and fracture risk (5–7). Quantitative
computed tomography (QCT) utilizes 3D volumetric imaging and
quantification to further improve the accuracy of these BMD
measurements but with increased ionizing radiation.

The organic matrix, another important bone component,
provides tensile strength and elasticity, also contributing
significantly to the mechanical properties of bone (8). Because
changes in the collagen density and integrity within the bone’s
organic matrix affect overall bone quality (9), quantitative
evaluation of the collagen matrix is likely to provide valuable
information on an individual’s bone strength (10–12).

Unfortunately, both DXA and QCT are limited in their
abilities to assess changes in the collagen matrix due to their
low soft tissue contrast. Magnetic resonance imaging (MRI) is a
superior method in that it offers high-contrast soft tissue
imaging. However, collagen cannot be directly imaged by MRI
due to its extremely short T2 relaxation time (about 10 µs) (13–
15). Alternatively, indirect evaluation of the collagen matrix can
be performed by quantification of the water molecules which are
tightly bound to the collagen matrix (i.e., collagen bound water
(CBW)) and are highly correlated with the matrix collagen’s
density and integrity (16). Like collagen itself, the CBW also has a
relatively short T2 relaxation time—around 300 µs. While CBW
is not accessible to clinical sequences with long echo times (TEs)
(i.e., several to hundreds of milliseconds) such as gradient
recalled echo (GRE) and fast spin echo (FSE) (17, 18), a
specialized MRI technique known as the ultrashort echo time
(UTE) sequence has been developed with a TE less than 100 µs to
specifically target tissues with short T2 relaxation times. This
UTE MRI approach can be used to image and quantify the
CBW (19).

In the last decade, UTE MRI imaging of CBW has been
studied by several groups as a possible surrogate measure for the
bone’s collagen matrix (18, 20–23). It was found that the UTE
measurements scale to an almost linear degree with collagen
matrix density (22, 24, 25), and highly correlated with yield, peak
stress, and elastic toughness (25, 26). However, most of the
previous studies were focused on CBW measurement in cortical
n.org 2
bone. CBW evaluation in trabecular bone has the potential to be
even more valuable a measurement because not only do most
osteoporotic fractures occur in trabecular bone, but trabecular
bone is also highly responsive to metabolic stimuli (27–30).
However, quantification of CBW in trabecular bone is more
technically challenging than in cortical bone due to trabecular
bone’s much lower CBW content and higher concentration of
tissue components with long T2 relaxation times, such as marrow
fat (31).

Most recently, a new 3D short repetition time adiabatic
inversion recovery prepared UTE (3D STAIR-UTE) Cones
sequence was developed which could volumetrically quantify
CBW proton density (CBWPD) of trabecular bone in vivo for the
first time (17). The STAIR-UTE sequence can generate high
contrast imaging of CBW with sufficient suppression of all the
long T2 signals.

The purpose of our study was to investigate the STAIR-UTE-
measured CBWPD in the classification of patients as normal,
osteopenic and osteoporotic in the lumbar spine with golden
standard QCT-measured BMD and DXA-measured T score as
reference. The CBWPD was also correlated with fracture risk
score which was characterized by Fracture Risk Assessment Tool
(FRAX). Moreover, vertebral bone marrow fat fraction (BMFF)
—another quantitative imaging biomarker that has been studied
extensively in OP assessment—was also employed for
comparison against CBWPD.
MATERIALS AND METHODS

Subject Recruitment
This study was conducted under Institutional Review Board
approval; written informed consent was obtained from all
participants. Between June 2020 and January 2021, 189
participants with a mean age of 56 (ranged from 50 to 86) years
old were recruited to participate in this prospective study. MRI,
QCT, and DXA examinations of the lumbar spine for each
participant were performed in the same week. Subjects were
excluded if they had known preexisting bone diseases (e.g.,
lumbar fracture, tumor, metastases, dysplasia, or metabolic
disorders), a history of lumbar surgery, or a history of drug
therapy targeted at BMD. We also excluded any subjects who
had a history of osteoarthritis, inflammatory arthritis, cancer,
Paget disease, endocrinologic or gastrointestinal disorder,
glucocorticoid use, selective serotonin uptake inhibitor use, or
anticonvulsant use.

