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The complications of macrovascular atherosclerosis are the leading cause of disability and
mortality in patients with diabetes. It is generally believed that the pathogenesis of diabetic
vascular complications is initiated by the imbalance between injury and endogenous
protective factors. Multiple endogenous protective factors secreted by endothelium, liver,
skeletal muscle and other tissues are recognized of their importance in combating injury
factors and maintaining the homeostasis of vasculatures in diabetes. Among them,
glucagon-like peptide-1 based drugs were clinically proven to be effective and
recommended as the first-line medicine for the treatment of type 2 diabetic patients
with high risks or established arteriosclerotic cardiovascular disease (CVD). Some
molecules such as irisin and lipoxins have recently been perceived as new protective
factors on diabetic atherosclerosis, while the protective role of HDL has been reinterpreted
since the failure of several clinical trials to raise HDL therapy on cardiovascular events. The
current review aims to summarize systemic endogenous protective factors for diabetes-
associated atherosclerosis and discuss their mechanisms and potential therapeutic
strategy or their analogues. In particular, we focus on the existing barriers or obstacles
that need to be overcome in developing new therapeutic approaches for macrovascular
complications of diabetes.
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INTRODUCTION

Atherosclerosis-related vascular complications are the main cause of reduced life quality and
expectancy in diabetics. Atherosclerosis is known as chronic inflammatory diseases involving a
variety of cells and pathogenesis, which is characterized by endothelial dysfunction, foam cell
formation, the accumulation of lipids and eventually leads to lesion development (1). In diabetes,
hyperglycemia is one of the main causes of atherosclerosis, but it is often combined with other risk
factors, namely, dyslipidemia and hypertension to aggravate vascular injury synergistically. It is
indistinguishable at histological examination of atherosclerotic lesions in patients with
hyperglycemia to those with other risk factors like hypercholesterolemia or smoking (2).
However, as reported, diabetic patients are four to five times more likely to develop
cardiovascular diseases or stroke than individuals without diabetes (3). This obvious discrepancy
may be owing to unique pathophysiological mechanisms of diabetes-associated atherosclerosis. It is
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generally believed that the pathogenesis of diabetic vascular
complications is initiated by the imbalance between injury and
endogenous protective factors. Among them, multiple
mechanisms of destructive factors have been extensively
studied to mediate the adverse effects on vascular tissues of
hyperglycemia (4, 5). These include overproduction of reactive
oxygen species (ROS) (6), formation of advanced glycation end
products (AGEs) (7), activation of proinflammatory pathways,
and increased expression of adhesion molecules. By contrast,
very few studies have focused on the endogenous protective
factors that exist to neutralize toxic AGEs, oxidative stress, and
inflammation actions. The 50-Year Medalist Study showed
diabetic patients with long-term poor glycemic did not
correlate with vascular complications, and the effects of strict
blood glucose control on cardiovascular disease (CVD) are
marginal, suggesting the existence of endogenous protective
factors can neutralize toxic effects of hyperglycemia and
counteract mechanisms responsible for complication
progression (8, 9). However, to our knowledge, most of these
studies and reviews focus on protective factors on microvascular
complications especially diabetic retinopathy and diabetic
nephropathy, while systemic reviews update about endogenous
protective factors on diabetic atherosclerosis or macrovascular
complications are relatively lacked. Herein, we review the
endogenous protective factors and potential therapeutic
analogues that were proven to be effective at least in animal
models with diabetic atherosclerosis.

