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In vertebrate reproduction, metabolism, growth and development, essential roles are
played by glycoprotein hormones, such as follicle-stimulating hormone (FSH), luteinizing
hormone (LH) and thyroid-stimulating hormone (TSH), all of which are heterodimers
consisting of two subunits, a structurally identical alpha subunit, and a variable beta
subunit, which provides specificity. A 'new' glycoprotein hormone heterodimer identified
in both vertebrates and invertebrates, including decapod crustaceans, was shown to be
composed of the glycoprotein alpha 2 (GPA2) and glycoprotein beta 5 (GPB5) subunits.
The putative receptor for GPA2/GPB5 in invertebrates is the leucine-rich repeat-
containing G protein-coupled receptor 1 (LGR1). In this study in the giant freshwater
prawn,Macrobrachium rosenbergii, we identified and characterized the GPA2 (MrGPA2),
GPB5 (MrGPB5) and LGR1 (MrLGR1) encoding genes and revealed their spatial
expression patterns in female animals. Loss-of-function RNA interference (RNAi)
experiments in M. rosenbergii females demonstrated a negative correlation between
MrGPA2/MrGPB5 silencing and MrLGR1 transcript levels, suggesting a possible ligand–
receptor interaction. The relative transcript levels of M. rosenbergii vitellogenin (MrVg) in
the hepatopancreas were significantly reduced following MrGPA2/MrGPB5 knockdown.
MrLGR1 loss-of-function induced MrVg receptor (MrVgR) transcript levels in the ovary and
resulted in significantly larger oocytes in the silenced group compared to the control
group. Our results provide insight into the possible role of GPA2/GPB5-LGR1 in female
reproduction, as shown by its effect on MrVg and MrVgR expression and on the oocyte
development. Here, we suggest that the GPA2/GPB5 heterodimer act as a gonad
inhibiting factor in the eyestalk-hepatopancreas-ovary endocrine axis in M. rosenbergii.
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INTRODUCTION

The vertebrate glycoprotein hormones, such as follicle-
stimulating hormone (FSH), luteinizing hormone (LH) and
thyroid-stimulating hormone (TSH), produced by the anterior
pituitary gland are all heterodimers consisting of two cystine-
knot-containing proteins, i.e., a structurally conserved alpha
subunit and a variable beta subunit, which provides specificity (1).
These vertebrate glycoprotein hormones are essential for
reproduction, metabolism, growth and development (1). In
addition to these well-studied glycoprotein hormones, sequencing
of the human genome revealed a ‘new’ glycoprotein hormone,
Thyrostimulin, that is a heterodimer composed of two subunits,
designated glycoprotein alpha 2 (GPA2) and glycoprotein beta 5
(GPB5) (2). Similarly to the alpha and beta subunits of the other
glycoprotein hormones, GPA2 and GPB5 have conserved cysteine
residues, which are important for the formation of key disulfide
bonds and hence of the unique cystine knot structure of these
hormones (2, 3). Subsequent to the characterization of the
vertebrate GPA2 and GPB5 subunits, it was found that these
subunits are also are widely distributed in invertebrates, including
mollusks (4), annelids (5), urochordates (6), cephalochorates (7),
nematodes (8), arthropods (9, 10) and, as recently revealed, also in
decapod crustaceans, such as the crayfish, Procambarus clarkii (11)
and Cherax quadricarinatus (12), and the eastern spiny lobster
Sagmariasus verreauxi (13).

Glycoprotein hormones function by binding to specific
leucine-rich repeat (LRR)-containing G protein-coupled
receptors (LGRs).These LGRs are characterized by a seven-
transmembrane (7TM) helix domain, a large horseshoe-shaped
ectodomain – which contains the LRR motif that is responsible
for the selective binding of glycoprotein hormones – and a hinge
region between the extracellular ectodomain and the anchored
7TM domain, with the hinge region being important for basal
receptor conformation and receptor activity (14). Studies on the
invertebrates, the fruit fly Drosophila melanogaster (15) and the
adult mosquito Aedes aegypti (16), have shown that the LGR1
receptor is activated by the GPA2/GPB5 heterodimer.
Nonetheless, the physiological role of GPA2/GPB5 – in both
invertebrates and vertebrates – has not been fully elucidated,
although it appears to be pleiotropic (17). Studies of GPA2/GPB5
in invertebrates are limited, and those that have been performed
are limited mainly to D. melanogaster and A. aegypti, in which
the heterodimer was shown to be involved in development (18),
the hydromineral balance (10), and reproduction (19).