QCT and DXA Examinations
QCT examinations of the lumbar region were performed on a
128-channel multi-detector CT scanner (uCT 760, United
February 2022 | Volume 13 | Article 801930
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Imaging Healthcare). All CT parameters were set in accordance
with the “China Health Quantitative CT Big Data Project
Research Program” (32) as follows: collimation: 0.625 mm,
tube voltage: 120 kVp, tube current: automatic. All CT images
were reconstructed to 512×512 matrices using iterative
reconstruction algorithms available from the vendor’s CT
scanners. The reconstruction intervals were 1.0 mm. Our QCT
post-processing can only quantify three vertebral bodies at a
time, so the center three vertebral elements of the lumbar spine
(i.e., L2-L4) were chosen for the quantification.

Standard DXA scan (Osteocore, Medilink 90kv and 2mA)
was performed according to WHO guidelines (33) to acquire T
score in the lumbar spine. Images of the lumbar spine were
obtained in posterior-anterior projection.

MR Imaging
All 189 participants underwent spine MR imaging on a 3T clinical
scanner (Pioneer, GE Healthcare Technologies, Milwaukee, WI)
with a spine-array surface coil for signal reception. Clinical sagittal
T1-weighted FSE (repetition time (TR): 540ms, TE: 8ms, flip angle
(FA): 80°, field-of-view (FOV): 32×32 cm2, pixel size: 1.0×1.4mm2,
numberof slices: 13, slice thickness: 4mm,scan time: 1min) andT2-
weighted FSE (TR: 2291 ms, TE: 90 ms, FA: 90°, FOV: 32×32 cm2,
pixel size: 1.0×1.4mm2, number of slices: 13, slice thickness: 4 mm,
scan time: 2 min) scans of the lumbar spine were included. A
product sequence, IDEAL-IQ (Iterative decomposition of water
and fatwith echo asymmetry and least squares estimation) (34),was
used toquantifyBMFF(TR:7.3ms;TEs: 1.2, 2.1, 3.1, 4.1, 5.0, and6.0
ms; FA: 4°; FOV: 32×32 cm2; pixel size: 2.0×2.0 mm2; number of
slices: 12; slice thickness: 8 mm; and scan time: 16 sec).

The 3D STAIR-UTE Cones sequence was performed in the
sagittal plane for the CBW imaging (17) (TR: 150 ms, TE: 0.032
ms, inversion time (TI): 64 ms, FA: 18°, number of spokes per-
TR: 5, spoke interval: 5.5 ms, FOV: 30 cm×30 cm, pixel size:
2.1×2.1mm2, number of slices: 16, slice thickness: 4.5 mm,
oversampling factor: 2, scan time: 10 min). In order to acquire
a spine coil sensitivity profile for correction of the STAIR-UTE
imaging inhomogeneity, the 3D UTE Cones sequence was
applied twice without STAIR preparation, using spine and
body coils for signal reception, respectively (17) (TR: 6 ms, TE:
0.032 ms, FA: 2°, FOV: 30 cm×30 cm; pixel size, 2.1×2.1 mm2,
number of slices: 16, slice thickness: 4.5 mm, and scan time:
1 min. A rubber band with a T2* of 0.34 ms and a premeasured
proton density of 18 mol/L was placed between the spine coil and
participants during scanning to serve as a reference standard.
The CBWPD of trabecular bone was calculated using Equation
[9] in Ref (17).. Ten healthy volunteers were recruited to study
the reproducibility of the STAIR-UTE Cones sequence. Each
volunteer was scanned three times over three consecutive days.

Fracture Risk Characterization
The major fracture risk (i.e., 10-year probability of osteoporotic
fracture) of each participant was characterized using FRAX
(https://www.sheffield.ac.uk/FRAX) with 11 clinical variables
taken into consideration (i.e., age, sex, weight, height, previous
fracture, parental hip fracture, current smoking status,
Frontiers in Endocrinology | www.frontiersin.org 3
glucocorticoid use, rheumatoid arthritis, secondary OP, and
alcohol use of three or more units per day).

