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The incidence of cardiovascular diseases is increasing worldwide with the growing aging of
the population. Biological aging has major influence on the vascular tree and is associated
with critical changes in the morphology and function of the arterial wall together with an
extensive remodeling of the vascular extracellular matrix. Elastic fibers fragmentation and
release of elastin degradation products, also known as elastin-derived peptides (EDPs), are
typical hallmarks of aged conduit arteries. Along with the direct consequences of elastin
fragmentation on the mechanical properties of arteries, the release of EDPs has been shown
to modulate the development and/or progression of diverse vascular and metabolic diseases
including atherosclerosis, thrombosis, type 2 diabetes and nonalcoholic steatohepatitis. Most
of the biological effects mediated by these bioactive peptides are due to a peculiar membrane
receptor called elastin receptor complex (ERC). This heterotrimeric receptor contains a
peripheral protein called elastin-binding protein, the protective protein/cathepsin A, and a
transmembrane sialidase, the neuraminidase-1 (NEU1). In this review, after an introductive
part on the consequences of aging on the vasculature and the release of EDPs, we describe
the composition of the ERC, the signaling pathways triggered by this receptor, and the current
pharmacological strategies targeting ERC activation. Finally, we present and discuss new
regulatory functions that have emerged over the last few years for the ERC through
desialylation of membrane glycoproteins by NEU1, and its potential implication in
receptor transactivation.

Keywords: extracellular matrix, elastin, receptor, neuraminidase, desialylation, signaling, vascular
remodeling, aging
INTRODUCTION

Over the last century, progress in living conditions, public health and medicine have led to a drastic
increase in life expectancy worldwide. For the first time, in 2018, the number of people older than 65
years has exceeded the number of children under age of 5, and by 2050, older persons will
outnumber adolescents and youth (ages 15 to 24) (1, 2). The explosion of this population part
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suggests that elderly will play a major role in societies and
economies in the coming years, meaning challenges in terms of
public health, personal assistance and medical research. This
demographic milestone will be accompanied by a major increase
in age-associated diseases, such as neurodegenerative diseases,
cancer and cardiovascular diseases (3), which essentially double
in incidence every 5 years after 60 years old. A major explanation
is the progressive and imperceptible vulnerability of the
organism to genetic and environmental factors. The
degeneration that all organs undergoes with age is the result of
a slow and insidious failure of capacities to preserve homeostasis
under physiological stress conditions (4). This progressive
degenerative state leading to organ fragility is associated with
tissue inflammation, stem cells depletion, cellular senescence,
extracellular matrix (ECM) alterations, and metabolic
dysfunctions (5). These tissue and cellular changes are the
visible part of the iceberg, but reflect underlying molecular
aberrations in mitochondria, proteostasis, intercellular
communication, nutrient uptake, genetic and epigenetic
changes (6).

Aging is accompanied by changes in vascular structure and
function, especially in the large arteries. Due to their elasticity
and resilience capacities, the concentric elastic lamellae of the
aorta play a pivotal role in reducing the high systolic pressure at
the outlet the heart. In other words, elastic lamellae stretch
during cardiac ejection phases allowing the radius of the aorta
to increase and to convert the pulsatile flow leaving the heart into
a continuous flow in arteries (7). With age, these elastic lamellae
exhibit wear characterized by zones of rupture. This leads to loss
of elasticity and progressive hardening of the aorta and release of
elastin-derived peptides (EDPs) in the circulating blood. These
events are accentuated by age-related inflammatory processes
and increased activity of elastases such as metalloproteinases
(MMP-2, -7, -9, -12), cathepsins, and neutrophil elastase (8).
Numerous studies have shown that EDPs are markers of vascular
aging and exhibit important biological functions by contributing
to progression of cancer (9–11), metabolic (12–14) and
cardiovascular diseases (15, 16). These bioactive EDPs, also
called elastokines, are well conserved between species and
exhibit a xGxxPG consensus sequence (where x represents any
amino acid) organized into a type VIII beta-turn structure
allowing binding to the elastin-binding protein (EBP) subunit
of the elastin receptor complex (ERC) (17). Different membrane
receptors can bind tropoelastin, the precursor molecule of
elastin, and EDPs, such as galectin-3 (18), the avb3 and avb5
integrins (19, 20) and a lactose insensitive receptor (21).
However, most of the pathophysiological effects reported so far
for the elastokines have been attributed to the ERC (8, 22–24).

