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Aims: The study aimed to explore additive interactions of CDKAL1 rs7747752 and
GUDCA/DCA for GDM risk and whether the interactive effects on the risk of GDM was
mediated via increasing lysophosphatidylcholines (LPC) 18:0 and/or saturated fatty acid
(SFA) 16:0.

Methods: A 1:1 age-matched study nested in a prospective cohort of pregnant women
(207 pairs) was organized in Tianjin, China. Additive interactions were used to test
interaction effects while mediation analyses and Sobel tests were used to test
mediation effects of LPC18:0 and SFA16:0 between copresence of rs7747752 and low
GUDCA/DCA, and GDM risk.

Results: The CDKAL1 rs7747752 was associated with GDM (P<0.05). The rs7747752 C
polymorphism markedly enhanced ORs of low GUDCA from 4.04 (0.72-22.8) to 9.02
(1.63-49.7) and low DCA from 1.67 (0.68-4.11) to 4.24 (1.84-9.76), both with significant
additive interactions. Further adjustment for LPC18:0 attenuated the interactive effects of
rs7747752 and low DCA, with a significant mediation effect (P=0.003). High SFA16:0 did
not mediate the interactive effects of rs7747752 and low DCA/GUDCA on GDM risk.

Conclusions: The CDKAL1 rs7747752 C carrier status and low GUDCA/DCA had
significant additive interactions on the risk of GDM with the effect from interaction with
DCA being partially mediated via increasing LPC18:0.
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INTRODUCTION

The prevalence of gestational diabetes mellitus (GDM) has been
rapidly increasing worldwide (1). GDM is not only associated
with perinatal adverse outcomes but also predispose women to
increased risk of diabetes and cardiovascular disease in later life,
and their offspring to increased risk of childhood obesity (2, 3).
On the other hand, intensive management of GDM does not
have a detectable effect on the risk of postpartum diabetes in the
mothers (4) and childhood obesity in their offspring (5). How to
prevent GDM has become increasingly important to reduce the
burden of GDM. However, our meta-analysis of 29 randomized
controlled trials shows that lifestyle interventions within 15
weeks of pregnancy can only achieve as low as 20% reduction
in risk of GDMwhile later lifestyle interventions are ineffective in
reducing the risk (6). Indeed, a better understanding of the
pathophysiology of GDM and identification of its novel
biomarkers are critically important for the prediction and
prevention of GDM in early pregnancy.

GDM is a complex disease determined by a constellation of
factors, including genetic, metabolic, and other environmental
factors (7). Among genetic factors, single nucleotide
polymorphisms (SNP) within the cyclin-dependent kinase 5
regulatory subunit-associated protein1-like 1 (CDKAL1) locus
was found to be strongly associated with GDM by genome-wide
association analysis (GWAS) and dozens of replication studies in
different populations (8–10). CDKAL1 gene is located on the
short arm of human chromosome 6 and encodes a protein of 579
amino ac id s , wh i ch i s indeed a member o f the
methylthiotransferase that specifically modifies transfer
ribonucleic acid (tRNA) Lys in mammals (11). The CDKAL1
gene plays a role in the cell cycle control of beta cells by
inhibiting the activity of cyclin-dependent kinase 5 (CDK5)
and acting as a tRNA-modifying enzyme (12). The association
between CDKAL1 rs7747752 polymorphism and GDM was also
reported in Chinese pregnant women (8).

In addition to genetic origin and environmental factors,
various metabolic factors, such as bile acids (BAs) and saturated
fatty acids (SFAs), can act as risk factors (13, 14). In this
connection, our group found that serum glycoursodeoxycholic
acid (GUDCA) ≤ 0.07 nmol/mL and deoxycholic acid (DCA) ≤
0.28 nmol/mL in early pregnancy were independently associated
with markedly increased risk of GDM in Chinese pregnant
women (15). Interestingly, adjustment for LPC18:0 attenuated
the risk associations of both low DCA and low GUDCA with
GDM while low DCA and low GUDCA enhanced the risk
association between LPC18:0 and GDM (16). The interaction
between genetic disposition and metabolic factors plays a critical
role in the development of GDM (17). Indeed, the CDKAL1 gene
was related to defects in the conversion of proinsulin (18) and
insulin response under glucose stimulation (19, 20). It is known
that defection of insulin response reduces its ability to inhibit
lipolysis in adipose tissue, further resulting in increased flow of
SFAs into the circulation (21). In line with these findings from
mechanistic investigations, our group reported that high SFA16:0
played a vital role in the risk of GDM, which had a significant
interactive effect with CDKAL1 rs7747752 on the risk of GDM
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(14). In addition, an animal study showed that defection of
CDKAL1 gene led to impaired insulin secretion and longitudinal
fluctuations in insulin sensitivity during high-fat feeding in mice
(22). Notably, BAs, as cholesterol-derivedmetabolites, have a well-
established role in the digestion and absorption of dietary fats (23);
furthermore, BAs also affect insulin secretion (24, 25). This
observation suggests that BAs and CDKAL1 variants may have a
synergistic effect on the risk of GDM, possibly being mediated by
LPC18:0 or SFA16:0. Indeed, it is worthwhile to explore whether
abnormal BAs have any interactions with CDKAL1 gene variants
towards increased risk of GDM. It is also quite interesting to
understand potential interrelationships among CDKAL1, BAs,
SFAs, and LPCs and their roles in the etiology of GDM.