NO and eNOS
Endothelial dysfunction, characterized by the lowered
bioavailability of nitric oxide (NO), is recognized to be the first
step of atherosclerosis and cardiovascular disease (10). Oxidative
stress or increased ROS formation in the vascular wall is a
significant driver to reduce bioactive NO in underpinning
diabetic vascular complications (11). Endothelial NO protects
against atherosclerosis by mediating vasodilation, inhibiting
platelet adhesion, leukocyte chemotaxis, and cellular
proliferation of vascular smooth muscle cells, thus promoting
endothelial cell barrier integrity (12). Atheroprotective NO is
mainly produced by enzyme endothelial nitric oxide synthase
(eNOS), which is a dimeric NOS isoform specifically expressed in
endothelial cells and known as an endothelial protective factor in
atherosclerosis while the inducible nitric oxide synthase (iNOS),
another NOS isoform induced by cytokines and other agents
expressed in almost any cell type, shown to be proatherogenic
(13). eNOS is constitutively expressed in the caveolae and
maintains its basal activity by interacting with Caveolin-1
(Cav-1), the main coat protein of caveolae. The regulation of
eNOS is much complicated in atherosclerosis. On one hand,
eNOS can be activated by phosphorylation of the enzyme
response to various factors, such as increased shear stress or
insulin stimulation, then coupled with cofactor (BH4) or substrate
(L-arginine), leading to the production of protective NO. On the
other hand, uncoupling eNOS in disease settings can be a source
of superoxide, resulting in NO inactivation. In diabetes and its
related atherosclerosis, hyperglycemia negatively regulated eNOS
phosphorylation, causing eNOS uncoupling and reduced
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bioactive NO by increasing AGEs formation and activating
Protein kinase C (PKC) pathway (14–16). Thus, the NO
bioavailability depends on the expression level of eNOS, but
more importantly, the eNOS activity.

Multiple conventional drugs such as statins or angiotension
converting enzyme inhibitors (ACEi) can reduce vascular
oxidative stress and increase bioactive NO in clinical or
preclinical settings, but it remains elusive because all these
drugs are pleiotropic or secondary effects rather than direct
regulation of eNOS derived NO. CavNOxin is a Cav-1-derived
peptide with T90, 91, F92 substituted to alanines. It has been
identified to highly specific increase eNOS activity by preventing
eNOS uncoupling (17, 18). As reported, CavNOxin could
attenuate total aortic plaque up to 70% in diabetic
apolipoprotein E knockout (ApoE−/−) mice, a well-established
model of experimental atherosclerosis, whereas mice lacking
eNOS show resistance to CavNOxin treatment, suggesting
endogenous eNOS activation can provide atheroprotection in
diabetes (12). Beyond that, there are amounts of other small
molecules, such as compounds AVE9488, AVE3085 and trans-
resveratrol, enhancing eNOS expression and preventing eNOS
uncoupling under pathophysiological conditions and also
showing therapeutic potential in vitro studies (13). AVE9488
and AVE3085 were known as novel eNOS transcription
enhancers. AVE9488 enhanced vascular content of the
essential eNOS cofactor BH4 and reversed eNOS uncoupling
(19). Long-term treatment with AVE9488 improved cardiac
remodeling and protected ischemia-reperfusion damage
through increasing NO bioavailability (20). AVE3085
prevented endothelial dysfunction in arteries by regulating the
expression of eNOS at different phosphorylation sites and also
inhibition of arginase and iNOS (21). In addition, trans-
resveratrol, a class of flavonoid compounds, has been
demonstrated to increase endothelial NO production through
diverse mechanisms, namely, upregulating of eNOS expression,
stimulating of eNOS enzymatic activity, and preventing of eNOS
uncoupling (22). Pharmacological interventions of them
regulated eNOS/NO signaling pathway mainly through eNOS
phosphorylation and protein-interactions. In this context,
further in-depth studies are required to have a better
understanding of how to improve eNOS-derived NO in
patients with diabetes.

Lipoxins
Growing evidence suggests that chronic inflammation plays an
important role in the pathophysiology of diabetes and diabetes-
related vascular complications, therefore, the endogenous
proresolution molecules and synthetic analogs targeting
inflammation resolution are increasingly recognized as a
therapeutic strategy to ameliorate diabetes, prevent its
progression and vascular complications (23–26).