In this study, we focused on the genes encoding GPA2/GPB5
and its putative receptor LGR1 in the decapod crustacean, the
giant freshwater prawn Macrobrachium rosenbergii, which is one
of the best investigated crustacean species by virtue of its high
economic value in the aquaculture industry worldwide (20). In
decapod crustaceans, the X organ-sinus gland (XO-SG) complex
located in eyestalk is a major source of the neuropeptides that
regulate multiple physiological processes, including vitellogenesis
(21). Vitellogenesis, a crucial process in the ovarian maturation, is
characterized by the accumulation of vitellin, which is a yolk
protein derived from vitellogenin (Vg). In M. rosenbergii, Vg is
synthesized in the hepatopancreas (22) and secreted into the
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hemolymph, from where it is incorporated into the oocytes as a
mature vitellin (23). Vg is up taken into the oocytes through
endocytosis mediated by the vitellogenin receptor (VgR) (24). It is
currently held that ovarian maturation in decapod crustaceans is
regulated by two antagonistic neuropeptides—gonad inhibiting
hormone (GIH; also known as vitellogenesis-inhibiting hormone,
VIH) which is synthesized in the XO-SG complex and inhibits the
development of the ovary by inhibiting Vg synthesis, and gonad
stimulating factor (GSF), which is thought to be produced by the
brain and the thoracic ganglia (TG) (25, 26). Panouse (27) was the
first to demonstrate the presence of an ovarian inhibiting factor in
the eyestalk of the shrimp Leander serratus, since eyestalk ablation
during sexual inactivity resulted in the rapid development of the
ovaries. It was subsequently shown that implantation of TG or
brain tissue or injection of their extracts stimulated vitellogenesis
in different crab, crayfish and shrimp species (25, 26, 28–31).
Given the evolutionary link between GPA2/GPB5 and the
vertebrate gonadotropins FSH and LH, we hypothesized that
GPA2/GPB5 is expressed in the central nervous system (CNS;
eyestalk and TG) ofM. rosenbergii and plays a role in reproduction
control through the eyestalk-hepatopancreas-ovary endocrine
axis. To identify the encoding genes and to study the possible
role of GPA2/GPB5 in female reproduction processes, including
vitellogenesis, we used transcriptomic databases to characterize the
expression patterns of the encoding genes,MrGPA2,MrGPB5 and
MrLGR1 (whereMr designatesM. rosenbergii), combined with in-
vitro validation in tissues associated with the eyestalk-
hepatopancreas-ovary axis. In-vivo loss-of-function experiments
through RNA interference (RNAi) were performed to elucidate
the functionality and the role of the GPA2/GPB5-LGR1 system in
M. rosenbergii reproduction.
MATERIALS AND METHODS

Animals
M. rosenbergii females were collected from the Aquaculture
Research Station, Dor, Israel, and were maintained in
freshwater tanks at Ben-Gurion University of the Negev
(BGU), Beer-Sheva, Israel. The water temperature was kept at
27 ± 2°C, and water quality was assured by circulating the entire
volume of water through a bio-filter. Food comprising shrimp
pellets (Rangen Inc., Buhl, ID, USA, 30% protein) and frozen
marine polychaeta (Ocean Nutrition Ltd., CA, USA) were
supplied ad libitum three times a week. The study involves
experiments in crustaceans which do not require special
permits, nor ethical issues.
MrGPA2, MrGPB5 and MrLGR1
Transcripts and Their Deduced
Protein Sequences
Genes encoding GPA2 and GPB5 were mined from our existing
M. rosenbergii transcriptomic libraries (32–34), with the S.
verreauxi protein sequences, Sv-GPA2 and Sv-GPB5 (previously
sequenced by Aizen, unpublished data) being used as the queries.
March 2022 | Volume 13 | Article 823818
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A gene encoding M. rosenbergii LGR1 was mined using the A.
aegypti protein sequence AedaeLGR1 as the query (GenBank
accession no. XP_001649032; 10). To deduce the protein
sequences, MrGPA2, MrGPB5 and MrLGR1 were translated by
the ExPASy Proteomics Server (http://ca.expasy.org/tools/dna.
html), and the longest open reading frame (ORF) was selected for
each. Predicted conserved domains were identified using the
Simple Modular Architecture Research Tool (SMART) (35). To
further characterize MrGPA2, MrGPB5 and MrLGR1,
homologous proteins from crustaceans, insects and human
were selected for sequence alignment (Table 1). The ClustalW
multiple alignment analyses were conducted with the Molecular
Evolutionary Genetics Analysis MEGAX (36).
Temporal Expression Patterns in Early
Developmental Stages
Our existing M. rosenbergii embryo library (34) provides in
silico temporal expression patterns for MrGPA2, MrGPB5 and
MrLGR1 at different embryonic stages (day 1, day 3, day 5, day
11 and day 17) in all-male or all-female embryonic populations.
These populations were produced in our laboratory using
previous biotechnologies for all female population (37, 38) or
for all male population (39, 40). To expand the temporal
expression pattern to include the later developmental stages
zoea 4 (larva) and post-larva 1 (PL; one day after metamorphosis),
RNA was extracted from female larvae, male larvae, female PLs
and male PLs (4 replicates per stage) using the EZ-RNA Total
RNA Isolation Kit (Biological Industries) according to the
manufacturer’s instructions. cDNA was prepared by a reverse-
transcriptase reaction using the qScript cDNA kit (Quanta
BioSciences) containing 1 mg extracted total RNA. qPCR was
conducted to obtain the relative quantification of MrGPA2,
MrGPB5 and MrLGR1 transcript levels using specific primers
(Table 2) and Universal ProbeLibrary Probes (Roche; Table 2)
with the SensiFAST Probe Hi-ROX Mix (BIOLINE). Mr18S
(GenBank accession no.GQ131934) was used as a normalizing
gene (Table 2). The qPCR reactions were performed in the
QuantStudio Real-Time PCR System, Applied Biosystems
(Foster City, CA, United States).
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Spatial Expression Pattern in the Tissues
of Adult Females
Eyestalk, ovary, hepatopancreas, TG, and muscle tissue were
dissected from M. rosenbergii females (n = 12), and RNA was
extracted from each tissue as described above. cDNA was
synthesized and relative quantification of MrGPA2, MrGPB5 and
MrLGR1 transcript levels was performed using qPCR with the
relevant specific primers and probes (Table 2), as described above.