This review provides an overview of the current state of
research on the ERC. After describing the composition of this
peculiar receptor, its signaling pathways and the current
pharmacological strategies targeting ERC activation, we
highlight ERC emerging regulatory functions through
desialylation of membrane glycoproteins by its neuraminidase-1
(NEU1) subunit and evoke its potential implication in
receptor transactivation.
Frontiers in Endocrinology | www.frontiersin.org 2
COMPOSITION OF THE ELASTIN
RECEPTOR COMPLEX

The ERC is a heterotrimeric receptor containing a peripheral
protein of 67 kDa called EBP, the protective protein/cathepsin A
(PPCA, 55 kDa) and the transmembrane NEU1 (61 kDa) (25)
(Figure 1). The ERC has a strong homology with the lysosomal
b-galactosidase (b-gal) complex involved in the degradation of
glycoconjugates wherein EBP is replaced by b-gal. Actually, EBP
is a spliced variant of b-gal resulting from the deletion of 3 of the
16 exons encoding the b-gal protein and two frameshifts (26, 27).
This splicing results in replacement of a 162-residue portion of
the catalytic domain by a 32-residue sequence unique for EBP
(28) that defines a binding pocket for peptides and proteins
containing xGxxPG motifs, such as the elastokines, tropoelastin,
and several other matrix proteins (29). This spliced version of b-
gal is devoid of enzymatic activity but kept galactolectin
properties and binds b-galactosugars such as galactose and
lactose. Binding of b-galactosugars to EBP plays a pivotal role
during elastic fibers formation by regulating tropoelastin
molecules release from EBP for subsequent assembly into the
growing elastic fiber. Indeed, binding of galactosugars to
the lectin domain of EBP causes conformational changes in the
protein, leading to its dissociation from tropoelastin and other
components of the cell surface-immobilized complex (30, 31)
and subsequent coordinated anchoring of tropoelastin molecules
to fibrillar glycoproteins that constitute the surrounding fibrillar
mantle of elastic fibers.

Lysosomal PPCA is a serine carboxypeptidase that acts as a
chaperone and protective protein by helping intracellular
routing, lysosomal localization and activation of NEU1 (32,
33), and b-gal stabilization in lysosomes (34, 35). Besides its
protective function, PPCA has a cathepsin A-like enzymatic
activity at acid pH and a deamidase/esterase activity at neutral
pH (36). Within the ERC, PPCA has similar protective function
by maintaining EBP integrity (37) and, in contrast to NEU1, the
catalytic activity of PPCA is not required for signal transduction
through the ERC (38).

NEU1 is part of the mammalian sialidase family that are
exoglycosidases removing terminal sialic acid residues from
glycoproteins, glycolipids and oligosaccharides in lysosomes.
NEU1 essentially catalyzes the hydrolytic cleavage of terminal
sialic acid residues from oligosaccharides and glycoproteins (39).
In addition to be expressed in lysosomes, NEU1 is also present at
the plasma membrane where it regulates a myriad of membrane
glycoproteins by desialylation, such as integrins (40), receptor
tyrosine kinases (RTKs) (12, 41, 42), Toll-like receptors (TLRs)
(43, 44), and platelet GPIb (45), resulting in modulation of
receptor activation and signaling. Within the ERC, the catalytic
activity of NEU1 plays a key role for signal transduction through
this receptor (38, 46) and constitutes the catalytic subunit of the
ERC. How binding of elastokines to the ERC induces increase in
sialidase activity of NEU1 within the heterotrimeric complex is
still unknown. So far, the crystallographic structure of human
NEU1 is not resolved and all the proposed structural models for
NEU1 are homology models based on the crystal structure of the
February 2022 | Volume 13 | Article 815356

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Tembely et al. EDPs and ERC in Vascular Aging
cytosolic human NEU2 (47, 48). By combining biology and
biochemistry together with structural biophysics and
computational approaches, we demonstrated that human NEU1
is present as dimers at the plasma membrane (49). Two potential
transmembrane domains were identified and the corresponding
peptides were prone to form stable a-helices in membrane-
mimicking environments. Importantly, the 316-333 domain of
NEU1 was suited for self-association, and in vitro experiments
further confirmed the ability of membrane NEU1 to dimerize.
Introduction of point mutations within this dimerization interface
was associated with substantial disruption of membrane NEU1
dimerization and decrease of membrane sialidase activity (49).
From these original results, it was proposed that membrane
dimerization of NEU1 controls its catalytic activity.