Using an age-matched case-control study nested in a large
population-based cohort of pregnant women in Tianjin, China,
this analysis aimed to explore 1) additive interactions between
CDKAL1 rs7747752 polymorphism and low GUDCA/DCA for
the risk of GDM; and 2) whether the additive interactive effect if
any between rs7747752 polymorphism and low GUDCA/DCA
on the risk of GDM was mediated via LPC18:0 and/or SFA16:0.
MATERIALS AND METHODS

Research Design and Population
The design and method of this study have been described
previously (26). To be brief, we set up a prospective cohort
study of 22 302 pregnant women at their first antenatal care with
median 10th gestational weeks in Tianjin, China, from October
2010 to August 2012. The ethics of the study protocol was
approved by the Ethics Committee of Tianjin Women and
Children’s Health Center (TWCHC), and written informed
consent was obtained before data collection.

A two-step screening procedure was used to identify GDM.
First, a 1-h 50-g glucose challenge test (GCT) was performed on
pregnant women at 24-28th gestational weeks in the primary
hospital. Second, a 2-hour 75-g oral glucose tolerance test
(OGTT) was performed on pregnant women with GCT ≥ 7.8
mmol/L at the GDM clinic in TWCHC. The diagnosis of GDM is
based on the cutoff points of the International Association of
Diabetes and Pregnancy Study Group (27). Of the 22 302
participants, 2 991 pregnant women donated fasting blood
samples. We finally included 207 GDM cases and 207 non-
GDM controls who were matched by maternal age (± 1 year)
(15). Data from the 207 pairs of women with high-quality SNP
(28) were used to explore the research questions of this study.
The flowchart of the study participants was available
elsewhere (14).

Data Collection Procedures
Data were collected during the first antenatal care visit, GCT,
OGTT, and the postpartum period, which has been described in
detail (26). Demographic, clinical and lifestyle information included
age, weight, height, systolic/diastolic blood pressure (SBP/DBP),
ethnicity, education level, parity, family history of diabetes, in first
degree relatives, smoking and drinking habits before and
during pregnancy.
March 2022 | Volume 13 | Article 808956
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Measurement of Serum BAs,
LPCs and SFAs
Liquid chromatography-tandem mass spectrometry (LC–MS/
MS) was used to assay the concentrations of serum BAs, LPCs,
and SFAs. The detailed measurement methods of serum BAs,
LPCs, and SFAs were available elsewhere (14–16).

Genotyping
Genotyping was conducted using the Illumina Infinium® Global
Screening Array and genotype data was imputed using minimal 3
with the 1000 Genomes Project phase 3 v 5 as reference panel.
Genotyping data from specific candidate SNP (rs7747752) were
extracted from the genome-wide genotyping data. The overall
genotype call rate was 99.4%.

Statistical Analysis
Power and sample size analysis was performed using PASS 15
(NCSS, LLC. Kaysville, Utah, USA). In the 1:1 age-matched case-
control study, we assumed that the probability of exposure among
sampled control patients is 10% and the correlation coefficient for
exposure betweenmatched case and control patents is 0.2, and type
I error is set at 0.05. The sample size required to achieve 85% power
for an odds ratio (OR) of 2.0 is 256 (128 GDM and 128 control).
Therefore, the current sample size of our study (n=414) had more
than 85% power to detect the assumed risk association.

All other statistical analyses were performed using Statistical
Analysis System (SAS) release 9.4 (SAS Institute, Cary, NC).
Quantitative data were compared between the GDM group and
the non-GDM group, using the paired Student’s t-test or
Wilcoxon signed-rank test. The categorical data were
compared using the McNemar test or Fisher’s exact test. In
addition, Spearman correlation analysis was used to calculate the
correlation coefficients of these serum BAs and rs7747752 with
neonatal birth weight. In addition, Kruskal-Wallis test was used
to test the differences of serum levels of BAs between different
rs7747752 genotypes. In this analysis, a P-value < 0.05 was
regarded to be statistically significant.