The omega-6 arachidonic acid (AA)-derived lipoxins [LXs],
namely, LXA4 and LXB4 in mammals, are the first recognized
endogenous lipid mediators that have dual anti-inflammatory and
pro-resolution activities (27). They are produced by different
biosynthetic pathways, involving the interaction of activated
neutrophils within the epithelium, endothelium, and platelets (28).
April 2022 | Volume 13 | Article 821028

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wang et al. Protective Factors in Diabetic Atherosclerosis
Previous clinical data have shown that circulating levels of
LXs or arachidonic acid (AA) are reduced in patients with
obesity (29), diabetes and its complications (30), suggesting
LXs maybe protective factors in metabolic disease and
associated vascular complications. Borgesön et al. (31) reported
that LXA4 and a benzo-LXA4 analogue reduced obesity-induced
adipose inflammation by promoting a macrophage M1-to-M2
switch, modulating adipose autophagy. They demonstrated the
Lipoxin-mediated protection was independent of adiponectin by
using adiponectin−/− mice.

Recently, Brennan (32) reported that LXs could prevent and
attenuate the development of atherosclerotic lesions in diabetic
ApoE−/− mice but not in nondiabetic ApoE−/− mice. The
mechanism involved the inhibition of the vascular smooth
muscle cell proliferation and endothelial cell inflammation.
They showed that metabolic parameters were not changed by
LXs, suggesting that LXs-mediated protection was independent
of glycemic control. Consistently with the animal experiments,
LXA4 suppressed inflammatory cytokine release, namely, tumor
necrosis factor-a and interleukin-1b in human carotid plaque
explants. These data suggest that LX and its analogue therapy
may offer a novel therapeutic approach in the context of
diabetes-associated vascular complications (33).

Adiponectin
Adiponectin is a widely studied adipokine with anti-
inflammatory, antioxidant, antiatherogenic, and insulin-
sensitizing properties (34–36). Adiponectin exerts its biological
role mainly by binding to its specific receptors, namely,
adiponectin receptor 1 (AdipoR1), adiponectin receptor 2
(AdipoR2), and newly discovered T-cadherin (37). The
receptors are abundantly expressed in cardiomyocytes, vascular
smooth muscle cells, and endothelial cells and were supposed to
be involved in atherosclerosis development (38–40).

Clinically, a large number of epidemiological studies
suggested that the level of serum adiponectin in patients with
obesity, type 2 diabetes, and atherosclerotic cardiovascular
disease were significantly lower than that in normal subjects
(41–43), while the low calorie diets, physical exercise, and
bariatric surgery leading to weight loss may result in consistent
increases of adiponectin levels (44). It was proved that
hypoadiponectinemia could predict endothelial dysfunction in
healthy men (45) and predict atherosclerosis in patients with
end-stage renal disease (46). Further, adiponectin-deficient mice
showed significantly increased neointimal thickening disordered
endothelium-dependent vasodilation compared with wild-type
mice (47–49). Moreover, adiponectin overexpression in the
ApoE−/− mouse, can reduce the progression of fatty streak
lesion through attenuating endothelial inflammatory response
and macrophage to foam cell transformation (50). Based above,
adiponectin is proposed as a predictive factor and a potential
therapeutic target for atherosclerotic cardiovascular disease.

Adiponectin is known to exert vasoprotective actions through
several mechanisms (51). A number of studies show that
adiponectin could suppress the activation of pro-inflammatory
and adhesion molecules, inhibit the monocyte/macrophage
migration to the vascular wall and prevent the formation of
Frontiers in Endocrinology | www.frontiersin.org 3
foam cells (52–54). In vitro and in vivo studies indicated that
adiponectin also reduced oxidative stress and high glucose-
induced apoptosis, protected against endothelial dysfunction
induced by OxLDL (55, 56). Furthermore, adiponectin can
inhibit several atherogenic growth factors including platelet-
derived growth factor to block the proliferation and migration
of human aortic smooth muscle cells (57). In addition,
adiponectin exerts the vascular protective function by directly
enhancing the eNOS activity and improving the NO production
depending on AdipoR1–AMPK signaling pathways (53, 58).

