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Background: Infertile men with non-obstructive azoospermia (NOA) have impaired
spermatogenesis. Dilated and un-dilated atrophic seminiferous tubules are often
present in the testes of these patients, with the highest likelihood of active
spermatogenesis in the dilated tubules. Little is known about the un-dilated tubules,
which in NOA patients constitute the majority. To advance therapeutic strategies for men
with NOA who fail surgical sperm retrieval we aimed to characterize the spermatogonial
stem cell microenvironment in atrophic un-dilated tubules.

Methods: Testis biopsies approximately 3x3x3 mm3 were obtained from un-dilated areas
from 34 patients. They were classified as hypospermatogenesis (HS) (n=5), maturation
arrest (MA) (n=14), and Sertoli cell only (SCO) (n= 15). Testis samples from five fertile men
were included as controls. Biopsies were used for histological analysis, RT-PCR analysis
and immunofluorescence of germ and Sertoli cell markers.

Results: Anti-Müllerian hormone mRNA and protein expression was increased in un-
dilated tubules in all three NOA subtypes, compared to the control, showing an immature
state of Sertoli cells (p<0.05). The GDNF mRNA expression was significantly increased in
MA (P=0.0003). The BMP4 mRNA expression showed a significant increase in HS, MA,
and SCO (P=0.02, P=0.0005, P=0.02, respectively). The thickness of the tubule wall was
increased 2.2-fold in the SCO-NOA compared to the control (p<0.05). In germ cells, we
found the DEAD-box helicase 4 (DDX4) and melanoma-associated antigen A4 (MAGE-A4)
mRNA and protein expression reduced in NOA (MAGE-A: 46% decrease in HS, 53%
decrease in MA, absent in SCO). In HS-NOA, the number of androgen receptor positive
Sertoli cells was reduced 30% with a similar pattern in mRNA expression. The gH2AX
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expression was increased in SCO as compared to HS and MA. However, none of these
differences reached statistical significance probably due to low number of samples.

Conclusions: Sertoli cells were shown to be immature in un-dilated tubules of three NOA
subtypes. The increased DNA damage in Sertoli cells and thicker tubule wall in SCO
suggested a different mechanism for the absence of spermatogenesis from SCO to HS
and MA. These results expand insight into the differences in un-dilated tubules from the
different types of NOA patients.
Keywords: non-obstructive azoospermia, un-dilated tubules, hypospermatogenesis, maturation arrest, Sertoli cell
only, male infertility
INTRODUCTION

Azoospermia is identified in 1% of all men and up to 20% of
infertile men, and is subdivided as obstructive and non-
obstructive azoospermia (NOA) (1, 2). NOA, the most severe
form of impaired male fertility, is the absence of spermatozoa in
the ejaculate caused by reduced or missing spermatogenesis (3).
Several potential causes of NOA are known, including varicocele,
previous gonadotoxic therapy, Y chromosome microdeletions
and Klinefelter’s Syndrome, but in up to half of the cases a clear
etiology is not identified (4). Based on the histological assessment
of testis biopsies, men with NOA, independent of cause, can be
classified into one of the three categories: Hypospermatogenesis
(HS) - decreased spermatogenesis with all types of germ cells
present, maturation arrest (MA) - premature arrest of
spermatogenesis, and Sertoli cell-only (SCO) - absence of germ
cells (5, 6).

In men diagnosed with NOA, surgical retrieval of
spermatozoa, which can be used for intracytoplasmic sperm
injection (ICSI), is performed. However, sperm retrieval rates
are approximately 50% (7), leaving half of all NOA patients to
rely on donor sperm. Novel therapeutic techniques, such as
spermatogonial stem cell-based transplantation or autologous
tissue transplantation, might represent alternatives to restore
fertility in the future (8, 9). In order to advance these strategies
more detailed information on the microenvironment of the
seminiferous tubules including germ cells and Sertoli cells from
different types of NOA patients is required.