In our previous analysis, we detected that GUDCA≤ 0.07 nmol/
mL, DCA ≤ 0.28 nmol/mL, LPC18:0 ≥ 18.0 nmol/mL and SFA16:0
≥ 17.1 nmol/mL were independently associated with markedly
increased risk ofGDM in restricted cubic spline analysis (14–16). In
this analysis, we used the same cutoff points of GUDCA, DCA,
LPC18:0 and SFA16:0 to define low GUDCA, low DCA, high
LPC18:0 and high SFA16:0. Conditional logistic regressions were
used to obtain the ORs and their 95% confidence intervals (CIs) of
rs7747752 and GUDCA/DCA for the risk of GDM in unadjusted
models and adjusted models. The adjusted models considered
confounding effects of traditional risk factors of GDM, including
pre-pregnancy bodymass index (BMI), family history of diabetes in
first degree relatives, SBP, current smoker before pregnancy, and
weight gain to the time of GCT. Next, the combined effects of
rs7747752 genotypes (CC vs. CG vs. GG) and low serum levels of
GUDCA/DCA on GDM susceptibility were examined to explore
whether the rs7747752 and low GUDCA/DCA have potential
interactive effects on the risk of GDM. Then, based on the results
of combined effects of rs7747752 genotypes (CCvs. CGvs.GG) and
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low GUDCA/DCA on GDM, we further tested the additive
interactions between rs7747752 C risk allele and low GUDCA/
DCA for GDM. Three measures, i.e., relative excess risk due to the
interaction (RERI), attributable proportion due to the interaction
(AP), and synergy index (SI) were used to judge additive
interactions (29). Any of RERI > 0, AP > 0 or SI > 1 indicates a
significant additive interaction.

In order to shed light on the potential mechanisms of the
additive interactions between CDKAL1 rs7747752 C allele and
low GUDCA/DCA on the risk of GDM, we further conducted
mediation analyses to examine whether high LPC18:0 and/or
SFA16:0 can account for the association between copresence of
CDKAL1 rs7747752 C allele carrier status and low GUDCA/DCA,
and the increased risk of GDM. First, we estimated the ORs of
copresence of rs7747752 and low GUDCA/DCA for high LPC18:0
and high SFA16:0, and the ORs of high LPC18:0 and high SFA16:0
for GDM. Then, we calculated the ORs of copresence of rs7747752
and low GUDCA/DCA for GDM after adjusting for high LPC18:0
and high SFA16:0. At last, Sobel test was used to assess the
mediation effects of LPC18:0 and SFA16:0 (30).
RESULTS

Characteristics of the Research
Participants
The clinical and biochemical information of the study participants
was shown in Table 1. The mean age of participants at the first
antenatal care visit was 29.24 ± 3.04 standard deviation (SD) years.
There were no differences in height, ethnicity, education level,
parity, weight gain to GCT, smoking and drinking habits before
and during pregnancy among the controls and GDM groups (P >
0.05). Women with GDM had significantly higher weight, BMI,
SBP, DBP and GCT glucose levels than the controls (P < 0.05).
Women with GDM also had a higher proportion of family history
of diabetes in first degree relatives than the non-GDM group.
Women with GDM had a lower serum level of GUDCA and DCA
while had a high serum level of LPC18:0 and SFA16:0, compared
with non-GDMwomen. The frequencies of the heterozygote (CG)
and homozygous (CC) of the CDKAL1 rs7747752 were found to
be significantly higher in women with GDM than in the controls
(non-GDM) (P < 0.05). Whereas, we failed to find any significant
differences of serum levels of GUDCA and DCA between
rs7747752 genotypes (Table S1).

In addition, Spearman correlation analysis was used to
calculate the correlation coefficients of these serum BAs and
rs7747752 with neonatal birth weight. The correlation
coefficients of DCA, GUDCA and rs7747752 with birth weight
were 0.063 (P = 0.199), -0.022 (P = 0.658) and -0.017 (P = 0.728),
respectively, all being not significant.

Associations of CDKAL1 rs7747752
and Low Serum Levels of GUDCA/DCA
With GDM
The GUDCA ≤ 0.07 nmol/mL was associated with increased risk
of GDM (OR: 5.84, 95% CI: 2.13-16.0) after adjustment for
March 2022 | Volume 13 | Article 808956
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traditional risk factors, including pre-pregnancy BMI, family
history of diabetes in first degree relatives, SBP, current smoker
before pregnancy and weight gain to the time of GCT. Similarly,
after adjustment for traditional risk factors, DCA ≤ 0.28 nmol/mL
was also associated with increased risk of GDM (OR: 2.28, 95% CI:
1.43-3.64). In the cohort, the C allele frequency for rs7747752 was
49.89%. The CDKAL1 rs7747752 C allele was significantly
associated with GDM in the unadjusted model (OR: 1.48, 95% CI:
1.12-1.96) and adjusted model (OR: 1.76, 95% CI: 1.26-2.44). After
adjustment for traditional risk factors, heterozygote (CG) and
homozygote (CC) genotypes of CDKAL1 rs7747752 were all
associated with increased risk of GDM with ORs being 1.95 (95%
CI: 1.15-3.31) and 3.07 (95% CI: 1.59-5.95), respectively. In
dominant and recessive models, the ORs of the genotype
distribution of rs7747752 in the adjusted model were 2.19 (95%
CI: 1.31-3.65) and 1.88 (95% CI: 1.13-3.15), respectively (Table 2).