Several drugs (e.g., thiazolidinediones, angiotensin receptor
blocker, sodium glucose cotransporter 2 inhibitors and incretins)
have an effective influence on circulating adiponectin level
through multiple mechanisms such as transcription regulation
of adiponectin expression and pathways that enhance
adipogenesis and insulin sensitivity (51). However, the actual
clinical application of exogenous recombinant adiponectin is
scarce due to the complexity of adiponectin multimers structure
and its short half-life in vivo (59), and designing agonists to
activate adiponectin receptor is suggested as an alternative
strategy to maximize the beneficial effects of adiponectin.
ADP355 and osmotin are two adipoR agonists among the
numerous promising candidates in preclinical development.
ADP355, an adiponectin-derived active peptide, was reported
to ameliorate lipid metabolism and inhibit atherosclerosis in
apoE−/− mice (60). Osmotin, an adiponectin homolog, that was
found to function as an agonist for AdipoR1 (61) and infusion of
osmotin could suppress the development of aortic atherosclerotic
lesions in apoE−/− mice (62). In comparison, AdipoRon is a
selective, orally active, synthetic small-molecule agonist, which
can bind and activate AdipoR1 and AdipoR2, attenuated insulin
resistance and glucose intolerance, improving lipid metabolism
in high-fat diet mice (63). Oral administration of AdipoRon in
C57BL/6J mice significantly suppressed arterial injury-induced
neointimal hyperplasia by targeting VSMC proliferative
signaling events (64), but there are lacking studies up to now
to examine the role of AdipoRon on atherosclerosis in diabetes
models. Further studies are needed to evaluate the clinical
implications targeting to adiponectin or its receptors in the
treatment of cardiometabolic diseases in diabetes.

Omentin
Omentin (also known as omentin-1 or intelectin-1) is a newly
discovered adipokine with insulin-sensitizing, antioxidant, anti-
inflammatory, and anti-atherosclerotic effects (65). It is
preferentially secreted from the visceral fat stromal vascular
cells, and also less expressed in endothelial cells, lung, heart,
and placenta (66).

Recently, the level of omentin-1 was considered as a new
biomarker of vascular endothelial function, especially for diabetic
patients (67). Several cross-sectional studies reported that the
concentration of omentin-1 decreased in patients with type 2
diabetes (T2DM) (68), coronary artery disease (CAD) (69, 70) or
obese individuals with higher cardiovascular risk (71). Circulating
omentin-1 level are negatively correlated with carotid intima-media
thickness (IMT), arterial stiffness and carotid plaque in healthy men
and type 2 diabetic patient (68, 72). Consistently, in apolipoprotein
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E-deficient mice, omentin exhibited a significant reduction of the
atherosclerotic areas by affecting the phenotypes of macrophages
(73). On the contrary, a recent population-based cohort studies
showed higher omentin concentrations were associated with a
higher risk of primary cardiovascular events in diabetic patients
even after adjusting for other cardiovascular risk factors including
adiponectin (66). It appears possible that this association reflects a
counterregulatory mechanism.

Liu et al. (74) found that omentin-1 protected against high
glucose-induced vascular-endothelial dysfunction through its
ability to inhibit reactive oxygen species (ROS) and increase
NO production via activation of eNOS signaling pathway in
isolated mouse aortas and mouse aortic endothelial cells
(MAECs). Another evidence from diabetic rat studies indicated
the protective effects of omentin against endothelial dysfunction
through its actions on anti-inflammatory and antioxidant in
perivascular adipose tissue (65). These studies suggested
targeting circulating omentin levels may present therapeutic
potential for cardiovascular diseases in diabetic patients.

HDLs and apoA-Ⅰ
High-density lipoprotein cholesterol (HDLs) are complex
polymolecular assemblies produced by the liver, jejunum and
in serum. They are consisting of a hydrophobic lipid core (TGs
and cholesterols) and an outer layer of phospholipids and
apolipoproteins (mainly apoA-I), which facilitate reverse
cholesterol transport (RCT) from peripheral tissues to liver.