dsRNA Preparation
Two PCR products were generated for each gene (MrGPA2,
MrGPB5 and MrLGR1) using a T7 promoter anchor (T7P; 5’-
TAATACGACTCACTATAG GG-3’) attached to one of the two
primers used to amplify each product (Table 3). The primed
products were used as templates for RNA synthesis. dsRNA was
prepared using Thermo Scientific TranscriptAid T7 High Yield
Transcription Kit, according to the manufacturer’s instructions.
The sense and antisense strands were hybridized by heating to
70°C for 15 min and to 65°C for 15 min, followed by incubation
at room temperature for 30 min. RNA was quantified and diluted
to 1 mg/mL, and quality was assessed on 1.5% agarose gel. dsGFP
was used as control exogenous dsRNA and was synthesized as
previously described by Ventura et al. (41). The dsRNA was
maintained at -80°C until used.

Short-TermLoss-of-Function Efficiency of RNAi
Before the actual performance of functional experiments with a
candidate gene, we performed a short-term experiment to evaluate
dsMrGPA2, dsMrGPB5 and dsMrLGR1 silencing efficiency. For
such a short-term loss of function experiment, previtellogenic
females (11 ± 0.4 g) were divided into three groups. Ten females
were injected with a mix of dsMrGPA2 and dsMrGPB5, 9 females
were injectedwith dsMrLGR1, and 9 females served as controls and
were injected with an exogenous dsRNA (dsGFP). Since this
research does not follow the hormone at its hormonal level such
as its heterodimerization, knockdown of MrGPA2 and MrGPB5
togetherwas used to increase the certainty of affecting at the protein
level. All animals were injected twice (on days 1 and 3) in the
abdominal muscle with 5 μg of dsRNA per gram of body weight.
Twodays after the second injection, the animalswere dissected, and
TABLE 1 | Proteins used for sequence alignments.

Species Protein Accession number

Aedes aegypti GPA2 BN001241
GPB5 BN001259
LGR1 KF711859

Drosophila melanogaster GPA2 NP_001104054.2
GPB5 NP_001104335.1
LGR1 AAB07030

Homo sapiens GPA2 NP_570125.1
GPB5 NP_660154.3
thyrotropin receptor NP_000360
follicle-stimulating hormone receptor NP_000136
lutropin-choriogonadotropic hormone receptor NP_000224

Sagmariasus verreauxi GPA2 NA
GPB5 NA
March 2022 | Volume
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total RNA was extracted from the eyestalk, TG, ovary and
hepatopancreas of each animal, as described above. To validate
the silencing efficiency, cDNA was synthesized, and the relative
transcript levelsofMrGPA2,MrGPB5 andMrLGR1werequantified
using qPCR, as described above. The relevant target tissues for the
RNAi further analyses were chosen according to the spatial
expression results in adult females.

Long-Term Loss-of-Function Experiment
Having established the efficiency of RNAi-based silencing in the
above-described short-term experiment, we set out to perform a
long-term RNAi loss-of-function experiment to investigate the
role of the GPA2/GPB5-LGR1 system in female reproduction,
and more specifically its relation to the eyestalk-hepatopancreas-
ovary axis. To this end, 36 previtellogenic females (12.6 ± 0.2 g)
were divided into three equal groups: two treatment groups (n =
12, injected with a mix of dsMrGPA2 + dsMrGPB5, and n = 12,
injected with dsMrLGR1) and a control group (n = 12, injected
with dsGFP). Each animal was injected (as described above) once
a week over an eight-week period. One week after the last
injection, 6 females in each treatment group and 4 females in
the control group were still alive. Each female was weighed and
dissected. The whole gonad was dissected out and weighed for
calculation of the gonadosomatic index (GSI) (gonad weight as a
proportion of total body weight; %GSI = Gonad weight (g)

Total body weight (g) � 100).
RNA was extracted from the eyestalk, ovary, hepatopancreas and
TG tissue of each animal, and cDNA was synthesized for qPCR.
Relatively small prawns were used to ensure the uniformity of such
experiments with respect to reproductive state of the ovary. To
enable investigation of a possible relationship between the GPA2/
GPB5-LGR1 system and vitellogenesis, the relative transcript
levels of MrVg in the hepatopancreas and MrVgR in the ovary
were quantified, as described above.

Histology and Oocyte Diameter Measurements
Gonads were fixed for histology in 4% buffered formalin for 48 h,
followed by dehydration using increasing ethanol concentrations
Frontiers in Endocrinology | www.frontiersin.org 4
(70, 80, 90, and 100%). Samples were then incubated in xylene
and embedded in Paraplast (Kendall). Histological sections of
the ovaries were stained with hematoxylin and eosin (H&E) for
morphological observations, as previously described (42). The
diameters of representative oocytes (n = 5) for each gonad were
measured using ImageJ software (43). To verify consistency of
the measured area between different slides, the diameters were
measured only in oocytes in which the nucleus was visible. The
average oocyte sizes were compared between the control and
treatment groups in the long-term loss-of-function experiment.