Combined Effects With rs7747752
Genotypes (CC vs. CG vs. GG) and
Low Serum Levels of GUDCA/DCA
for the Risk of GDM
Using the GG genotype of rs7747752 and serum GUDCA > 0.07
nmol/mL as the reference, GUDCA ≤ 0.07 nmol/mL combined
Frontiers in Endocrinology | www.frontiersin.org 4
with CG and CC were associated with significantly increased risk
of GDM after adjustment for traditional GDM risk factors, and
the ORs were 9.58 (95% CI: 1.60-57.5) and 16.5 (95% CI: 2.59-
106), respectively. In the same vein, using the GG genotype of
rs7747752 and DCA > 0.28 nmol/mL as the reference, the
combinations of rs7747752 CG or CC genotypes and DCA ≤
0.28 nmol/mL were associated with markedly increased risk of
GDM and ORs were 3.51 (95% CI: 1.50-8.24) and 8.06 (95% CI:
2.85-22.8), respectively (Table 3).

Additive Interactions Between rs7747752
C Allele (C vs. G) and Low Serum Levels
of GUDCA/DCA for the Risk of GDM
Using rs7747752 G allele and GUDCA > 0.07 nmol/mL as the
reference, the presence of rs7747752 C allele markedly increased
the OR of GUDCA ≤ 0.07 nmol/mL for GDM in adjusted model
from 4.04 (95%CI: 0.72-22.8) for GUDCA ≤ 0.07 nmol/mL alone to
9.02 (95% CI: 1.63-49.7) for the presence of both. There was a
significant additive interaction between CDKAL1 rs7747752 C allele
andGUDCA ≤ 0.07 nmol/L for GDM (AP: 0.50, 95%CI: 0.17-0.83).

Similarly, CDKAL1 rs7747752 C allele also markedly
increased OR of DCA ≤ 0.28 nmol/mL for GDM in adjusted
model from 1.67 (95% CI: 0.68-4.11) for DCA ≤ 0.28 nmol/mL
TABLE 1 | Clinical and biochemical characteristics of GDM and non-GDM women.

Characteristic Non-GDM (n = 207) GDM (n = 207) P value

Variables at registration
Age, years 29.23 ± 3.34 29.25 ± 2.74 0.480*
Height, cm 162.98 ± 4.54 163.25 ± 5.04 0.509*
Weight, kg 58.58 ± 9.78 63.87 ± 10.54 <0.001*
BMI, kg/m2 22.04 ± 3.46 23.95 ± 3.66 <0.001*
Systolic blood pressure, mmHg 104.21 ± 10.60 108.21 ± 10.54 <0.001*
Diastolic blood pressure, mmHg 67.91 ± 7.66 70.72 ± 7.93 <0.001*
Han ethnicity 200 (96.62) 202 (97.58) 0.564**
Education > 12 years 113 (54.59) 109 (52.66) 0.683**
Parity ≥ 1 10 (4.83) 13 (6.28) 0.532**
Family history of diabetes in first degree relatives 13 (6.28) 26 (12.56) 0.033**
Current smoker before pregnancy 13 (6.28) 14 (6.76) 0.841**
Alcohol drinker before pregnancy 52 (25.12) 63 (30.43) 0.564**
Variables during pregnancy
Current smoker during pregnancy 1 (0.48) 2 (0.97) 0.564**
Alcohol drinker during pregnancy 2 (0.97) 2 (0.97) 1.000**
gestational weeks at GCT, week 25.16 ± 2.28 24.95 ± 1.44 0.033*
Weight gain to GCT, kg/week 0.58 ± 0.21 0.56 ± 0.23 0.532*
GCT glucose, mmol/L 6.39 ± 1.35 9.30 ± 1.45 <0.001*
Bile acid species
GUDCA ≤ 0.07 nmol/mL 167 (80.68) 199 (96.14) <0.001**
DCA ≤ 0.28 nmol/mL 111 (53.62) 139 (67.15) 0.006**
Lysophosphatidylcholines species
LPC18:0 ≥ 18.0 nmol/mL 40 (19.32) 175 (84.54) <0.001**
Saturated fatty acids species
SFA16:0 ≥ 17.1 nmol/mL 87 (42.03) 125 (60.39) <0.001**
CDKAL1 gene
rs7747752 (C/G) 0.003**
GG 64 (30.92) 43 (20.77)
CG 101 (48.79) 103 (49.76)
CC 42 (20.29) 61 (29.47)
March 2022 | Volume 13 | Articl
GDM, gestational diabetes mellitus; BMI, body mass index; GCT, glucose challenge test; GUDCA, glycoursodeoxycholic acid; DCA, deoxycholic acid; LPC, Lysophosphatidylcholines.
SFA, Saturated fatty acid; CDKAL1, cyclin-dependent kinase 5 regulatory subunit-associated protein1-like 1.
Data are reported in mean ± SD or number (percentages).
*Derived from paired t-test or Wilcoxon signed-rank test.
**Derived from McNemar test or Fisher’s exact test.
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alone to 4.24 (95% CI: 1.84-9.76) for copresence of both. The
additive interaction was also significant (AP: 0.46, 95%CI: 0.09-
0.83) (Table 4).