In the past few decades, HDLs are recognized as a protective
factor against vascular complications with diabetes mellitus
(DM) due to its multiple functions encompassing anti-
inflammatory, anti-oxidative, anti-thrombotic, and anti-
diabetic properties (75, 76). A wealth of epidemiological and
clinical studies indicated low HDL levels are independent risk
factors for the development of atherosclerotic CVD or stroke
with DM (77, 78). Similarly, alterations in plasma HDL and its
related factors, LDL-C/HDL-C and TC/HDL-C ratio, showed a
potential value in predicting glycemic control or cardiovascular
function in diabetic patients (79, 80). A less favorable lipid profile
could explain the success of lipid-modifying therapies, such as
statins, in reducing adverse cardiovascular events. However, until
now, HDL is still not considered a primary target of therapy in
the latest national clinical guidelines on cholesterol management
(81, 82). Although deficiency (83, 84) or overexpressing (85, 86)
of high density lipoprotein or apolipoprotein A-I has clearly
demonstrated a reduction or acceleration of atherosclerosis
respectively in mice, several clinical studies aiming to raise
HDL level therapies like CETP inhibitors or niacin have no
significant benefits to cardiovascular events in patients with or
without DM (87). An international double-blind randomized
clinical showed infusion of recombinant HDL or apoA-I fail to
regress plaque in coronary arteries of patients with acute
coronary syndrome (88). One possible explanation of these
negative results is that biological HDL could be adversely
modified to be “dysfunctional HDL” by diabetes and
atherosclerosis through the alteration of specific components
and modifications of oxidation or glycation of HDL particles.
This was supported by previous studies that HDL particle size
Frontiers in Endocrinology | www.frontiersin.org 4
and the distribution of HDL sub-classes were significantly altered
in patients with coronary heart disease (CAD) complicated by
DM compared with those in CAD without DM (89). Clinical
data showed that highly elevated HDL did not always protect
against cardiovascular disease, sometimes even diametrically
opposed (90). Moreover, measures of HDL function such as
cholesterol efflux capacity from macrophages is more effective in
predicting the prevalence and incidence of CVD than measuring
quantity of HDL cholesterol or apoA-I (91, 92). These results
suggested that future development of novel therapies aiming
HDL should focus on overcoming HDL dysfunction rather than
improving the quantity of HDL. Indeed, development of HDL
analogues and apoA-I mimetic peptides in view of overcoming
the limits of the low efficiency of HDL in these processes do show
some promise. Some novel apoA-I mimetic peptide, such as D-
4F (93) and P12 (94), were believed to suppress atherosclerosis
by promoting physiological HDL function in vitro studies or a
murine model of diabetic atherosclerosis. Further clinical studies
involving these compounds on vascular complications in diabetic
patients are eagerly awaited.

Incretins (GLP-1 and GIP)
Incretins are a family of gut-derived peptide hormones which
include glucagon-like peptide-1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP) (95), which are respectively
secreted from L cells of the distal intestine and the K cells of the
proximal intestine in response to ingestions of various nutrients.
They both stimulate insulin secretion in a glucose-dependent
manner by binding with specific receptors, namely GLP-1
receptors (GLP-1R) and GIP receptors (GIPR) on b-pancreatic
cells (96, 97).

In diabetes, the secretion of incretins, especially the GLP-1 after
meal ingestion were significantly reduced compared with healthy
individuals. Targeting this deficiency by using GLP-1-based drugs
is a well-established approach in T2DM. Since GLP-1 is easily
degraded by dipeptidyl peptidase-4 (DPP-4), DPP-resistant GLP-1
receptor agonists (GLP-1 RAs) were designed basing on either
exendin-4 (drugs such as exenatide and lixisenatide) or human
GLP-1 (drugs such as liraglutide, dulaglutide, and semaglutide),
and therefore, have a prolonged half-life. DPP-4 inhibitors such as
sitagliptin and sagliptin are also effective strategies by increasing
the concentration of endogenous GLP-1. GLP-1 RAs exert
glucoregulatory effects via glucose-dependent secretion of
insulin, inhibition of glucagon release. Further, the presence of
GLP-1R has been detected in a wide range of organs, namely,
vessels, heart, brain, and gastrointestinal tract (98, 99). The
extrapancreatic actions of GLP-1 include inhibition of gastric
emptying, gastric acid secretion, and suppressing appetite,
thereby fulfilling the definition of GLP-1 as an enterogastrone.
GLP-1 RAs have been effective glucose-lowering drugs for a
decade with weight loss, lower risk of hypoglycemia, and even
cardiovascular benefits.