Due to the lack of structural data for NEU1 and EBP, the
composition and structure of the ERC is still unknown. The ERC
is classically depicted as a complex containing one copy of EBP, one
copy of PPCA and one copy of NEU1 dimer. However, a recent
study has revealed the first structural model of the lysosomal
multienzyme complex core by cryo-electron microscopy,
composed of b-gal and PPCA recombinantly expressed in insect
Frontiers in Endocrinology | www.frontiersin.org 3
cells (50). This 0.8MDa complex is composed of three b-gal dimers
and three PPCA dimers, adopting a triangular architecture
maintained through six copies of a unique b-gal-PPCA polar
interface. Whether this model could apply for the ERC remains to
be determined. As mentioned above, the b-gal splicing to EBP
results in replacement of a 162-residue portion by a 32-amino acid
sequence unique to EBP. In the proposedmodel, the b-gal residues
involved in the b-gal-PPCA interface are almost all lacking in EBP
(50). Therefore, the structure of the ERC is likely quite different.
Further studies are needed to understand the interplay between
these three enzymes in lysosomes and at the cell surface.
THE ELASTIN RECEPTOR COMPLEX AND
ITS SIGNALING PATHWAYS

Elastokines are able to modulate a large number of cellular processes
including chemotaxis (51, 52), proliferation (53–56), protease
synthesis (11, 57–59), ion influx (60, 61), migration (59) and
invasion (18, 62) for a significant number of normal and tumor
FIGURE 1 | The main signaling pathways mediated by the ERC and associated pharmacological inhibition strategies. Bioactive EDPs binding to the ERC triggers
signaling pathways that involve Gai proteins and culminate to ERK1/2 and Akt activation. Increase in NEU1 sialidase activity following elastokines binding to the ERC
can also modulate the sialylation level of membrane receptors at its vicinity. The different pharmacological strategies that block ERC activation and signaling, by either
blocking the interaction between the elastokines and EBP, inducing EBP shedding or inhibiting NEU1 sialidase activity, are depicted. DANA, 2-deoxy-2,3-didehydro-
N-acetylneuraminic acid; EBP, elastin-binding protein; EDPs, elastin-derived peptides; ERC, elastin receptor complex; GPCR, G-protein coupled receptor; NEU1,
neuraminidase-1; PPCA, protective protein/cathepsin A.
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cells. Furthermore, elastokines modulate the inflammatory response
(63, 64) and are involved in the development and/or progression of
many pathologies such as cancer (23), diabetes (12), nonalcoholic
steatohepatitis (14), atherosclerosis (15), and modulation of arterial
thrombosis (16). Elastokines also exhibit beneficial effects such as in
cardioprotection (65), tissue remodeling andwound healing (66, 67).

One of the first signaling pathways identified for the ERC came
from the pioneer study of Varga et al. showing that elastokines are
able to stimulate the oxidative burst, IP3 production and
intracellular free Ca2+ mobilization in human monocytes and
polymorphonuclear leukocytes through a pertussis toxin (PTX)-
sensitive Gai/o protein (68) (Figure 1). Mochizuki et al. then
confirmed the involvement of Gai/o proteins in ERC-mediated
signaling pathways in arterial smooth muscle cells (55). They
further showed that elastokines binding to the ERC causes
opening of L-type Ca2+ channels and Ca2+ entry into the cytosol,
leading to a sequence of tyrosine phosphorylations involving FAK,
c-Src, platelet-derived growth factor receptor kinase and the Ras-
Raf-MEK1/2-ERK1/2 pathways. These phosphorylation events
lead to an increased proliferation of arterial smooth muscle cells
and cytoskeleton reorganization. In the same time, Duca et al.
demonstrated that the MEK-ERK1/2 cascade is also activated by
elastokines in human skin fibroblasts leading to increased
production of AP-1 transcription factor and pro-MMP1 (69).
They also highlighted two different pathways that can lead to
activation of MEK-ERK1/2, the first one involving increased
production of cAMP and activation of PKA, and the second one
acting through the activation of PI3K. It was shown later that the
PI3K involved in ERC signaling is the PI3Kg isoform that is
activated through the bg subunits of a PTX sensitive
heterotrimeric Gi/o protein (70).