Data Analysis
The CBWPD calculation was performed in MATLAB (The
MathWorks, Natick, MA). Regions of interest (ROIs) were
manually drawn in the trabecular bone region—avoiding the
subchondral bone region—to measure BMD, CBWPD, and
BMFF in L2–L4. Mean lumbar BMD, CBWPD, and BMFF
values were computed by averaging them across these three
vertebrae for each subject. ROIs were independently drawn by
two radiologists with 10 (W.L.) and 8 (J.L.) years of respective
experience to assess inter-observer agreement of ROIs. To assess
intra-observer agreement of ROI drawing, this procedure was
repeated by the radiologist with 10 years of experience two
months after the initial ROI drawing.

For the DXA experiment, T score was used to assess
osteoporosis since all the participants were over 50 years old
according to WHO guidelines (35). The scanned subjects were
grouped into three cohorts (normal, osteopenia, and OP). A
BMD (measured by QCT) greater than 120 mg/cm3 (equivalent
to a DXA T score > -1.0 standard deviation (SD)) indicates
normal, a BMD value between 80 mg/cm3 and 120 mg/cm3

(equivalent to a DXA T score < -1.0 SD and > -2.5 SD) indicates
osteopenia, and a BMD less than 80 mg/cm3 (equivalent to a
DXA T score of < -2.5 SD) indicates OP.

Statistical Analysis
Statistical analysis was performed using Statistical Package for
Social Sciences (SPSS) software (version 23.0). P < 0.05 was
considered statistically significant. Linear regression and Bland–
Altman analysis were performed to assess the reproducibility of
the STAIR-UTE Cones sequence. Intra- and interclass
correlation coefficients (ICC) were calculated to assess both the
interobserver and intra-observer reproducibility of CBWPD and
BMFF measurements. The differences in age, body mass index
(BMI), BMD, T score, CBWPD, BMFF, and FRAX score among
all three cohorts (normal, osteopenia, and OP) were determined
using the Kruskal-Wallis test. The differences in sex among all
three cohorts were determined using the Chi-square test. Linear
regression was performed to correlate the CBWPD and BMFF
with BMD and T score, respectively. Non-linear regression using
an exponential function was performed to correlate the CBWPD
and BMFF with FRAX score. To evaluate the performances of the
CBWPD and BMFF in discriminating between the three cohorts,
receiver operating characteristic (ROC) analysis was performed
and the area under the curve (AUC) with 95% confidence
interval (CI) was computed using Medcalc software (version
20.0.3). The DeLong test was used to compare the ROC curves
(i.e., AUCs) between CBWPD and BMFF.
RESULTS

Data analysis was performed on 162 of the recruited 189
participants, with the 27 exclusions made due to bone disease
(n = 17) and poor MR image quality caused by motion during the
February 2022 | Volume 13 | Article 801930
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scan (n = 10). Participant characteristics are described in Table 1.
Age, BMD, T score, CBWPD, BMFF, and FRAX score all showed
significant differences among the three cohorts, with QCT and
DXA used as the respective reference standards.

Figure 1 shows representative BMD, T score, CBWPD, and
BMFFmaps of the lumbar spines of three subjects: one from each
cohort (normal, osteopenia, and OP). Lower CBWPD, BMD, and
T score, as well as higher BMFF, were found in more
osteoporotic subjects.

Reproducibility
The results of linear regression and Bland–Altman analysis of the
STAIR-UTE measured CBWPDs for the three repeated volunteer
scans are shown in Figure 2. Strong correlations and high
agreements of the CBWPD measurements were found between
thefirst and the secondscanswithaR2=0.96 (P<0.001) andamean
bias of -0.02 mol/L (± 1.96 SD: range –0.30 to 0.27 mol/L)
(Figure 2A) respectively, between the first and the third scans
with a R2 = 0.90 (P < 0.001) and amean bias of -0.003mol/L (± 1.96
SD: range –0.42 to 0.41 mol/L) (Figure 2B) respectively, and
between the second and the third scans with a R2 = 0.91 (P <
0.001) and amean bias of 0.01mol/L (± 1.96 SD: range–0.37 to 0.40
mol/L) (Figure 2C) respectively. These results demonstrate an
excellent reproducibility for the STAIR-UTE Cones scans.