Sertoli cells in the seminiferous tubules support the niche in
which the spermatogonial stem cells (SSCs) differentiate into
spermatozoa (10, 11). A delicate and intricate hormonal balance
between Sertoli cell function and SSCs is required to support full
spermatogenesis, which also involves Leydig cells providing
sufficient amounts of androgens. Testosterone from Leydig
cells acts via the androgen receptor (AR) which is expressed in
mature Sertoli cells but not in the germ cells. Moreover, Anti-
Müllerian hormone (AMH) is secreted by immature Sertoli cells
and is downregulated by increased intratesticular testosterone
during puberty (12). Sertoli cells produce glial cell-derived
neurotrophic factor (GDNF) and bone morphogenetic protein
4 (BMP4) that influence undifferentiated spermatogonia in
rodent but their role remains unclear in human (13–16).
Peritubular myoid cells (PTMCs) constitute the tubular wall
n.org 2
and act to contract seminiferous tubules leading to the transfer of
immotile sperm. PTMCs exerts paracrine functions on Sertoli
cells and Leydig cells (17, 18). Activations of Leydig cell
expressed luteinizing hormone(LH) receptor lead to
production of testosterone which signal through AR receptors
expressed on Sertoli cells (19). Collectively, successful
spermatogenesis is dependent on proper function of several
cell types in the testis and hormonal stimulation, which in
NOA patients are aberrant in one or more, currently
unknown, steps.

Men with NOA occasionally have pockets of “dilated”
seminiferous tubules. These tubules are likely to have a normal
diameter but appear dilated in relation to the surrounding
atrophic “un-dilated” tubules. For practical reasons the terms
“dilated” and “un-dilated” will be used in the remainder of the
text. Dilated tubules often manage, for unknown reasons, to
sustain active spermatogenesis while the un-dilated areas lack
this ability. Extraction of sperm cells from the dilated tubules by
microdissection testicular sperm extraction (mTESE) is used
clinically to obtain spermatozoa for ICSI. In an attempt to
advance understanding of reasons for the spermatogenic
impairment in the un-dilated seminiferous tubules in NOA
patients, we explored different markers of germ and Sertoli
cells using mRNA expression and immunofluorescence. Thus,
in order to understand how to advance spermatogenesis in testis
tissue from NOA patients, we aimed at understanding the
difference in molecular characteristics of germ cells and Sertoli
cells between testes from men with normal spermatogenesis and
atrophic un-dilated tubules in testis biopsies from NOA men
with HS, MA and SCO.
MATERIALS AND METHODS

Human Testis Materials
Testis tissue was obtained from 34 NOA patients who underwent
mTESE as a part of treatment for infertility and from five adult
men with normal sperm production and proven fertility, who
provided a biopsy in connection with vasectomy. In patients with
NOA, testis biopsies approximately 3x3x3 mm3 were obtained
anteriorly right under the tunica albuginea in connection with
the mTESE procedure and used for histopathological diagnosis.
June 2022 | Volume 13 | Article 825904
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Additional testis biopsies that did not show dilated seminiferous
tubules (as observed under the operating microscope) were taken
from the same area. Consequently, in NOA men, only biopsies
from un-dilated tubules were used in this study. All testicular
biopsies for research purposes were placed immediately in
McCoy 5A medium (modified 22330-021, Gibco, UK) for
transportation to the Laboratory of Reproductive Biology for
the cryopreservation. Then they were equilibrated for 20 min in
media consisting of 1.5 M ethylene glycol, 0.1 M sucrose, 10 mg/
ml human serum albumin (HSA) (CSL Behring, Germany),
frozen and cryopreserved in -196°C liquid nitrogen according
to previous published methods (20).