Mediation Effects of LPC18:0 and SFA16:0
for Copresence of rs7747752 C Allele (C
vs. G) and Low Serum Levels of GUDCA/
DCA to the Risk of GDM
In adjusted model analysis, copresence of rs7747752 C allele and
DCA ≤ 0.28 nmol/mL was associated with markedly increased
risk of high LPC18:0 (OR: 4.51, 95% CI: 1.79-11.3). Adjustment
for LPC18:0 greatly attenuated the OR of copresence of
rs7747752 C allele and DCA ≤ 0.28 nmol/mL from 4.24 (1.84-
9.76) to 2.67 (0.71-9.99). The mediation effect of LPC18:0 on the
risk association of copresence of rs7747752 C risk allele and DCA ≤
0.28 nmol/mL with GDM was statistically significant (P of Sobel
test: 0.003) (Table 5). On the other hand, the mediation effect of
Frontiers in Endocrinology | www.frontiersin.org 5
LPC18:0 on the risk association of rs7747752 C risk allele and
GUDCA ≤ 0.07 nmol/mL with GDM was non-significant (P of
Sobel test: 0.114). Whereas, further adjustment for SFA16:0
markedly enhanced the interactive effects of rs7747752 C risk
allele and low GUDCA on the risk of GDM up to 7.20 (95% CI:
0.87-59.4), and slightly enhanced the risk association of rs7747752 C
risk allele and low DCA with GDM (OR: 4.36, 95% CI: 1.83-10.4),
both without any mediation effects (Table S2).
DISCUSSION

Our study found significant additive interactions between
CDKAL1 rs7747752 C allele carrier status and low serum levels
of GUDCA and DCA for the markedly increased risk of GDM in
Chinese pregnant women. The additive interactive effect of
CDKAL1 rs7747752 C allele carrier status and low serum levels
TABLE 3 | Risk associations of combinations of rs7747752 genotypes (CC vs. CG vs. GG) and low serum levels of GUDCA/DCA with gestational diabetes mellitus.

Genetic variants Metabolites Non-GDM (n=207) GDM (n=207) Unadjusted Model Adjusted Model

OR (95% CI) P value OR (95% CI) P value

Combinations of rs7747752 genotypes and GUDCA
rs7747752 GUDCA (in nmol/mL)
GG >0.07 10 (4.83) 2 (0.96) 1.00 – 1.00 –

GG ≤0.07 54 (26.09) 41 (19.81) 6.32 (1.07-37.2) 0.042 4.88 (0.80-29.8) 0.086
CG >0.07 22 (10.63) 5 (2.42) 1.81 (0.26-12.4) 0.546 2.42 (0.34-17.3) 0.378
CG ≤0.07 79 (38.16) 98 (47.34) 10.4 (1.79-60.5) 0.009 9.58 (1.60-57.5) 0.013
CC >0.07 8 (3.86) 1 (0.48) 0.54 (0.04-6.74) 0.634 0.48 (0.03-6.95) 0.589
CC ≤0.07 34 (16.43) 60 (28.99) 15.9 (2.61-97.1) 0.003 16.5 (2.59-106) 0.003
Combinations of rs7747752 genotypes and DCA
rs7747752 DCA (in nmol/mL)
GG >0.28 27 (13.04) 15 (7.25) 1.00 – 1.00 –