Statistical Analyses
Alldatawas logarithmically transformed to facilitateproper statistical
analysis. For the spatial expression patterns of MrGPA2, MrGPB5
and MrLGR1 in females, the comparisons of the relative transcript
levels between tissues were analyzed using one-way ANOVA,
followed by post hoc Tukey’s HSD test. According to the one-way
ANOVA assumptions, the residuals’ normality was tested using the
Shapiro-Wilk test, and the homogeneity of variances was tested
using Levene’s test. For the relative quantification by real time
PCR in the short- and long-term loss-of-function experiments,
as well as for theMrVg andMrVgR relative transcript levels, GSI
and oocyte diameters, datawas compared and analyzed using a t-
test. All statistical analyses were performed using Statistica v13.5
software (StatSof Ltd., Tulsa, OK, USA).
RESULTS

Identification of MrGPA2, MrGPB5 and
MrLGR1
Searches of the transcriptomic libraries revealedMrGPA2 (2,328 bp)
and MrGPB5 (1,941 bp) transcripts with predicted ORF encoding
translation products of 120 and 146 amino acids, respectively
(Supplementary Material). The deduced protein structures of
MrGPA2 and MrGPB5, according to their ORFs, contain a signal
TABLE 3 | Gene-specific primers with T7 promoter site at the 5’ of one primer used as templates for dsRNA synthesis.

F primer R primer

MrGPA2 sense T7P-TCGACGTATTCGTTTCCTCA GATGACCTGGTGAGGGTTGT
MrGPA2 antisense TCGACGTATTCGTTTCCTCA T7P-GATGACCTGGTGAGGGTTGT
MrGPB5 sense T7P-TCTCTCCACCCTCGAATGTC ACCTCTGGGCATTTTGGCGCGAG
MrGPB5 antisense TCTCTCCACCCTCGAATGTC T7P-ACCTCTGGGCATTTTGGCGCGAG
MrLGR1 sense T7P-TGTACGCCATTCTCACGAAG TTGTCTGACAGCGTGAGTCC
MrLGR1 antisense TGTACGCCATTCTCACGAAG T7P-TTGTCTGACAGCGTGAGTCC
M

TABLE 2 | Primers and probes from Roche probe library used for qPCR.

F primer R primer Probe

MrGPA2 GACCACGGGAGCTGATCTT CTCTTCTTAATACTTTTTGCAGTGGA 17
MrGPB5 CTGGGAACTTCAAAGGAACG AAATCTTCTGTCACAGCCCTTT 4
MrLGR1 CACTCCGATCTCACCGTAGC CAGCAGGCAAAGTCTGTGAA 91
MrVg TTTGAAGTTAGCGGAGATCTGA TTCGAATTTGCGCAGTCTTT 144
MrVgR GATAAGCAACCCGCAGGAG CTGAGGAACCTCGACTACGG 91
Mr18S CCCTAAACGATGCTGACTAGC TACCCCCGGAACTCAAAGA 152
arch 2022 | Volume 13 | Article 8
23818
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peptide and a cystine-knot domain (Figures 1A, C). Sequence
alignments of M. rosenbergii, S. verreauxi, D. melanogaster,
A. aegypti and Homo sapiens confirmed the conservation of the
key cysteine residues of GPA2 and GPB5 that are essential for the
formation of the disulfide bridges involved in the characteristic
cystine-knot structure (3) (Figures 1B, D).

Searches of the transcriptomic libraries also revealed anMrLGR1
(5,391 bp) transcript with a predicted ORF of 1,734 amino acid
(Figure2A;SupplementaryMaterial).LGR1 is a typeALGRinthat
it contains LRRs (typically 7–9) and a long hinge region in its
ectodomain in addition to a G protein-coupled receptor (GPCR)-
conserved 7TMdomain (Figure 2A). The hinge region occupies the
sequence between the LRRs and the transmembrane domain and is
specific for each of the three main types of LGRs (14). The type A
hinge region contains the consensus sequence L-XX-A-X-LTYP-X-
HCCAF at the beginning of the hinge and the consensus sequence
V-X-C-X-P-X-PDAFNPCEDIMGY-X-FLRV at the end of the
hinge (Figure 2B). Alignment of the MrLGR1 amino acid
sequence with LGR1 from insects and H. sapiens glycoprotein
Frontiers in Endocrinology | www.frontiersin.org 5
hormone receptors (TSHR, FSHR and LHR) showed similar
domain compositions, with only slight differences (Figure 2B). In
addition, the hinge region ofMrLGR1 contains six cysteine residues
(Cys770, Cys771, Cys798, Cys1201, Cys1213 and Cys1223; Figure 2A),
namely, two cysteines in each of the two consensus sequences and
two more cysteines in the hinge region, with these six cysteines
probably forming three disulfide bridges stabilizing the
entire structure.

Temporal Expression Patterns
To study the in silico expression patterns of GPA2, GPB5 and
LGR1 in early M. rosenbergii development during the embryo
stages, an embryo transcriptomic library at five different stages
in males and females (34) was used. The transcripts, which were
found to be non-sexually biased, indicated high expression
levels of MrGPA2 and MrGPB5 on day 17 (Figures 3A, B)
and enhanced expression of MrLGR1 on days 11 and 17
(Figure 3C). In developmental stages beyond embryos (larva
and PL), no sexually biased differences were found in MrGPA2
A

B

C

D

FIGURE 1 | M. rosenbergii glycoprotein hormone subunits and deduced protein sequences. Linear models of the (A) GPA2 and (C) GPB5 proteins of M. rosenbergii
showing the conserved predicted domains of the proteins containing a signal peptide and a cysteine-knot domain. The location of the amino acids in the protein is
scaled. Multiple sequence alignment of (B) GPA2 and (D) GPB5 from M. rosenbergii, S. verreauxi, A. aegypti, D. melanogaster and H. sapiens demonstrates the
conservation of key cysteine residues (highlighted in yellow).
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and MrGPB5 relative transcript levels. In contrast, MrLGR1
relative transcript levels were found to be significantly higher in
male than in female larvae (t6 = -3.01, P < 0.05), although the
relative transcript levels in PLs did not significantly differ
between the sexes (Figure 3D).