Indeed, numerous clinical studies have shown the cardiovascular
protective effects of GLP-1 RAs on atherosclerosis, coronary arterial
disease (CAD), and cerebrovascular disease (100). For example, in
an ApoE−/− mouse model, liraglutide has shown to inhibit
atherosclerotic plaque formation and enhanced plaque stability
April 2022 | Volume 13 | Article 821028
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and endothelial function (101). In T2DM patients, Rizzo and
colleagues (102) reported 8 months treatment of liraglutide
therapy leads to a reduction in carotid intima media thickness
(cIMT), a surrogate marker for CVD risk, and this effete is
independently of its effect on plasma glucose and lipids
concentrations. In the cardiovascular outcomes trials of liraglutide
(the LEADER study), liraglutide could further significantly reduce
the risk of major cardiovascular adverse events by 13% in patients
already received cardiovascular secondary prevention drugs (103).
In these studies, the cardiovascular protective effects of GLP-1 RAs
was independent of glycemic control (104, 105).

GLP-1/GLP-1RAs may mediate effects on cardiovascular
outcomes through effects on other risk factors such as the
decreasing blood pressure values, weight reduction and
improvement of dyslipidemia and endothelial dysfunction.
Accumulating evidence suggests that GLP-1/GLP-1RAs increases
the production of endothelial nitric oxide (NO) (106), reduces
endothelial dysfunction (107), inflammation and oxidative stress
(108) and also inhibits the transformation from monocytes to foam
cells (109). In addition, treatment with GLP-1RA also increased
circulating adiponectin levels (110), which play a protective role in
the cardiovascular system. Based on these findings andmechanisms,
GLP-1RAs have now been recommended by the ESC/EASD
(European Society of Cardiology/European Association for the
Study of Diabetes) released guidelines as one of the first-line
therapies in type 2 diabetic patients with high risks or established
cardiovascular disease (111, 112).

Compared with GLP-1, no GIP receptor agonist is utilized
clinically to date because the glucoregulatory effects of GIP shows
to be weakened in individuals with diabetes (113, 114). In patients
with hyperglycemia and liver cirrhosis, GIP can stimulate the
secretion of glucagon, resulting in increased glucose levels (115,
116). Inhibition of physiological GIP has been shown to alleviate
obesity and insulin resistance under high-fat diet conditions (117).
Consistently, GIPR antagonist can enhance insulin sensitivity,
improve glucose tolerance, and reduce weight gain (118, 119).
These studies indicated that the GIP treatment might increase the
risk of metabolic deterioration in diabetes. However, the concern for
its safety leading the neglection for its function on cardiovascular
health. Recently, infusion of GIP in pharmacological dose have been
found to prevent accumulation of aortic plaque, macrophages and
foam cells in diabetic apolipoprotein E-null mice (120). Anti-
atherosclerosis function of GIP may lie in the mechanism of
improving NO production in VECs and activation of AMPK,
inhibiting cell proliferation in VSMCs, and inhibiting
inflammatory effect of monocytes, macrophages, and adipocytes
(121). These observations suggest that GIP under pharmacological
concentration may induce anti-diabetic and antiatherogenic effects.
More fundamental studies and preclinical trials such as dual
agonists targeting for GIPR and GLP-1R are still ongoing.

L-Carnosine
L-carnosine (beta-alanyl-L-histidine) is an endogenous dipeptide
composed of b-alanine and l-histidine and highly expressed in
skeletal muscle, brain and less in cardiac muscles (122). It is
synthesized endogenously by carnosine synthase in skeletal
muscle cells, glial cells, and myocytes, and it also could be
Frontiers in Endocrinology | www.frontiersin.org 5
obtained from dietary sources such as meat and fish (123). L-
carnosine is a quencher of the Reactive Carbonyl Species (RCS),
which are derived from Advanced Glycation (AGEs) and
lipoxidation end-products. Therefore, it not only plays a major
role in inhibiting AGEs formation, but also prevents the
activation of pro-oxidative and pro-inflammatory pathways
secondary to its ability to trap RCS (124, 125).