GG ≤0.28 37 (17.87) 28 (13.53) 1.40 (0.63-3.09) 0.406 1.70 (0.69-4.22) 0.250
CG >0.28 44 (21.26) 34 (16.43) 1.38 (0.61-3.09) 0.435 1.57 (0.62-3.95) 0.341
CG ≤0.28 57 (27.54) 69 (33.33) 2.13 (1.03-4.38) 0.040 3.51 (1.50-8.24) 0.004
CC >0.28 25 (12.08) 19 (9.18) 1.43 (0.58-3.53) 0.436 2.03 (0.71-5.75) 0.185
CC ≤0.28 17 (8.21) 42 (20.29) 4.66 (1.90-11.4) <0.001 8.06 (2.85-22.8) <0.001
March 202
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OR, odds ratios; CI, confidence intervals; GUDCA, glycoursodeoxycholic acid; DCA, deoxycholic acid.
Adjusted Model, adjusted for traditional risk factors, including pre-pregnancy body mass index, family history of diabetes in first degree relatives, systolic blood pressure, current smoker
before pregnancy and weight gain to the time of glucose challenge test.
TABLE 2 | Odds ratios of the CDKAL1 rs7747752 and bile acid metabolisms for increased risk of gestational diabetes mellitus.

Unadjusted Model Adjusted Model

OR (95% CI) P value OR (95% CI) P value

Metabolites
GUDCA ≤ vs. > 0.07 nmol/mL 7.40 (2.91-18.8) <0.001 5.84 (2.13-16.0) <0.001
DCA ≤ vs. > 0.28 nmol/mL 1.74 (1.17-2.59) 0.007 2.28 (1.43-3.64) <0.001
Genetic variants
rs7747752
GG 1.00 – 1.00 –

CG 1.51 (0.95-2.41) 0.080 1.95 (1.15-3.31) 0.014
CC 2.19 (1.24-3.85) 0.007 3.07 (1.59-5.95) 0.001
Additive (CC vs. CG vs. GG) 1.48 (1.12-1.96) 0.007 1.76 (1.26-2.44) 0.001
Dominant (CC/CG vs. GG) 1.68 (1.08-2.62) 0.023 2.19 (1.31-3.65) 0.003
Recessive (CC vs. CG/GG) 1.63 (1.04-2.57) 0.034 1.88 (1.13-3.15) 0.016
OR, odds ratios; CI, confidence intervals; GUDCA, glycoursodeoxycholic acid; DCA, deoxycholic acid.
Adjusted Model, adjusted for traditional risk factors, including pre-pregnancy body mass index, family history of diabetes in first degree relatives, systolic blood pressure, current smoker
before pregnancy and weight gain to the time of glucose challenge test.
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of DCA on GDM was partially mediated via high LPC18:0.
However, we failed to confirm that the copresence of CDKAL1
rs7747752 C allele carrier status and low GUDCA on the risk of
GDM was also mediated via high LPC18:0. In addition, the
additive interactions between CDKAL1 rs7747752 C allele carrier
status and low serum levels of GUDCA and DCA on GDM risk
were independent of high SFA16:0.

The role of BAs in the regulation of glucose metabolism is a
hot topic of recent diabetes research. Several studies in pregnant
women have attempted to address associations between BAs and
GDM with inconsistent findings. A nested case-control study of
131 women with GDM and 138 controls in early pregnancy did
not find significant differences in DCA, ursodeoxycholic acid
(UDCA), and GUDCA between GDM and non-GDM women,
but did observe that the primary BAs were down-regulated while
some other secondary BAs were up-regulated in GDM versus
non-GDM in the univariate analysis (31). Two other studies also
Frontiers in Endocrinology | www.frontiersin.org 6
did not detect a significant difference in DCA and UDCA
between GDM women and their control group at 28th

gestational weeks (13, 32). Using the restricted cubic spline
technique, our group found that GUDCA and DCA had clear
threshold effects on the risk of GDM, with the GUDCA ≤ 0.07
nmol/mL and the DCA ≤ 0.28 nmol/mL being associated with
markedly increased risk of GDM (15). Our findings further
indicated that women in low serum levels of GUDCA and
DCA with rs7747752 C risk alleles had markedly increased the
risk of GDM. It is worthwhile to investigate whether population
differences in proportions of CDKAL1 rs7747752 C allele carriers
contributed to the inconsistent findings regarding the association
between BAmetabolites and the risk of GDM in different studies.

CDKAL1 gene has a strong association with GDM among the
genes identified to date. CDKAL1 genetic variants also have been
shown to predict GDM and related glycemic traits (10),
suggesting that it might have a synergistic effect with other risk
TABLE 5 | Mediation effect of LPC18:0 for interaction between rs7747752 C allele (C vs. G) and low DCA to increased risk of gestational diabetes mellitus.