The interobserver ICCs for the CBWPD and BMFF
measurements between the two radiologists were 0.93 and 0.92,
respectively. The intra-observer ICCs for the CBWPD and BMFF
quantification were 0.95 and 0.93, respectively. These high ICC
values demonstrate excellent reproducibility for both
interobserver and intra-observer measurements.

Correlations
The CBWPD showed a positive correlation with BMD (R2 =
0.75, P < 0.001) (Figure 3A), a positive correlation with T score
Frontiers in Endocrinology | www.frontiersin.org 4
(R2 = 0.59, P < 0.001) (Figure 3B), and a negative correlation
with FRAX score (R2 = 0.48, P < 0.001) (Figure 3C).

The BMFF showed a negative correlation with BMD (R2 =
0.45, P < 0.001) (Figure 3D), a negative correlation with T score
(R2 = 0.23, P < 0.001) (Figure 3E), and a positive correlation with
FRAX score (R2 = 0.20, P < 0.001) (Figure 3F).

As demonstrated by these results, the CBWPD correlates
better with BMD, T score, and FRAX score than the BMFF does.
ROC Analysis
Figures 4A–C show the ROC curves of CBWPDQCT and
BMFFQCT (with QCT as reference standard) in differentiating
normal subjects, patients with osteopenia, and patients with OP.
Table 2 summarizes all the criteria that were used to evaluate the
diagnostic performance of CBWPDQCT and BMFFQCT. The
AUC values of CBWPDQCT and BMFFQCT were 0.84 and 0.70
(P < 0.001) for normal vs. osteopenia, 0.98 and 0.89 (P < 0.001)
for normal vs. OP, and 0.90 and 0.79 (P < 0.001) for osteopenia
vs. OP, respectively. The AUC values of CBWPDQCT were
consistently higher than the corresponding AUC values
of BMFFQCT.

Figures 4D–F show the ROC curves of CBWPDDXA and
BMFFDXA (with DXA as reference standard) in differentiating
normal subjects, patients with osteopenia, and patients with OP.
Table 3 summarizes all the criteria that were used to evaluate the
diagnostic performance of CBWPDDXA and BMFFDXA. The AUC
values of CBWPDDXA and BMFFDXA were 0.83 and 0.68 (P <
0.001) for normal vs. osteopenia, 0.93 and 0.82 (P < 0.001) for
normal vs. OP, and 0.76 and 0.65 (P = 0.005) for osteopenia vs. OP,
respectively. The AUC values of CBWPDDXA were consistently
higher than the corresponding AUC values of BMFFDXA.

As demonstrated by these results, the CBWPD shows high
capability to classify patients as normal, osteopenic and
TABLE 1 | Characteristics of patients in three cohorts of normal subjects, patients with osteopenia, and patients with osteoporosis.

QCT as reference standard DXA as reference standard

All subjects
(n=162)

Normal
(n = 86)

Osteopenia
(n = 41)

Osteoporosis
(n = 35)

PValue Normal
(n = 88)

Osteopenia
(n = 46)

Osteoporosis
(n = 28)

PValue

Sex 0.198 0.148
male 65 (40%) 35 (41%) 20 (49%) 10 (29%) 36 (41%) 22 (48%) 7 (25%)
female 97 (60%) 51 (59%) 21 (51%) 25 (71%) 52 (59%) 24 (52%) 21 (75%)

Age (years) 58 (9) 53 (5) 60 (8) 68 (9) <0.001 55 (6) 60 (9) 66 (10) <0.001
BMI (kg/m2) 23.4 (21.3-25.4) 23.4 (21.5-25.5) 23.8 (21.1-26.8) 22.9 (20.5-