Clinical Workup
All men with NOA were diagnosed after a complete medical
history and physical examination including scrotal ultrasound.
Azoospermia was diagnosed according to the 5th edition of
World Health Organization (WHO) laboratory manual for the
“Examination and processing of human semen” (21). A full
hormonal evaluation including serum levels of follicle-
stimulating hormone (FSH), LH, inhibin. B and testosterone
was performed. All men were assessed for the presence of Y
chromosome microdeletions and a karyotype was obtained.
Fasting morning blood samples were drawn. Serum
testosterone levels were analyzed by a chemiluminescence
immunoassay (Access 2, Beckman Coulter, Brea, CA, USA),
follicle-stimulating hormone FSH and LH by a time-resolved
immunofluorometric assay (Delfia, Wallac, Turku, Finland), and
inhibin B by a specific two-sided enzyme-immunometric assay
(Inhibin B gen II, Beckman Coulter Ltd, High Wycombe, UK).
Culture of peripheral blood lymphocytes was used for karyotype
analysis. The diagnosis of NOA was made after a complete
assessment by an experienced andrologist using all the above
information. Men with testis size larger than 15ml, indication of
obstructive causes of azoospermia and Klinefelter’s Syndrome
were not included.

Tissue Processing and Histology
Thawing was done by progressively using the following three
thawing media. Thawing medium I: 0.75 M ethylene glycol, 0.25
M sucrose in PBS, and 10 mg/ml HSA; thawing medium II: 0.25
M sucrose in PBS, and 10 mg/ml HSA; thawing medium III: PBS
and 10 mg/ml HSA, each medium for 10 min (20). After
thawing, one testis biopsy from each patient was divided into
three parts. One part for immunostaining, one for qPCR, and
one was re-frozen for future use. Tissues for immunostaining
were fixed in 4% paraformaldehyde (PFA) at room temperature
overnight, embedded in paraffin and cut in 5-mm sections.
Sections were deparaffinized in xylene, rehydrated with series
of graded ethanol. Sections for histological evaluation were
stained with periodic acid-Schiff reagent (PAS). Due to the
heterogeneity of testis tissues in men with NOA, the
spermatogenetic status of all 34 samples was histologically re-
analyzed on sections stained with PAS in addition to the original
histopathological diagnosis made as part of clinical care using a
3x3x3 mm3 biopsy taken anteriorly under the tunica albuginea.
Frontiers in Endocrinology | www.frontiersin.org 3
If different, the histopathological diagnosis from un-dilated
tubules was used.
Immunofluorescence Staining
After deparaffinization and rehydration of the section, antigens
were retrieved by boiling in TEG buffer (10 mM Tris, 0.5 mM
ethylene glycol-bis (2-aminoethylehter)-N, N, N’, N’-tetraacetic
acid (EGTA), pH 9) for 30 min. After non-specific binding was
blocked with 1% bovine serum albumin (BSA) in Tris-buffered
saline (TBS) buffer (50 mM Tris, 150 mM NaCl, pH7.6) for 30
min, the sections were incubated with primary antibodies at
+4°C overnight. All antibodies were diluted in TBS with 1% BSA.
The primary antibodies included (Supplementary Table 1): a
monoclonal mouse anti-melanoma antigen genes-A (MAGE-A)
(1:100) for detection of MAGE-A1, MAGE-A2, MAGE-A3,
MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12 which were
previously shown to be present in spermatogonia and some
spermatocytes (22, 23), a monoclonal mouse anti-ubiquitin
carboxyl-terminal hydrolase L1 (UCHL1, also known as
protein gene product 9.5, PGP 9.5) (1:100) present in human
spermatogonia (24), a polyclonal rabbit anti- phosphorylation of
histone H2AX in Serine 139 (gH2AX) (meiotic marker in germ
cells and a marker of DNA double-strand breaks in somatic cells)
(1:1500) (25, 26), a monoclonal mouse anti-Vimentin (1:200) for
somatic cells (27), a polyclonal rabbit anti-SOX9 (1:100) for
Sertoli cells (28), a polyclonal goat anti-Müllerian hormone
(AMH) (1:100) for immature Sertoli cells (28), a monoclonal
rabbit anti-androgen receptor (AR) (1:100) for mature Sertoli
cells (29), a rabbit polyclonal anti-alpha-smooth muscle actin
(ACTA) (1:150) for peritubular myoid cells (30), a goat
polyclonal anti-cytochrome P450 17A1 (CYP17A1) (1:200) for
Leydig cells (23, 31). And universal negative control serum
(NC498H, Biocare Medical) was used for negative control.
After washing 3 times in TBS with Tween 20®, the slides were
incubated with the following secondary antibodies at room
temperature for 1h: FITC-conjugated donkey anti-mouse IgG
antibody/Alexa Fluor 594 donkey anti-rabbit IgG antibody/
Alexa Fluor 568 donkey anti-goat IgG antibody (1:500, Jackson
ImmunoResearch). After washing, the slides were stained with
4’,6 – diamidino-2-phenylindole (DAPI) for nuclear staining.
Pictures were taken on a Zeiss Axiophot microscope, operated
with a Leica DFC420C digital microscope camera and LAS V4.9
software (Leica).