Spatial Expression Patterns in
Female Prawns
Relative transcript levels of MrGPA2 and MrGPB5 exhibited
similar spatial expression patterns for the two genes, but with
Frontiers in Endocrinology | www.frontiersin.org 6
significantly different values between the different tissues for each
gene (P < 0.05, one-way ANOVA with post hoc Tukey’s test).
Specifically, significantly higher expression levels were found in
the eyestalk and the TG than in the other tissues (hepatopancreas,
ovary and muscle), with the levels in the eyestalk being
approximately sevenfold higher than those in the TG
(Figure 4A). MrLGR1 relative transcript levels were found to be
significantly higher in the eyestalk, TG and ovary compared to the
hepatopancreas and muscle (P < 0.05, one-way ANOVA with post
hoc Tukey’s test) (Figure 4B).
A

B

FIGURE 2 | MrLGR1 open reading frame. (A) Deduced amino acid sequence of MrLGR1 and predicted domain sites. Beginning at the N terminus; signal peptide
(italicized, gray background), leucine rich repeat domain (bold), hinge region consensus sequences (red and bold), six cysteines in the hinge region (underlined), and
the trans-membrane domain (gray boxes). (B) Scaled illustration of MrLGR1 conserved domains, including: signal peptide (SP), leucine-rich repeats (LRR), hinge
region (Hinge) and the 7 transmembrane helices (7TM). Multiple sequence alignment of the hinge region of MrLGR1, insect LGR1 and the H. sapiens glycoprotein
receptors presents the consensus sequences at the beginning and the end of the hinge.
March 2022 | Volume 13 | Article 823818
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MrGPA2, MrGPB5 and MrLGR1
Knockdown Effects
To test the silencing efficiencyofRNAiusingdsMrGPA2, dsMrGPB5 and
dsMrLGR1, a short-term experiment was performed. In the eyestalk,
MrGPA2 relative transcript levels decreased significantly by 81.1% (t16 =
4.32,P< 0.01) in the dsMrGPA2-injected group compared to the control.
In contrast, forMrGPB5, thedifference in relative transcript levelsbetween
the dsMrGPB5-injected and control groups was negligible (t17 = -0.17,
P > 0.05) (Figure 5A). Specific knockdown of MrGPA2 and MrGPB5
resulted in a significant decrease in their expression in the TG, with an
efficiency of 92.4% (t15 = -5.24,P<0.01) and 86.6% (t15 = -8.31,P<0.01),
respectively (Figure 5B). Relative transcript levels ofMrLGR1 in the TG
and hepatopancreas were significantly reduced by 63.8% (t14 = 3.6, P <
0.05) and 89.6% (t14 = 3.9, P < 0.05) in the dsMrLGR1-injected group
compared to the control, but levels in the eyestalk and the ovary did not
differ significantly between the silenced and control groups (P>0.05; t16 =
0.28 and t11 = 0.07, respectively) (Figure 5C).

During the eight-week long-term experiment, relative transcript
levels of MrGPA2 and MrGPB5 in the eyestalk were significantly
reduced. This was evident by measurements at the end of the above
Frontiers in Endocrinology | www.frontiersin.org 7
period showing 88.01% (t7 = 23.68, P < 0.01) and 59.9% (t8 = 3.44, P <
0.01) reduction in the MrGPA2 and MrGPB5, respectively, in the
dsMrGPA2/MrGPB5-injected group vs. the control group
(Figure 6A). Similar findings were obtained for the TG, i.e., a
significant reduction for the silenced vs. the control groups of 86.6%
(t8 = -3.14, P < 0.05) and 79.1% (t8 = -3.46, P < 0.01), respectively
(Figure 6C). For MrLGR1, the relative transcript levels were
significantly higher – by approximately threefold – in the MrGPA2/
MrGPB5-silenced group compared to the control group in both the
eyestalk (t8 = -4.71, P < 0.01) (Figure 6B) and the TG (t7 = -2.97, P <
0.05) (Figure 6D). However, when quantified, the transcript levels of
MrLGR1 in the hepatopancreas was not significantly different in the
MrGPA2/MrGPB5-silenced group and the control (Figure 6E).
MrLGR1 knockdown resulted in significantly reduced relative
transcript levels of MrLGR1 in the dsMrLGR1-injected group in the
eyestalk,TG,hepatopancreasandovary—by53.5%(t8=3.27,P<0.05),
81.8% (t8 = 3.35, P < 0.05), 82.7% (t8 = 1.03, P < 0.05) and 77.9% (t8 =
5.62, P < 0.01), respectively (Figure 7).