Involvement of NEU1 catalytic activity in ERC signaling
pathways was reported for the first time by Duca et al. in 2007
(38). They showed that ERK1/2 activation and pro-MMP1
production in response to elastokines binding to the ERC depend
on NEU1 sialidase activity. Indeed, the use of NEU1 catalytically
inactivemutant andNEU1 siRNAwas shown to abolish elastokines
effects. Interestingly, they also demonstrated that direct stimulation
of cells by exogenous sialic acid (N-acetyl-a-D-neuraminic acid,
Neu5Ac) mimics elastokines effects, indicating that the enzymatic
(sialidase) activity of theNEU1 subunit of theERC is responsible for
its signal transduction, presumably through desialylation and sialic
acid generation. NEU1 can cleave sialic acids from different
substrates such as glycoproteins, oligosaccharides and glycolipids
at the a-2,6 and/or a-2,3 glycan-linkages. In human skin
fibroblasts, Rusciani et al. have identified the GM3 ganglioside as
one of the NEU1 substrates (46). They showed that stimulation of
cells by elastokines induced GM3 desialylation and production of
lactosylceramide (LacCer) and that these events were blocked by
lactose (EBP antagonist) andNEU1 siRNA.As forNeu5Ac, LacCer
also reproduced elastokines stimulating effects on ERK1/2
phosphorylation. Similar observations were recently reported in
the pre-adipocyte 3T3-L1 cell line (13). Taken together, these
findings strongly suggest that sialic acid plays by itself an
important role in ERC-mediated signaling pathways. Whether
sialic acids can directly generate intracellular signaling or act
Frontiers in Endocrinology | www.frontiersin.org 4
through other membrane receptors, such as members of the sialic
acid-binding immunoglobulin-like lectin (Siglec) family remains to
be determined. In addition to its involvement in sialic acid
generation, and as described below, NEU1 also plays a pivotal
role in ERC-mediated signaling pathways and biological effects
through desialylation of membrane glycoproteins.
THE CURRENT PHARMACOLOGICAL
STRATEGIES TARGETING ERC
ACTIVATION

Different strategies are available to target ERCactivationand related
signalingpathways that either block elastokines binding to theERC,
induce shedding of EBP from the receptor complex and ERC
inactivation, or inhibit NEU1 catalytic activity (Figure 1).
Blocking the interaction between the elastokines and the EBP
subunit of the ERC can be achieved by using the BA-4
monoclonal antibody. This blocking antibody binds to insoluble
elastin, tropoelastin and to EDPs (71). BA-4 binds to xGxxPG
motifs and thereby is used as blocker of the interaction between
elastokines and theEBPsubunit of theERC.This approachhasbeen
used in several studies andwas shown toprevent elastindamageand
to neutralize ERC-mediated deleterious effects in emphysema,
abdominal aortic aneurysms and aortic disease associated
to Marfan syndrome in mice (72–76). Binding of elastokines
to the ERC can also be blocked by the V14 peptide
(VVGSPSAQDEASPL), a 14mer peptide corresponding to part of
the elastin binding sequence of EBP that binds xGxxPG motifs
found in elastokines (29). This strategy has been also widely used in
the literature for in vitro and in vivo applications (11, 59, 65, 77, 78).
ERC activation can also be inhibited by galactosugars. As
mentioned above, EBP is a spliced version of b-gal that lost
enzymatic activity but kept galactolectin properties. Accordingly,
it was demonstrated that EBP can be eluted from elastin affinity
column but also released from the cell surface by galactosugars (30,
31). The use of these compounds, mainly lactose and chondroitin
sulfate, results in shedding of EBP from the ERC and inhibits
ERC-mediated signaling pathways. Therefore, galactosugars are
commonly used as antagonists of the ERC (11, 12, 14, 38, 57, 63, 65,
70, 78, 79).