Five seminiferous tubules per section were randomly chosen
(two tubules from upper panel, two tubules from lower panel,
one tubule from the center) and two histological sections at
different depths of the biopsy were evaluated per sample. The
number of SOX9/AR-positive Sertoli cells and MAGE-A-positive
germ cells per square millimeter (mm2) was calculated. Firstly,
we measured the diameter of the tubule to calculate the area
(mm2) of the tubule. Then, we counted the number of SOX9/AR/
MAGE-A-positive cells within each tubule. We got the number
of SOX9/AR/MAGE-A-positive cells/tubule area (mm2). Finally,
we calculated the mean number of SOX9/AR/MAGE-A-positive
cells/mm2 based on 10 tubules per testis biopsy. For the MAGE-
June 2022 | Volume 13 | Article 825904
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A-positive germ cell, we only counted positive cells located on
the basement membrane to exclude counting of spermatocytes.
We evaluated AMH expression based on its staining intensity
from “strong” “moderate” “mild” to “absent”. The thickness of
tubule wall was measured at four points around the
circumference of each tubule, with ACTA-positive signal
thickness measured at the ends of two perpendicular axes.

RNA Extraction and Quantitative RT-PCR
RNA was extracted from testis biopsies from all 34 NOA patients
and five normal control testis tissues using Trizol reagent
(Invitrogen) and 1-bromo-3-chloropropane (Sigma). Then the
following steps were performed using the RNeasy Kit (Qiagen)
according to the manufacturer’s protocol. The average RNA
obtained was 22ug with a range from 5ug to 80ug. The 260/
280 ratio was found to be 2.1 ± 0.04 (range: 2.00 to 2.14). The
total RNA from each sample used to make the cDNA was 1ug.
cDNA was synthesized by using of High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems). The dilution of the
cDNA template used to do qPCR was 1:5.

Quantitative RT-PCR was performed by using TaqMan Fast
Advanced Master Mix (Applied Biosystems) and the LightCycler
480 Instrument II (Roche Diagnostics). The cDNA from each
sample was used as a RT-PCR template to be detected of the
expression of those genes from TaqMan primer assays
(Supplementary Table 2). GAPDH was used as an internal
control and the normal adult testis tissue as a positive control.

Statistics
Individual values were presented as mean ± standard deviation
(sd). GraphPad Prism version 8.0 was used for statistical
analyses. Kruskal-Wall is test with Dunn ’s multiple
comparisons test was used to analyze the difference of mRNA
expression among HS, MA, SCO to the normal control group,
respectively. For the histological results, each subtype of NOA
was compared to the normal control. The statistical difference of
the number of MAGE-A/SOX9/AR-positive cells and the
thickness of tubule wall among HS, MA, SCO to the normal
control group was analyzed by Kruskal-Wallis test with Dunn’s
multiple comparisons test. Chi-square test was used to analyze
the percentage of AMH-positive tubules in NOA subtypes
compared to normal control group. Correlations between
mRNA expression and hormone levels were tested by Spearman
rank correlation coefficient. P values < 0.05 were considered
statistically significant.
Frontiers in Endocrinology | www.frontiersin.org 4
RESULTS

PAS Staining for Histopathological
Diagnosis
Based on histological evaluation of biopsies from the un-dilated
areas of seminiferous tubules and the clinical diagnosis, our material
consisted of 5 HS, 14 MA, and 15 SCO samples (Table 1).