Beta (SD) OR (95% CI) P value

Model A (LPC18:0 ≥ 18.0 nmol/mL as the outcome)
rs7747752 C allele & DCA ≤ 0.28 nmol/mL 1.51 (0.47) 4.51 (1.79-11.3) 0.001
Model B (GDM as the outcome)
LPC18:0 ≥ vs. < 18.0 nmol/mL 2.89 (0.38) 18.1 (8.51-38.3) <0.001
Model C (GDM as the outcome)
rs7747752 C allele & DCA ≤ 0.28 nmol/mL 0.98 (0.67) 2.67 (0.71-9.99) 0.145
Sobel test for mediation effect† 0.003
March 2022 | Volume 13 | Article
SD, standard definition; OR, odds ratios; CI, confidence intervals; LPC, lysophosphatidylcholines; GDM, gestational diabetes mellitus; DCA, deoxycholic acid.
Model A was adjusted for the variables listed in the adjusted model in Table 4.
Model B was adjusted for traditional risk factors in the adjusted model in Table 4.
Model C was further adjusted for LPC18:0 ≥ 18.0 nmol/mL in addition to the variables listed in the adjusted model in Table 4.
†P value of Sobel test < 0.05 indicating significant mediation effect.
TABLE 4 | Additive interactions between rs7747752 C allele (C vs. G) and low GUDCA/DCA for the risk of gestational diabetes mellitus.

Unadjusted Model Adjusted Model

OR/Estimate P value OR/Estimate P value
(95% CI) (95% CI)

Additive interaction between rs7747752 risk allele C (vs. G) and low GUDCA
rs7747752 G allele & GUDCA > 0.07 nmol/mL 1.00 – 1.00 –

rs7747752 G allele & GUDCA ≤ 0.07 nmol/mL 5.52 (1.02-29.8) 0.047 4.04 (0.72-22.8) 0.113
rs7747752 C allele & GUDCA > 0.07 nmol/mL 1.20 (0.21-6.95) 0.838 1.43 (0.23-8.93) 0.700
rs7747752 C allele & GUDCA ≤ 0.07 nmol/mL 10.1 (1.90-53.5) 0.007 9.02 (1.63-49.7) 0.012
RERI 4.36 (-2.53-11.3) 4.54 (-2.66-11.7)
AP 0.43 (0.11-0.76) 0.50 (0.17-0.83)
SI 1.92 (0.90-4.13) 2.31 (0.85-6.24)
Additive interaction between rs7747752 risk allele C (vs. G) and low DCA
rs7747752 G allele & DCA > 0.28 nmol/mL 1.00 – 1.00 –

rs7747752 G allele & DCA ≤ 0.28 nmol/mL 1.36 (0.62-2.99) 0.444 1.67 (0.68-4.11) 0.266
rs7747752 C allele & DCA > 0.28 nmol/mL 1.34 (0.63-2.88) 0.448 1.64 (0.68-3.93) 0.269
rs7747752 C allele & DCA ≤ 0.28 nmol/mL 2.55 (1.26-5.17) 0.009 4.24 (1.84-9.76) <0.001
RERI 0.85 (-0.27-1.96) 1.93 (-0.09-3.96)
AP 0.33 (-0.12-0.79) 0.46 (0.09-0.83)
SI 2.20 (0.33-14.8) 2.48 (0.66-9.34)
OR, odds ratios; CI, confidence intervals; GUDCA, glycoursodeoxycholic acid; DCA, deoxycholic acid; RERI, relative excess risk due to interaction; AP, attributable proportion due to
interaction; SI, synergy index.
Adjusted model, adjusted for traditional risk factors, including pre-pregnancy body mass index, family history of diabetes in first degree relatives, systolic blood pressure, current smoker
before pregnancy and weight gain to the time of glucose challenge test.
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factors. The rs7747752 under study was significantly associated
with increased GDM risk. Similar to our findings, another study
also found that Chinese women with the rs7747752
polymorphism were predisposed to a high risk of GDM (8).
Previous studies have reported significant interaction effects of
CDKAL1 with lifestyle interventions, SFAs, and vitamin D on
GDM risk (14, 17, 33). In a recent study, our group found that
CDKAL1 genetic variants had a significant additive interaction
with serum SFAs, resulting in a markedly increased risk of GDM
(14). The interaction between both risk factors may suggest that
GDM develops when impaired beta-cell function cannot produce
enough insulin in response to increased insulin resistance as
manifested by high SFA16:0. In this analysis, we further found
that the CDKAL1 rs7747752 C allele carrier status had significant
additive interactions with low GUDCA and low DCA for the risk
of GDM, independent of high SFA16:0. Interestingly, LPC18:0
mediated the interactive effect of CDKAL1 rs7747752 and low
DCA on the risk of GDM.