Another available strategy to inhibit ERC-mediated signaling
pathways is based on the blockade on NEU1 activation following
elastokines binding to the receptor. Due to the lack of selective
inhibitors, the majority of studies dealing with human
neuraminidases have used the 2-deoxy-2,3-didehydro-N-
acetylneuraminic acid (DANA), a nonselective inhibitor of the
four neuraminidase isoenzymes, or viral sialidase inhibitors such
as oseltamivir phosphate or zanamivir. Although viral sialidase
inhibitors have also broad specificity for bacterial
neuraminidases, studies that have assessed the activity of
zanamivir and oseltamivir phosphate against human
neuraminidases have reported weaker efficacy (80, 81) and
contradictory results. Analysis of DANA binding to the viral
neuraminidase active site by X-ray crystallography (82, 83)
shows identical interactions as the natural substrate, sialic acid
February 2022 | Volume 13 | Article 815356
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(84). Despite the fact that human neuraminidase isoforms share
a high-level amino acid conservation in the active site and its
vicinity, they have some striking differences, particularly in the
DANA’s glycerol binding group, which has been exploited to
design selective inhibitors. In this context, C9-amide derivatives
of DANA were the first DANA analogs investigated. Among
them, the C9-butyl-N-amide derivative (C9-BA-DANA) was
shown to be 200-fold more selective (IC50 10µM) for human
NEU1 over NEU2, NEU3, and NEU4 with respect to DANA
(85). Thereafter, another group has reported DANA analogs at
C5 andC9 positions and the best NEU1 inhibitor identifiedwas the
C5-hexanamido-C9-acetamidoanaloguewith aKi of 53±5nMand
a selectivity increased by 340-fold over the other isoenzymes (86).
BothDANAanalogshave been successfully validated in in vitro and
in vivo studies (87, 88). As described above, we previously identified
two segments in human NEU1 as potential transmembrane (TM)
domains. Among them, the 316-333 domain (referred as TM2)was
shown to formadimerization interface that controlsNEU1catalytic
activity (49). From these results, we developed an original strategy
based on the use of interfering peptides to target this dimerization
interface. We showed that these interfering peptides were able to
interactwithNEU1TM2, todisruptmembraneNEU1dimerization
and to inhibit its sialidase activity (89). In vivo application of these
new promising selective NEU1 inhibitors is currently under
investigation. Finally, recent works have been done to identify
neuraminidase inhibitors from natural bioactive molecules
extracted from plants (90–92). These natural bioactive
compounds could be used as a starting point for the development
of new natural putative NEU1 inhibitors and the design of more
potent synthetic compounds. In this context, we recently reported
the purification of three natural compounds from the leaves of the
Olyra latifoliaplant that present structural analogywithDANAand
possess inhibitory effects against human NEU1 (90).

Finally, another valuable strategy to block ERC activation
relies on the inhibition of key proteins involved in ERC-mediated
signal transduction. As mentioned above, one pivotal element is
the Gai/o protein as inactivation of Gi/o proteins by PTX strongly
inhibits ERC-mediated signaling pathways (55, 68, 70). Another
signaling relay is PI3Kg. Blocking PI3Kg inhibits ERC-mediated
signaling pathways (70) and PI3Kg deficiency in mice strongly
reduces EDP-induced reactive oxygen species (ROS) production
and migration of monocytes and proatherogenic effects of
elastokines in a mouse model of atherosclerosis (15). However,
Gi/o proteins and PI3Kg being common transducers for a
multitude of receptors, blocking Gi/o proteins or PI3Kg may
not be a viable therapeutical option to inhibit ERC activation.
EMERGING REGULATORY FUNCTIONS
FOR THE ERC THROUGH
DESIALYLATION BY NEU1