Several studies have been conducted on the effect of carnosine on
diabetes and its complications, thanks to its inhibitory effect on the
production of AGEs and oxygen toxicity. As expected, this
endogenous dipeptide is proved to reduce cholesterol and
triglyceride levels and ameliorate the dyslipidemic blood profile in
multiple animal models, namely, diabetic Balb/cA mice (126),
finishing Pigs (127), and obese Zucker rats (128). Further, Brown
et al. (122) reported L-carnosine supplementation in drinking water
for 20 weeks reduced plasma triglycerides, changed plaque
atherosclerotic composition, and suppressed atherosclerotic plaque
instability in diabetic ApoE−/− mice. Consistently, in vitro studies
revealed that L-carnosine was able to inhibit glycation of low-
density lipoproteins and reduce the formation of foam cells when
incubated with glycated LDLs (129). These findings may partly
explain themodifications in plaque composition observed by Brown
et al. However, since L-carnosine is rapidly inactivated by serum
carnosinase in human, the search for carnosine derivatives that are
resistant to hydrolysis by carnosinase enzymes maybe a more
suitable strategy. Stefano Menini and his colleagues (130) showed
the diabetic ApoE−/− mice treated with D-carnosine-octylester
(DCO), a bioavailable pro-drug of the carnosinase-resistant D-
carnosine, for 20 weeks resulted in a more stable plaque
phenotype, and even further a reduced atherosclerotic lesion size
compared to untreated animals. In more detail, DCO treatment for
11 weeks also afforded partial protection from diabetes-induced
atherosclerosis. Interestingly, the protective effect of DCO was more
effectively achieved by early treatment (treated with DCO from
weeks 1 to 11) than by late treatment (treated with DCO fromweeks
9 to 19) due to early inhibition of AGE formation. The phenotypes
obtained by carnosine and DCO is regardless of lipidemic and
glycemic status, suggesting the protective effect is independent of
hypoglycemic and lipid-lowering effect. They also showed the
molecular mechanisms underlying the protective effects by DCO
was associated with reduced foam cell accumulation, inflammation
and apoptosis and also with increased content of collagen and
smooth muscle cells.

In human study, supplementation with a daily dose of 2 g
carnosine improved glucose metabolism, preserved insulin
sensitivity and secretion in overweight and obese individuals
(131). There is an ongoing randomized controlled trial (RCT)
focusing on carnosine on cardiometabolic health and cognitive
function in patients with prediabetes and type 2 diabetes (132). If
this trial proves to be effective, more well-designed clinical trials with
larger samples are needed to confirm the potential roles of carnosine
and its derivatives in the prevention and treatment of diabetes and
diabetic cardiovascular disease.

Irisin
Irisin is a recently recognized cytokine that is produced by
plasma membrane protein fibronectin type III domain-
April 2022 | Volume 13 | Article 821028
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containing protein 5 (FNDC5) cleavage. It is mainly secreted by
skeletal muscle and released into the blood circulation during
exercise, and known as a mediator for browning of subcutaneous
white adipose tissue (WAT) and increased thermogenesis and
alleviate insulin resistance (133, 134).

There have been a lot of studies investigating the association
between circulating irisin with obesity (135–138) and diabetes
mellitus (136, 139–145). Majority of studies in human and animals
showed that lower circulating levels of irisin were associated with
Frontiers in Endocrinology | www.frontiersin.org 6
obesity (135, 137) and T2DM (136, 140–145), but so far with
inconsistent and controversial results; the opposite trend was also
found in subjects with obesity (136, 138), metabolic syndrome
(146), and T2DM (147). It is still controversial whether disease
condition increases or decreases circulating irisin levels. These
discrepant findings may be due to the difference of study
population, type of disease, and experimental design. Elevated
irisin levels in those patients may act as a compensatory
mechanism to combat metabolic disorders.
TABLE 1 | A list of endogenous protective factors and their serum level under diabetic condition and its macrovascular complication.