25.0)
0.517 23.7 (21.7-26.0) 23.9 (21.3-

26.1)
21.68 (20.1-

23.6)
0.004

BMD (mg/cm3) 119.8 (83.6-
154.7)

155.6 (132.5-
175.7)

100.7 (90.0-
111.1)

54.1 (43.9-
67.9)

<0.001 148.9 (125.5-
174.7)

99.8 (80.2-
120.6)

60.9 (47.9-
71.1)

<0.001

T score 0.5 (-2.1 to
-0.6)

0.8 (-0.3 to 2.0) -1.3 (-2.0 to
-0.3)

-2.7 (-3.4 to
-2.3)

<0.001 1.0 (0.0 to 2.0) -1.7 (-2.1 to
-1.3)

-3.1 (-3.5 to
-2.6)

<0.001

CBWPD (mol/L) 2.5 (1.9-2.9) 2.9 (2.5-3.3) 2.3 (2.1-2.5) 1.6 (1.3-1.8) <0.001 2.9 (2.4-3.2) 2.2 (1.8-2.4) 1.7 (1.4-1.9) <0.001
BMFF (%) 54.2 (44.4-63.3) 48.0 (41.2-55.2) 55.8 (48.2-62.8) 67.5 (60.0-

73.4)
<0.001 49.2 (42.0-56.5) 57.1 (46.7-

67.9)
65.0 (58.1-

72.7)
<0.001

FRAX score (%) 3.7 (1.5-4.7) 1.9 (1.2-2.0) 3.80 (1.9-5.0) 7.8 (4.6-9.5) <0.001 1.7 (1.2-1.9) 3.9 (2.3-4.8) 9.3 (6.2-10.0) <0.001
February 2022 | Volume 13 | Article
Data are presented as n (%), mean (SD), or median (IQR). All comparisons between the three cohorts were significant (P < 0.001) except for sex (P = 0.198, taking QCT as reference
standard; P = 0.148, taking DXA as reference standard) and BMI (P = 0.517, taking QCT as reference standard; P = 0.004, taking DXA as reference standard).
BMI, body mass index; CBWPD, collagen bound water proton density; QCT, quantitative computed tomography; BMD, bone mineral density; DXA, dual-energy X-ray absorptiometry;
BMFF, bone marrow fat fraction; FRAX, Fracture Risk Assessment Tool; IQR, interquartile range.
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osteoporotic. It also performs better than the BMFF in
discrimination of the three cohorts whether using QCT or
DXA as the reference standard.
DISCUSSION

In this prospective study, we presented a noninvasive and
nondestructive MRI technique to measure CBWPD in the human
lumbar spine for assessment of trabecular bone quality using QCT
and DXA as the reference standard. To the best of our knowledge,
Frontiers in Endocrinology | www.frontiersin.org 5
this is thefirst study of trabecularCBWPD in the diagnosis ofOP in
vivo. The CBWPD showed strong correlations with standard BMD
(R2= 0.75) andT score (R2 = 0.59), aswell as amoderate correlation
with FRAX score (R2 = 0.48). High AUC values (≥ 0.84 using QCT
as reference, ≥ 0.76 using DXA as reference) obtained from ROC
analysis demonstrated that the CBWPD was capable of
discriminating between the three subject cohorts which included
normal subjects, patients with osteopenia, and patients with OP.
Moreover, the CBWPD had stronger correlations with BMD, T
score, andFRAXscore thanBMFFdid, and also performedbetter in
cohort discrimination. This study demonstrates that the STAIR-
FIGURE 1 | Representative bone mineral density (BMD) (first column), T score (second column), collagen bound water proton density (CBWPD) (third column), and
bone marrow fat fraction (BMFF) (fourth column) maps in the lumbar spine of three subjects with normal bone mass (first row (A), 50-year-old male), osteopenia
(second row (B), 54-year-old female), and osteoporosis (last row (C), 66-year-old male). ROIs inside of black squares were drawn for data analysis.
February 2022 | Volume 13 | Article 801930
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UTE-measured CBWPD is a promising biomarker to be used in
clinical practice for assessment of bone quality and fracture risk.