Regulation of Membrane Receptor
Functions Through NEU1 Desialylation
Along with the pivotal role of NEU1 for signal transduction by
the ERC, accumulative data from the last few years highlighted
Frontiers in Endocrinology | www.frontiersin.org 5
that the binding of elastokines to the ERC could also modulate
membrane receptor functions at the vicinity of the ERC by
desialylation through NEU1, opening new regulatory effects for
the ERC (Figure 2). For instance, Blaise et al. have reported that
chronic administration of EDPs in mice promote insulin
resistance through modulation of the insulin receptor (IR) by
the ERC (12). By analyzing mouse tissues, they showed that
elastokines stimulation led to the interaction between NEU1 and
IR, IR desialylation and decrease of IR, Akt and Foxo-1
phosphorylation. These modulatory effects of elastokines were
reversed by the sialidase inhibitor DANA and ERC antagonists
such as chondroitin sulfate (12). By their ability to increase
membrane NEU1 sialidase activity, elastokines binding to the
ERC was also shown to be able to regulate the signaling pathways
of other RTKs, such as the hepatic growth factor receptor
(HGFR), also known as C-MET (14). Indeed, Blaise et al. have
reported that chronic accumulation of EDPs in mice led to non-
alcoholic steatohepatitis through a mechanism involving
desialylation of HGFR and inhibition of the LKB1/AMPK
phosphorylation cascade (14).

A similar mode of action was highlighted by Kawecki et al. for
another family of receptors, the class B scavenger CD36 receptor
(78). In the search fornew interactionpartnersofmembraneNEU1,
they developed a proteomic approach and identifiedCD36 as a new
interaction partner of NEU1. Using human macrophages
differentiated from the THP-1 cell line, and after validation of the
constitutive interaction between NEU1 and CD36, they reported
that elastokines binding to the ERC induced desialylation of CD36
and potentiation of oxidized LDL uptake by macrophages (78).
Finally, unpublisheddata fromour group revealed that thismode of
action also applies for the b2 integrin in monocytes and for the
intercellular adhesionmolecule-1 (ICAM-1) in endothelial cells. By
stimulating the catalytic activity ofNEU1, elastokinesbinding to the
ERC induces desialylation of both monocyte b2 integrin and
endothelial ICAM-1 through NEU1, and enhances monocyte
adhesion to endothelial cells and monocyte transendothelial
migration. Thus, by this newly discovered mode of action, new
biological functions are anticipated for NEU1 through the ERC in
diseases involving elastic fibers remodeling and degradation, and
opens new avenues in the fine-tuning of membrane receptor
activation and signaling. Importantly, a large amount of other
membrane glycoproteins has been shown to be modulated by
desialylation through NEU1 such as the b4 integrin (40), CD31
(93), platelet GPIb (45), TLR4 (43) and several RTKs including
TrkA (41), IGF, PDGF and EGF receptors (42, 94) andMUC1 (42)
(Figure 2).Whether thesemembrane receptors can be regulated by
desialylation through ERC involvement remains to be shown but
anticipatesnewregulatory functions tobediscovered for elastokines
and the ERC.
Potential Involvement of the Elastin
Receptor Complex in Receptor
Transactivation
Transactivation of RTKs by G-protein coupled receptors
(GPCRs), and reciprocally, is a well-characterized phenomenon
and has been extensively reviewed elsewhere (95–97). Receptor
February 2022 | Volume 13 | Article 815356
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transactivation has been shown to play important roles in
various physiological and pathological processes such as in
cancer and cardiovascular diseases, thereby providing new
insights and new potential targets. RTKs can be activated by
GPCRs in a ligand-dependent or -independent manner. Ligand-
dependent transactivation mainly occurs via MMPs or a
disintegrin and metalloproteinases (ADAMs) upon GPCR
activation. Activated MMPs or ADAMs then cleave
membrane-bound RTK pro-ligands that bind to RTKs and
trigger downstream signaling. Transactivation can also occur
through ligand-independent mechanisms. Effector proteins
activated following GPCR activation, such as Src, PKC and
Pyk, can directly activate RTKs via phosphorylation of their C
terminus extremities. In addition, secondary messenger
molecules such as ROS can also mediate direct activation of
RTKs (96).