Endogenous protective factors Serum level under diabetic
condition

Serum level under diabetic macrovascular
complication

Production/expression site

eNOS activity ↓ ↓ endothelial cells
Adiponectin ↓ ↓ adipose tissue
Omentin ↓ ↓/↑ adipose tissue
HDLs/apoA-I ↓ ↓ liver, jejunum and in serum
GLP-1 ↓ ↓ L cells of the distal intestine
Lipoxins ↓ ↓ epithelium, endothelium, and platelets
L-carnosinea – – skeletal muscle, brain, cardiac muscles
Irisin ↓/↑ ↓ skeletal muscle and released into serum
A

–, unknown; ↓, decreased; ↑, increased; ↓/↑, decreased or increased results were observed with controversy.
aL-carnosine is rapidly inactivated by serum carnosinase in human.
FIGURE 1 | Selected mechanisms of endogenous protective factors on the development of diabetic atherosclerosis.
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In contrast, not many, but consistent results show that
decreased plasma levels of irisin are independently associated
with endothelial dysfunction (137), flow-mediated arterial
dilation (141) and presence and severity of coronary artery
disease (CAD) (148), implying irisin may ameliorate vascular
endothelial dysfunction and treating atherosclerosis, and this is
also an explanation for the effective role of physical exercise in
the prevention and management of cardiometabolic risk and in
the treatment of metabolic syndrome and its complications. A
recent animal study has also suggested that irisin treatment
suppressed endothelial injury and reduced the degree of aortic
atherosclerotic plaque in apolipoprotein E-knock out diabetic
mice (149), suggesting irisin could be therapeutic for
atherosclerotic vascular diseases in diabetes. Consistently, a
case–control study from Egypt showed irisin was a reliable
diagnostic or prognostic biomarker for atherosclerosis in type
2 diabetic female patients.

Experiments in vivo and in vitro indicated that the
pathophysiological mechanism of endothelium-protective action
of irisin may involve activation of the AMPK–PI3K–Akt–eNOS
signaling pathway (149), inhibiting AGEs-induced oxidative stress
and NLRP3 inflammasome signaling (150), promoting endothelial
cell proliferation (151). Taken together, it has been revealed that
irisin level played a beneficial role on metabolic diseases and
related vascular complications, but more studies are still needed to
prove it to be a therapeutic for atherosclerotic vascular diseases in
diabetes mellitus.
CONCLUSION

The imbalance between injury and endogenous protective factors
was thought of as an initiating pathogenesis contributing to
diabetic vascular complications. In most cases, the serum levels
of protective factors were significantly reduced under diabetic
condition and diabetic macrovascular complication as shown in
Table 1, representing a potential to serve as diagnostic or
prognostic biomarkers of cardiovascular complications in
diabetic patients.

Currently, few effective therapeutic methods are available for the
management of diabetic macrovascular complications. The
Frontiers in Endocrinology | www.frontiersin.org 7
presence of endogenous protective factors secreted by
endothelium, liver and other tissues could alleviate development
and progression of diabetic atherosclerosis through multiple
mechanisms (Figure 1). Further clinical therapeutics targeting to
enhancing protective factors showed a new promising opportunity
in preventing or delaying the vascular complications of diabetes.
Incretin mimetics (GLP-1RAs) were convinced significantly of
reducing the major cardiovascular adverse events, and
recommended as the first-line medicine in type 2 diabetes
mellitus patients with cardiovascular risk factors. In contrast,
several large-scale clinical trials aiming to raise HDL cholesterol
in cohorts fail to show benefits in cardiovascular events. It seems to
be a solution to develop novel analogues or mimetic peptides based
on function rather quantity. Moreover, adipokines such as
adiponectin and omentin, and myokines such as irisin are also
providing a new perspective for understanding the development of
diabetic complications and representing promising therapeutic
prospects. A note of caution is that the therapeutic effects of these
factors were obtained in preclinical evidence, thus, human studies
with large quantity and high quality are required to validate the
results to the clinical situation.
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