To our knowledge, our study was the first that investigated
additive interactions between the CDKAL1 genetic variants
(rs7747752) and low serum levels of GUDCA/DCA for the risk
of GDM. We also observed that LPC18:0 but not SFA16:0
mediated the interactive effects of rs7747752 and low DCA on
the r isk of GDM. The funct ions of CDKAL1 and
methylthiotransferase in the regulation of metabolism are not
fully understood, so do the mechanisms underlying the additive
interactions between CDKAL1 rs7747752 and low GUDCA/
DCA. Recent studies have suggested several biological links
between BAs and glucose regulation. First, a biological link
between decreased DCA/GUDCA and GDM is plausible. Some
BAs can activate FXR in the intestine stimulate the synthesis of
fibroblast growth factor (FGF) 15/19 (34) and upregulate
expression of pancreatic beta cells (35), which exerts
pleiotropic effects on hepatic BAs metabolism as well as lipid,
protein, and glucose metabolism (34). What’s more, BAs-
mediated TGR-5 signaling increases the release of GLP-1,
which augments glucose-stimulated insulin secretion from
pancreatic beta cells (36). Notably, the CDKAL1 gene is tightly
associated with impaired beta-cell function (37) and insulin
secretion (38), thus being associated with increased risk of
GDM. Hence, it is possible that copresence of low GUDCA/
DCA and CDKAL1 genetic variants markedly increased the risk
of GDM via impaired beta-cell function. Second, multiple lines
of evidence support a pathway from the additive interactions of
low DCA/GUDCA and CDKAL1 to increased LPC18:0 could
play a role in the etiology of GDM. A mouse study found that
increased intestinal taurine-beta-muocholic acid, an antagonist
of FXR, reduced high-fat diet-induced increase in LPCs by
inhibiting the activity of FXR (39). In this regard, another
study showed that the biological link of gut microbiota-
GUDCA-FXR was related to glucose intolerance (40).
Furthermore, LPCs, the active metabolites of SFA16:0,
promoted insulin resistance and cell death in diabetes by
activating endoplasmic reticulum (ER) stress (41, 42). In this
regard, our study found that high SFA16:0 enhanced the risk
association of copresence of low DCA/GUDCA and CDKAL1
Frontiers in Endocrinology | www.frontiersin.org 7
genetic variants with the risk of GDM. Thus, it is also possible
that impaired beta-cell function cannot produce enough insulin
to cope with increased insulin resistance as caused by high
LPC18:0, thereby triggering a high risk of GDM. Hence, the
markedly increased susceptibility to GDM due to exposure to
both CDKAL1 rs7747752 C allele and low GUDCA/DCA is
biologically plausible although we are not sure whether impaired
insulin secretion or increased insulin resistance plays a dominant
role. Indeed, molecular mechanisms underlying the interactions
between rs7747752 and low GUDCA/DCA for GDM warrant
further investigations.

Our findings have public health implications. GDM begets
adverse short- and long-term health risks to the mother,
developing fetus, and their offspring. Thus, understanding the
pathophysiology of GDM and identifying potentially modifiable
risk factors and biomarkers for early diagnosis of GDM is
essential. In the contention, our study corroborated the link of
the CDKAL1 rs7747752 with GDM in Chinese pregnant women
and confirmed that the additive interactions between rs7747752
and low serum levels of GUDCA/DCA for markedly increased
risk of GDM, were independent of serum levels of SFA16:0.
Notably, the additive interaction effect between rs7747752 and
low DCA on the risk of GDM was partly mediated via increasing
levels of LPC18:0. These risk genetic and metabolomics markers
may be useful in the identification of women at high risk of GDM
in early pregnancy.

Our research has several limitations. First, our study was a
case-control study nested in a population-based prospective
cohort of pregnant women in Tianjin, China. Our findings
need to be replicated in other Chinese and non-Chinese
cohorts of pregnant women. Second, due to busy clinical
settings and a limited budget, lifestyle factors such as dietary
habits were not collected. Third, we used a two-step GDM
screening procedure to identify GDM and some GDM cases
might have been missed. Fourth, universal OGTT in early
pregnancy was not conducted due to tight budget and we
cannot exclude the possibility that some women with GDM
may have had prepregnancy impaired glucose tolerance.

In conclusion, we found that CDKAL1 rs7747752 and
serum GUDCA ≤ 0.07 nmol/mL and DCA ≤ 0.28 nmol/mL
had significant interactive effects on the risk of GDM in
Chinese pregnant women, independent of serum levels of
SFA16:0. The additive interaction effect between CDKAL1
rs7747752 and low DCA on GDM was partially mediated via
increasing levels of LPC18:0. The discovery of the interactions
between CDKAL1 rs7747752 C risk allele and low DCA/
GUDCA is an important step towards precision prevention
of GDM in early pregnancy. The additive interaction has
potential values in the prediction of GDM in early pregnancy that
may benefit from specific intervention if validation studies can
confirm our findings in other cohorts of pregnant women
populations. It is also warranted to investigate the molecular roles
of CDKAL1 gene and methylthiotransferase in the regulation of
metabolic and signaling pathways of BAs, SFAs, and LPCs for
increased risk of GDM for better understanding of the etiology
of GDM.
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