Transactivation of RTKs by GPCRs is not unidirectional as a
large body of evidence indicates that RTKs can also transactivate
GPCRs in a ligand-dependent or -independent manner. Ligand-
dependent transactivation of GPCRs by RTKs results from the
synthesis and secretion of the ligand of the transactivated GPCR,
which binds and activates the GPCR in an autocrine and/or
paracrine manner. For instance, in human breast carcinoma
cells, IGF-1 can transactivate the G protein-coupled chemokine
Frontiers in Endocrinology | www.frontiersin.org 6
receptor CCR5 through enhancement of synthesis and secretion
of RANTES mRNA, the natural ligand of CCR5 (98). Ligand-
independent transactivation of GPCRs by RTKs rather involves
formation of GPCR-RTK complexes and sometimes
phosphorylation of the transactivated GPCRs (99). Comparable
crosstalks have been proposed for GPCRs and Toll-like receptors
(TLRs) (100).

Interesting findings from the last decade came from the group
of Szewczuk that describes a novel organizational signaling
platform wherein NEU1 is placed at the center of tripartite
molecular complexes involving GPCRs, the matrix
metalloproteinase 9 (MMP-9) and RTKs or TLRs (43, 101–
105), opening new roles for NEU1, and potentially for the
ERC, in receptor crosstalk and transactivation. It was
uncovered that binding of GPCR agonists to their cognate
receptor induces GPCR-signaling processes via Gai proteins
and subsequent MMP-9 activation leading to increase of NEU1
sialidase activity. In turn, the sialidase activity of NEU1 tethered
to the RTK or TLR hydrolyzes the a-2,3-sialyl residues of the
receptor, enabling removal of steric hindrance for receptor
association and subsequent RTK or TLR activation. This was
illustrated in the human IR-expressing rat hepatoma cell line
where GPCR agonists such as bombesin, bradykinin, angiotensin
I and angiotensin II, were shown to dose-dependently induce
FIGURE 2 | Schematic representation of the membrane glycoproteins regulated by desialylation through NEU1 and potential biological relevance in various
diseases. Left panel shows the membrane glycoproteins regulated by desialylation through NEU1 after ERC involvement. Right panel lists the other membrane
glycoproteins that have been shown to be desialylated by NEU1. Whether these latter can be modulated by the ERC remains to be evaluated. EBP, elastin-binding
protein; ERC, elastin receptor complex; HGFR, hepatic growth factor receptor; ICAM-1, intercellular adhesion molecule-1; IR, insulin receptor; MUC-1, mucine-1;
NEU1, neuraminidase-1; PDGFR, Platelet-derived growth factor receptor; PPCA, protective protein/cathepsin A; IGFR, insulin-like growth factor receptor; RTK,
receptor tyrosine kinase; TLR, toll-like receptor.
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NEU1 sialidase activity and IR signaling in the complete absence
of insulin. Among these GPCR agonists, angiotensin II was
found to be the most potent inducer of IRb and insulin
receptor substrate-1 (IRS-1) phosphorylation. Furthermore,
these effects were blocked by the sialidase inhibitor oseltamivir
phosphate and the neuromedin B GPCR (NMBR) inhibitor
BIM-23127 (106). These findings were consistent with a
previous report describing the regulatory role of NMBR in
inducing NEU1 sialidase activity and MMP-9 crosstalk
required for IRb desialylation and receptor activation (104).
Together with a prior study showing that the same GPCR
agonists induced NEU1 sialidase activity on the cell surface of
primary bone marrow macrophages, resulting in NEU1-
mediated desialylation, dimerization, and transactivation of TLR4
in the absence of natural ligand (102), these findings support a
central role for NEU1 in receptor transactivation processes.