The STAIR-UTE sequence used in this study is able to
efficiently suppress all the long T2 components in trabecular
bone, including marrow fat and free water, and selectively image
CBW. As can be seen in Ref. 17, numerical simulation results
showed that, when a sufficiently short TR was used, the STAIR-
UTE sequence achieved efficient signal suppression for long T2

tissueswith awide range of T1s.When aminimalTR (i.e., TR=150
ms, restricted by SAR limitation) was used in the STAIR-UTE
sequence on a clinical 3T scanner, only short T2 signals were
detected in the in vivo vertebral bone with a T2* of 0.31 ms, clearly
demonstrating the technical feasibility of the STAIR-UTE
sequence in sufficient suppression of all the long T2 signals. At
the long T2 signal null point (TInull), signal from the short T2

component (i.e., the CBW) can be efficiently detected by the 3D
UTE Cones sequence with a minimal TE of 32 µs. In addition, the
relatively lowSTAIR-UTE resolutionused in this studywas able to
increase the SNR of short T2 imaging and thereby improve the
accuracy of CBW quantification.
Frontiers in Endocrinology | www.frontiersin.org 6
Approximately 40-50% of women and 13-22% of men are at
risk of osteoporotic fracture after the age of 50, and major
osteoporotic fractures result in substantial morbidity and
mortality (2, 36). Early assessment of bone quality and fracture
risk is crucial for effective intervention or treatment. The collagen
matrix makes a crucial contribution to the mechanical properties
of bone by imparting tensile strength and elasticity (37).
However, changes in the organic matrix are inaccessible to
DXA, QCT, and even clinical MRI due to the technical
limitations of these imaging modalities (14, 15).

The STAIR-UTE MRI technique is capable of indirectly
accessing properties in the collagen matrix by performing
measurements of the CBWPD in trabecular bone (17). The
CBW provides important information regarding the collagen
density and hydration state of the organic matrix to which it is
bound. In this way, CBW quantification could act as a possible
surrogate for assessment of the collagen matrix.

It is known that mineral crystals are scattered in the gaps
between continuous collagen fibers (38), suggesting that the
quantity of collagen fibers may be related to the BMD. In our
A

B

C

FIGURE 2 | Reproducibility results of the STAIR-UTE Cones scans: linear regression (left column) and Bland–Altman analysis (right column) plots of the STAIR-UTE
measured CBWPDs between the first and the second scans (A), between the first and the third scans (B), and between the second and the third scans (C). Dotted
lines in the Bland–Altman difference plots (right column) demarcate 1.96 standard deviations of the mean difference.
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trabecular bone study, the strong positive correlation between
CBWPD and BMD was in line with the findings in previous
cortical bone studies as it demonstrated that both the bone
mineral and organic matrix were decreased in OP (39–41).

A moderate correlation between the CBWPD and FRAX
score demonstrated that the STAIR-UTE-measured CBWPD
has the potential to be useful in assessing fracture risk or could
even be combined into the FRAX score calculation for further
improved risk assessment. Another advantage of the STAIR-
UTE MRI technique is the absence of ionizing radiation which
may make it a preferable technique for regular examinations
Frontiers in Endocrinology | www.frontiersin.org 7
(an important approach for early detection of bone loss) or
longitudinal studies that monitor patient response to treatment.