Characterization of Niche Related Cells in the
Testis From Different Types of NOA Patients
Using Immunofluorescence Staining
Somatic Cells
SOX9-positive Sertoli cells appeared disorganized with a
scattered distribution in HS while organized with a more circle
like location close to the basal membrane in MA compared to
normal group, contrasting the SCO samples which resembled the
normal tissue with cells tidily located close to the basement
membrane and near one another to each other (Figures 1A, B).
The total number of SOX9-positive cells was counted in ten
tubules and the average number per tubule was 20 in HS, 19 in
MA, 24 in SCO, and 18 in normal control group. The average
number of AR-positive cells per tubule was 21 in HS, 22 in MA,
24 in SCO, and 28 in normal control group. Combining the
different size of tubules, the number of SOX9/AR-positive Sertoli
cells per mm2 was not significantly different in NOA subtypes
compared to the normal group (Figures 1A-D). The percentage
of AMH-positive tubules showed significant increase in HS, MA,
and SCO compared to normal control group (HS, MA, SCO:
P<0.001). The percentage of tubules with “strong” AMH
expression in each NOA subtypes was significantly increased
to normal control (HS: P<0.001, MA: P=0.001, SCO: P<0.001).
The same significant increase was observed in tubules with
“moderate” AMH expression (HS, MA, SCO: P<0.001). The
percentage of tubules with “mild” AMH expression
significantly increased only in SCO (P=0.006) (Figures 1E, F).

Visualizing the peritubular myoid cells (PTMCs) via ACTA-
positive staining, the distribution of cells and the thickness of
tubule wall appeared to be normal in both HS and MA patients,
while the tubule wall in the SCO patient was 2.2-fold thicker than
in the normal testis tissues (P = 0.001) (Figures 2A, B).

Leydig cells visualized via CYP17A1 expression showed no
difference in distribution between any of the NOA samples and
the normal controls (Figure 3). Due to the tiny testis biopsies the
interstitial tissues were not fixed well and quantification of the
CYP17A1-positive Leydig cells was not done in this study.
TABLE 1 | Age and etiology of non-obstructive azoospermia (n = 34) and normal control.

Variable HS (n = 5) MA (n = 14) SCO (n = 15) Normal control (n = 5)

Age years, mean (sd) 33 (3) 32 (6) 35 (6) 32 (5)
Cryptorchidism N (%) 2 (40.0) 5 (35.7) 4 (26.7) –

Varicocele N (%) 3 (60.0) 5 (35.7) 5 (33.3) –

Idiopathic N (%) – 3 (21.4) 5 (33.3) –

AZFc N (%) – 1 (7.1) – –

Cancer treatment N (%) – – 1 (6.7)a –
June 2022 | Volu
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A