An intriguing issue that remains to be resolved for this model
is the link between MMP-9 and NEU1 and how MMP-9
proceeds for NEU1 activation. It is assumed that GPCR need
to be tethered to the RTK or TLR in order to activate MMP-9
already in complex with the ERC containing NEU1. In turn, the
metallo-elastase activity of MMP-9 would cleave the EBP subunit
from the ERC, thereby exposing the catalytic sialidase domain of
NEU1 (101). To our knowledge, involvement of MMP-9 for the
release of EBP from the ERC has not been demonstrated so far.
Rather, and as mentioned previously, dissociation of EBP from
the ERC is known to be triggered by binding of galactosugars
onto EBP. This process is involved for assembly of tropoelastin
molecules onto the microfibrillar scaffold during elastogenesis
(25). It is proposed, that by removing terminal sialic acid residues
from carbohydrate chains protruding from microfibrillar
glycoproteins, NEU1 (linked to EBP and PPCA) causes
unmasking of penultimate galactosugars, which in turn interact
with the galactolectin site of EBP and induces release of the
transported tropoelastin molecule from EBP. In the meantime,
EBP dissociates from NEU1 and PPCA and is recycled back to
the endosomal compartments. Once in the recycling endosomes,
EBP reassociates with NEU1 and PPCA, and binds again new
tropoelastin molecules delivered from the endoplasmic reticulum
to chaperone them to the cell surface (25). For more details, the
reader is referred to major reviews in the field (7, 107, 108). Since
binding of elastokines to EBP directly activates NEU1 and
increases its sialidase activity, it is tempting to speculate that
the ERC may be involved in such receptor crosstalk
and transactivation.
CONCLUDING REMARKS AND
FUTURE CHALLENGES

Vascular aging is associated with an extensive remodeling of the
ECM. Over the last decade, elastic fibers fragmentation and
release of EDPs have emerged as major contributors of vascular
ECM remodeling and associated diseases occurring with aging.
The different studies summarized in this review show that the
ERC may play a pivotal role in such effects. The new regulatory
Frontiers in Endocrinology | www.frontiersin.org 7
functions that have emerged over the last few years for the ERC
through membrane glycoproteins desialylation by its NEU1
subunit, and the potential implication of the ERC in receptor
transactivation, suggest that another biological and regulatory
functions remain to be discovered for the ERC. Given the fact that
GPCRs form the largest human membrane protein family,
including approximately 800 members, and are the target of
around 34% of all drugs approved by the US Food and Drug
Administration (109), one main issue is likely to assess whether
the ERC may form complexes with and modulate GPCR
activation. In this context, the use of sensitive approaches
dedicated to the identification of membrane interaction
partners, such as the membrane yeast two-hybrid (MYTH)
screen (110), has to be considered. MYTH is a very sensitive
technique that adapts the principle of split-ubiquitin for use as
potent in vivo sensor of direct protein-protein interactions and is
optimized for the detection of large-scale membrane protein
interactions. The use of such an approach will definitely help in
better understanding the role played by the ERC, through its
NEU1 catalytic subunit, in health and diseases, and should open
new avenues for pharmacological strategies targeting the ERC
and its biological effects. It is tempting to speculate that disrupting
the interaction between elastokines and the ERC or blocking the
signaling pathways triggered the receptor may represent efficient
and selective therapeutical targets in the future. Although
pharmacological strategies are already available and currently
used in research, a complete structural picture of the complex
receptor is still lacking but is absolutely required to open the way
to the design of new antagonists targeting the ERC and to prevent
the deleterious effects of these ECM-derived peptides. Indeed, the
unraveling of the 3D structure of the whole molecular complex is
a prerequisite to the understanding of the interaction
mechanisms as well as the structural relationships between its
three subunits. Among the ERC constitutive proteins, only the
crystal structure of the protective protein has been solved (111).
For EBP and NEU1, homology models have been released (29,
48). However, NEU1 is, by definition, a lysosomal sialidase and
the current homology models, based on the human cytosolic
NEU2, cannot account for such membrane localization. As
mentioned in this review, another main issue that remains to be
investigated is how elastokines binding to the ERC increases
NEU1 catalytic activity within the receptor complex. The
optimum pH for the lysosomal enzyme is acidic (pH 4.5)
whereas the plasma membrane-bound sialidase has an
optimum pH at around 6.5. Therefore, this increased
membrane NEU1 sialidase activity following cell stimulation by
elastokines could not be due to the lysosomal pool of this sialidase
(112). Moreover, it has been demonstrated that EBP is never
targeted to lysosomes (26–28). Conformational changes within
NEU1 are rather favored but remains to be demonstrated.
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