Histological sections of the ovaries (Figure 8A) enable
morphological examination of the oocyte stages (classified
A B

C D

FIGURE 3 | In silico and in vitro temporal expression patterns. (A–C) In-silico temporal expression patterns in M. rosenbergii embryonic stages for (A) MrGPA2, (B)
MrGPB5 and (C) MrLGR1. The number of mapped reads per sample (i.e., day 1, day 3, day 5, day 11 and day 17 in males and females) was normalized by reads
per kilobase of transcript per million mapped reads (RPKM), dividing it by the total number of reads from that sample and multiplied by 1 × 106. (D) In-vitro temporal
expression patterns. Relative quantification of MrGPA2, MrGPB5, and MrLGR1 in male and female larvae and post-larvae (PLs). Asterisks represent the statistically
significant differences (P < 0.05, t test).
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according to 44). The ovaries of all studied females (control, ds
MrGPA2/MrGPB5-injected and dsMrLGR1-injected) contain
predominantly oogonia (Og), early previtellogenic oocytes
(Oc1) and late previtellogenic oocytes (Oc2). However, early-
vitellogenic oocytes (Oc3) seem to be more abounded in ovaries
sections of MrLGR1-silenced females than those of the control
group (Figure 8A). GSI (%) values of less than 1 for all females
indicate on similar previtellogenic stage of the treatments and
control groups. These values did not significantly differ between
the control (0.29 ± 0.08) to the MrLGR1-silenced (0.42 ± 0.10)
group nor the MrGPA2/MrGPB5-silenced (0.56 ± 0.20) group
(Figures 8B, C) (P > 0.05; t8 = -0.91 and t8 = -1.6, respectively).

To study the reproductive effects of knockdown ofMrGPA2/
MrGPB5 and of MrLGR1 in the context of the eyestalk-
hepatopancreas-ovary axis, the relative transcript levels of Vg
– as a good indicator of endocrine control of female
reproduction (45) – in the hepatopancreas were quantified. It
Frontiers in Endocrinology | www.frontiersin.org 8
is noteworthy that even in the previtellogenic females,
dsMrGPA2/MrGPB5 treatment had a significant effect (t5 =
-5.46, P < 0.01) which increases Vg relative transcript levels. On
the other hand, dsMrLGR1 treatment was not statistically
significant (t6 = -2.12, P > 0.05) (Figures 8D, E). Contrary,
MrLGR1 knockdown caused significant induction of MrVgR
expression levels in the ovaries of the silenced group compared
to the control (t8 = -2.96, P < 0.01), while following MrGPA2/
MrGPB5 knockdown, no significant difference was obtained
between the silenced and control groups (t8 = -1.48, P > 0.05)
(Figures 8F, G). Average oocyte diameters in females of the
MrGPA2/MrGPB5-silenced [127.09 ± 46.16 (SD) μm] and
control [89.85 ± 8.45 (SD) μm] groups did not differ
significantly (t8 = -1.59, P > 0.05) (Figure 8H). In contrast,
MrLGR1 knockdown resulted in significantly larger oocytes
[129 ± 23.3 (SD) μm; t8 = -2.88, P < 0.05] in the dsMrLGR1-
injected group vs. the control group (Figure 8I).
A

B

FIGURE 4 | Spatial expression patterns in M. rosenbergii females. Relative quantification in the eyestalk, thoracic ganglion (TG), hepatopancreas, ovary and muscle
of (A) MrGPA2 and MrGPB5 and (B) MrLGR1 in adult females (n = 12). Error bars represent standard error of the means and different letters on the bars indicate
statistically significant differences (P < 0.05, one-way ANOVA post hoc Tukey’s test).
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DISCUSSION

In both vertebrates and invertebrates, reproductive success relies
on coordinated control of the reproductive cycle through
endocrine axes. Extensive studies have shown that the classical
glycoprotein hormones, including FSH, LH and TSH, are
structurally and functionally conserved in vertebrates (e.g., 1, 9,
46–49), but the physiological role of GPA2/GPB5 remains
elusive—in both vertebrates and invertebrates (17). In this
study, we report the identification of genes encoding GPA2,
GPB5 and LGR1 in M. rosenbergii, their temporal expression
patterns in early developmental stages (embryo, larvae and PLs),
and their spatial expression patterns in different tissues of adult
females. Both MrGPA2- and MrGPB5-deduced proteins exhibit
the 10 conserved cysteine residues that are typically found in
vertebrate and invertebrate GPA2/GPB5 amino acid sequences
(9) and that are essential for disulfide binding and loop
formation in the characteristic cystine-knot structure (50).
However, in the classical vertebrate glycoprotein hormones, the
Frontiers in Endocrinology | www.frontiersin.org 9
beta subunits have 12 cysteine residues (50), with the two ‘extra’
cysteines forming an additional disulfide bridge that constitutes
the ‘buckle’ of the ‘seat belt’ that wraps the beta subunit around
the alpha subunit in the structure of the glycoprotein
heterodimers, thereby contributing to their stability (50). The
lack of the above beta subunit carboxyl tail extension that aids
in dimerization has raised the question of whether the GPA2
and GPB5 subunits can form a heterodimer. These subunits
have been shown to heterodimerize in mammals (2, 51, 52),
lampreys (53) and insects (15, 16), but further investigations
are required to determine whether MrGPA2 and MrGPB5 do
indeed heterodimerize and to elucidate the mechanism of
the heterodimerization.