Many studies have shown increased marrow fat during OP
(42–47). In our study, it was clear that CBWPD was more
sensitive to the changes in bone than BMFF, evidenced by the
CBWPD’s improved correlations with BMD, T score, and FRAX
score over BMFF, as well as its superior performance in terms of
cohort discrimination. CBWPD’s increased sensitivity to bone
changes is not surprising because BMFF does not reveal true
bone loss: some patients with normal BMFF have been reported
to have bone loss or abnormal bone mineralization (48).
A

B

D

E

FC

FIGURE 3 | Correlation curves and scatter plots for the measurements between (A) collagen bound water proton density (CBWPD) and bone mineral density
(BMD), (B) CBWPD and T score, (C) CBWPD and Fracture Risk Assessment Tool (FRAX) score, (D) bone marrow fat fraction (BMFF) and BMD, (E) BMFF and T
score, and (F) BMFF and FRAX score.
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There are several limitations in this study. First, the scan time
of the CBWPD measurement protocol was relatively long
(around 12 min in total) compared to clinical sequences.
Advanced image reconstruction methods such as compressed
sensing or deep learning could be incorporated to accelerate the
Frontiers in Endocrinology | www.frontiersin.org 8
scan with comparable image quality (49, 50) in the future.
Second, we did not follow up on the fracture rate of these
patients for 5-10 years, though such a long-term study will be
completed in future work. The longitudinal study would be
valuable in further validating the proposed technique and in
A B

D E F

C

FIGURE 4 | Receiver operating characteristic (ROC) curves and corresponding area under the curve (AUC) values of collagen bound water proton density (CBWPDQCT)
and bone marrow fat fraction (BMFFQCT) between (A) normal and osteoporosis, (B) normal and osteopenia, and (C) osteopenia and osteoporosis, with quantitative
computed tomography (QCT) as reference standard. ROC curves and corresponding AUC values of CBWPDDXA and BMFFDXA between (D) normal and osteoporosis,
(E) normal and osteopenia, and (F) osteopenia and osteoporosis, with dual-energy X-ray absorptiometry (DXA) as reference standard.
TABLE 2 | Performance of the CBWPDQCT and BMFFQCT in discrimination between three cohorts of normal subjects, patients with osteopenia, and patients with
osteoporosis, with QCT as reference standard.

CBWPDQCT BMFFQCT

Normal vs.
osteopenia

Normal vs.
osteoporosis

Osteopenia vs.
osteoporosis

Normal vs.
osteopenia

Normal vs.
osteoporosis

Osteopenia vs.
osteoporosis

AUC (95%CI) 0.839 (0.799,
0.879)

0.978 (0.963, 0.992) 0.902 (0.861, 0.944) 0.704 (0.649,
0.759)

0.894 (0.854, 0.933) 0.786 (0.728, 0.845)

Sensitivity
(95%CI)

0.705 (0.649,
0.762)

0.968 (0.946, 0.990) 0.872 (0.813, 0.931) 0.840 (0.776,
0.904)

0.882 (0.821, 0.942) 0.636 (0.546, 0.726)

Specificity
(95%CI)

0.808 (0.739,
0.877)

0.918 (0.867, 0.969) 0.845 (0.778, 0.913) 0.490 (0.428,
0.552)

0.821 (0.773, 0.868) 0.808 (0.739, 0.877)

ACC (95%CI) 0.739 (0.738,
0.740)

0.953 (0.953, 0.953) 0.860 (0.859, 0.861) 0.606 (0.605,
0.608)

0.839 (0.839, 0.840) 0.728 (0.726, 0.729)

PPV (95%CI) 0.881 (0.836,
0.925)

0.964 (0.941, 0.987) 0.865 (0.805, 0.925) 0.451 (0.387,
0.515)

0.683 (0.607, 0.760) 0.745 (0.657, 0.833)

NPV (95%CI) 0.577 (0.504,
0.650)

0.927 (0.878, 0.976) 0.853 (0.787, 0.920) 0.860 (0.803,
0.917)

0.941 (0.909, 0.972) 0.716 (0.642, 0.791)
February 2022 | Volume 13 | Article 80193
CBWPD, collagen bound water proton density; BMFF, bone marrow fat fraction; QCT, quantitative computed tomography; AUC, area under curve; ACC, Accuracy; PPV, Positive
Predictive Value; NPV, Negative Predictive Value; CI, Confidence Interval.
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providing information about collagen matrix changes that
accompany aging.

In conclusion, the STAIR-UTE-measured CBWPD is a
promising biomarker for evaluation of the bone changes in OP
and of osteoporotic fracture risk.
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