In addition to identifying the genes encoding the MrGPA2/
MrGPB5 heterodimer, this study also showed that the transcript
of its receptor,MrLGR1, had a typical in silico expression pattern
in the embryonic M. rosenbergii transcriptome (34). During the
early developmental stages, the LGR1 transcript in the embryo
appears on day 1 and gradually increases to the highest level on
A

B

C

FIGURE 5 | Short-term loss of function through RNAi. Relative quantification of MrGPA2 and MrGPB5 in (A) the eyestalk and (B) the thoracic ganglia (TG) of
M. rosenbergii females injected with mix of dsMrGPA2 and dsMrGPB5 (n = 10) or with dsGFP (control; n = 9). (C) Relative quantification of MrLGR1 in the eyestalk,
TG, ovary and hepatopancreas of females injected with dsMrLGR1 (n = 9) or with dsGFP. Error bars represent standard error of the means. Asterisks indicate
statistically significant differences (P < 0.05, t test).
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day 17. Similarly, the D. melanogaster LGR1 transcript is
expressed early in development, with expression being detected
as early as 8–16 h after oviposition, thereby leading to the
suggestion that LGR1 may play a role in both developmental
and reproductive processes (54).
Frontiers in Endocrinology | www.frontiersin.org 10
The in vitro transcriptional study ofMrGPA2 andMrGPB5 in
the adult M. rosenbergii female showed similarity in the
expression patterns in the eyestalk and TG, with relative
transcript levels being high in both tissues. While GPB5 has
been found in the ovary of Nephrops norvegicus (55), Carcinus
A B

C D

E

FIGURE 6 | Long-term MrGPA2 and MrGPB5 loss of function through RNAi. Females were injected with a mixture of dsMrGPA2 and dsMrGPB5 (n = 6) or with
dsGFP (control; n = 4). Relative transcript levels of MrGPA2 and MrGPB5 in (A) the eyestalk and (C) the thoracic ganglia (TG). MrLGR1 relative quantification
following MrGPA2/GPB5 knockdown in (B) the eyestalk, (D) TG and (E) the hepatopancreas. Error bars represent standard error of the means. Asterisks indicate
statistically significant differences (P < 0.05, t test).
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maenas (56) and P. clarkii (11), its relative transcript level in the
ovary ofM. rosenbergii was negligible, as was that ofMrGPA2. In
the transcriptome of Cherax quadricarinatus, GPA2 and GPB5
expression was detected in both neural tissues tested but GPA2
alone was expressed in the ovary (12). The eyestalk, TG and
ovary – being major sites for the production and secretion of
many hormones and receptors involved in various endocrine
pathways – are the primary tissues for studying crustacean
reproduction [reviewed in (57)]. The high relative transcript
levels ofMrGPA2 andMrGPB5 in the eyestalk and TG in female
M. rosenbergii suggest that these tissues are CNS source of the
GPA2/GPB5 heterodimer, which may be equivalent to the
vertebrate pituitary with respect to the synthesis and secretion
of gonadotropins. It is known that vertebrate gonadotropins are
regulated by the gonadotropin-releasing hormone (GnRH),
released from the hypothalamus (58), but, to date, the identity
and function of a GnRH-like hormone in crustaceans remains
subject to intensive debate (13, 59).

Nonetheless, the transcription levels of MrLGR1 in the
eyestalk and TG indicate that MrLGR1 may play a role in
feedback control in a short loop regulation, and the relatively
high transcript levels of the receptor in the ovary suggest that the
ovary is the target tissue. In the mammalian ovary, GPA2/GPB5
is expressed in oocytes and acts as a paracrine factor activating
the cAMP cascade and the nuclear c-fos response in granulosa
cells through the TSH receptor (52). In the adult A. aegypti
mosquito, LGR1 transcript expression and strong LGR1-like
immunoreactivity were identified in reproductive tissues,
including the testes and ovaries, which suggests a potential role
for the receptor in both spermatogenesis and oogenesis (60). A
more recent study (using RNAi) of the role of LGR1 in A. aegypti
spermatogenesis indicated that knockdown of the receptor
decreased sperm yield, impaired flagellar morphology and
rendered the males less fertile (19).

MrLGR1 transcript levels were found to be sexually biased
toward males in zoea 4, however it was the only case which
demonstrated sexual bias. Moreover, inM. rosenbergii, initiation
of the process of anatomical differentiation is approximately at
Frontiers in Endocrinology | www.frontiersin.org 11
PL10 (61), thus zoea 4 seems much earlier at a non-sexual
differentiated development stage. In the present study, we
aimed to elucidate GPA2/GPB5-LGR1 functional role in M.
rosenbergii female reproduction, thus the phenomena described
here are relating mainly to the adult female in which the ovary is
equally developed at the previtellogenic state. Further studies
should test the effects of these genes regarding male prawn
reproduction processes.

Among invertebrates, activation of the LGR1 receptor by
GPA2/GPB5 binding has been demonstrated in some insects.
For D. melanogaster, Sudo et al. (15) demonstrated the role of
the GPA2/GPB5 heterodimer in stimulating cAMP production
mediated by the fly receptor, DLGR1. In A. aegypti, GPA2/GPB5
was co-expressed in the CNS and activated LGR1, which exhibited
ligand-dependent G protein-coupling activity (16). In decapod
crustaceans, several in silico studies detected putative GPA2/GPB5
GPCRs (55, 62). In the loss-of-function experiments in the present
study, the transcriptional correlation between MrGPA2/
MrGPB5 silencing and MrLGR1 transcript levels in the M.
rosenbergii eyestalk and TG suggests a possible ligand-receptor
interaction in this decapod crustacean. To further understand this
interaction, the use of additional method such as recombinant
MrGPA2/GPB5 protein to activate the MrLGR1 receptor in a cell
culture system could be employed. For example, Hausken et al.
(53) demonstrated that lamprey GpA2 and GpB5 form a
heterodimer and that a recombinant stimulates a cAMP
response in COS7 cells transfected with lamprey glycoprotein
hormone receptors I (lGpH-R I) and II (lGpH-R II).

Several in vitro and in vivo studies, demonstrating the
stimulating effects of the TG on ovarian growth, indicate the
presence of a putative GSF in decapod crustaceans (59), and
GPA2/GPB5 has been proposed as a potential GSF candidate in
crustaceans (13). Contrary to the above, our findings indicate an
inhibitory, rather than a stimulatory, role for GPA2/GPB5. Based
upon our results, we suggest a model of the GPA2/GPB5-LGR1
system in M. rosenbergii reproduction (Figure 9). The eyestalk
and TG (CNS components) serve as the site where the hormone
is produced and secreted, with its inhibitory effect being exerted
FIGURE 7 | Long-term MrLGR1 loss of function through RNAi. Females were injected with dsMrLGR1 (n = 6) or with dsGFP (control; n = 4). MrLGR1 relative
transcript levels in the eyestalk, TG, hepatopancreas and ovary. Error bars represent standard error of the means. Asterisks indicate statistically significant differences
(P < 0.05, t test).
March 2022 | Volume 13 | Article 823818

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wahl et al. Prawn Genes Encoding GPA2/GPB5-LGR1
A B

D F H

E G I

C

FIGURE 8 | Reproductive effects following long-term MrGPA2/GPB5 and MrLGR1 loss of function experiments. (A) Representative histological sections of ovaries of
control (dsGFP injected; top), dsMrGPA2/GPB5-injected and dsMrLGR1-injected (bottom) females. MrGPA2/GPB5 (top panels) and MrLGR1 (bottom panels)
knockdown effects on (B, C) M. rosenbergii gonado-somatic index (GSI), (D, E) vitellogenin (MrVg) relative transcript levels in the hepatopancreas, (F, G) vitellogenin
receptor (MrVgR) relative transcript levels in the ovary and (H, I) oocyte diameter. Error bars represent standard error of the means. *Statistically significant difference
(P < 0.05, t test).
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on a distant target tissue—the ovary. The high relative transcript
levels of the receptor in the eyestalk and TG suggest autocrine
regulation, through a short-loop feedback control—a premise
supported by the negative correlation between MrLGR1
transcript levels and MrGPA2/MrGPB5 knockdown in the loss-
of-function experiment.

Loss of function results suggest an inhibitory effect on
vitellogenesis. The effect can directly control Vg synthesis in
the hepatopancreas through inhibition of Vg expression; this can
be supported by the significant elevation of hepatopancreatic
MrVg transcript levels following MrGPA2/MrGPB5 knockdown.
However, MrLGR1 expression levels in the hepatopancreas were
significantly low compared to the ovary. On the other hand,
MrLGR1 knockdown in the hepatopancreas was significant. This
may suggest varied ligand-receptor affinity in different tissues
(e.g., the Red Pigment-Concentrating Hormone Receptor
(RPCH) of Daphnia pulex63). An additional regulatory effect is
suggested through indirect control by inhibiting VgR expression
in the ovary. Although the difference in oocyte diameter between
the MrGPA2/MrGPB5-silenced and the control groups was not
significant, MrLGR1 knockdown resulted in significant elevation
Frontiers in Endocrinology | www.frontiersin.org 13
of ovarian MrVgR transcript levels and significantly larger
oocytes in the silenced group vs. the control. To confirm the
role of GPA2/GPB5 in vitellogenesis – and generally, in decapod
crustacean reproduction – future study is needed to verify
whether transcript abundance does indeed correlate with
protein abundance at the different ovarian developmental
stages. Moreover, additional players, such as potential second
messengers (e.g., steroids, 59; intracellular second messengers
such as cGMP, cAMP, and intracellular calcium, 64), are still
missing to complete the full picture.

In summary, the regulation of reproduction in female
crustaceans relies on a complex network that uses multiple
hormonal factors, often synergistically, to control vitellogenesis
and related reproductive processes (65). In the current study,
using transcriptomic libraries, we identified the genes encoding
GPA2/GPB5 and LGR1 and revealed their transcript expression
profiles in M. rosenbergii. To the best of our knowledge, this is
the first report of an inhibitory effect of GPA2/GPB5 in ovarian
development, thereby providing evidence for the involvement of
the GPA2/GPB5-LGR1 system in the control of vitellogenesis in
a decapod crustacean.
FIGURE 9 | Putative model of the GPA2/GPB5 and LGR1 pathways in M. rosenbergii females. LGR1, leucine-rich repeat-containing G protein-coupled receptor 1;
GPA2, glycoprotein alpha 2; GPB5, glycoprotein beta 5; Vg, vitellogenin; CNS, central nervous system. Solid arrows indicate known interactions; dashed arrows,
possible interactions; lines with arrowheads, stimulatory effect; lines with blunted ends, inhibitory effect.
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