B

D
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FIGURE 1 | Immunofluorescence staining of Sertoli cell markers in un-dilated seminiferous tubules from hypospermatogenesis (HS), maturation arrest (MA), Sertoli cell
only (SCO), and normal control (NC) samples. (A) Sox9 (red) for Sertoli cells. (B) The number of Sox9-positive cells per mm2 was counted from ten tubules of each
biopsy. (C) AR (red) for mature Sertoli cells, white arrow indicated that AR also expressed in PTMCs. (D) AR-positive cells per mm2 was counted from ten tubules of
each biopsy. (E) AMH (red) for immature Sertoli cells. (F) AMH staining was categorized into “strong” “moderate” “mild” “absent” based on staining intensity. The
percentage of AMH-positive tubules (including strong, moderate, mild expression of AMH) showed significant increase in HS, MA, and SCO comparing to normal control group.
The percentage of tubules with “strong” AMH expression in each NOA subtypes was significantly increased to normal control (HS: P < 0.001, MA: P = 0.001, SCO: P < 0.001).
The percentage of tubules with “moderate” AMH expression in each NOA subtypes was also significantly increased (HS, MA, SCO: P< 0.001). The percentage of “mild” AMH
expression only significantly increased in SCO (P = 0.006). DAPI (blue) for nuclear staining. Scale bar: 100 mm. n represent the number of individuals included.
Frontiers in Endocrinology | www.frontiersin.org June 2022 | Volume 13 | Article 8259045
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gH2AX-Positive Cells
In HS, there was a strong homogenous nuclear staining and
prominent gH2AX foci in most of the germ cells (Figure 4).
Some nuclear staining was weak and dispersed, but most were
dotted and strong. Almost no gH2AX expression was detected in
Sertoli cells stained with Vimentin. In MA, gH2AX was strongly
expressed in the nuclei of germ cells in a dotted and dispersed
pattern. There were a few Sertoli cells with gH2AX staining
(Figure 4). In SCO, almost all Sertoli cells showed a pronounced
expression gH2AX in the nuclei (Figure 4).

Germ Cells
Both germ cell markers, MAGE-A and UCHL1, were positively
expressed in the un-dilated seminiferous tubules of HS and MA
patients indicating the presence of germ cells (Figures 5A, B).
The average number of MAGE-A-positive cells per tubule was 17
in HS, 15 in MA, 0 in SCO, and 26 in normal control group. The
number of MAGE-A-positive cells per mm2 was not significantly
different in HS and MA compared to the normal group
(Figure 5C). In contrast, no expression of MAGE-A and
UCHL1 was present in SCO patients (Figures 5A-C). The
staining patterns in these three types were mainly cytoplasmic
and the location of positive cells was near the basement
membrane of the seminiferous tubules as observed in the
normal control.
A

B

FIGURE 2 | Immunofluorescence staining of peritubular myoid cell (PTMC) marker in un-dilated seminiferous tubules from HS, MA, SCO, and NC samples.
(A) Alpha-smooth muscle actin (ACTA) (red) for PTMC, DAPI (blue) for nuclear staining, Scale bar: 100 mm. (B) Thickness analysis of tubule wall. Asterisk
indicated significant difference between SCO and normal control group (*p < 0.05).
Frontiers in Endocrinology | www.frontiersin.org 6
FIGURE 3 | Immunofluorescence staining of Leydig cell marker in un-dilated
seminiferous tubules from HS, MA, SCO, and NC samples. CYP17A1 (red)
for Leydig cells, DAPI (blue) for nuclear staining. Scale bar: 100 mm.
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qPCR Analysis of Niche Related Cells
The mRNA expression of DEAD-box helicase 4 (DDX4, also
named VASA) germ cell-specific gene was significantly decreased
in HS, MA, SCO compared to normal control group (P=0.006,
P=0.004, P=0.004, respectively) (Figure 6). In SCO, the mRNA
expression of MAGE-A4 was significantly downregulated
(P=0.004) (Figure 6). The mRNA expression of AMH
(indicating immature Sertoli cells) was significantly increased
in MA and SCO compared to normal control group (P=0.001,
P =0.0002, respectively) (Figure 6). Contrary to the AMH, the
mRNA expression of androgen receptor (AR) (indicating mature
Sertoli cell) showed no difference in the three types of NOA
samples compared to the normal group (Figure 6). The mRNA
expression of GDNF was significantly increased in MA
(P=0.0003) (Figure 6). The mRNA expression of BMP4
showed a significant increase in HS, MA, and SCO (P=0.02,
P=0.0005, P=0.02, respectively) (Figure 6).

Correlation Between mRNA Expression
and Serum FSH
In MA, serum FSH showed a significant negative correlation
with mRNA expression of CYP17A1 (r=-0.55, P=0.04) (Table 2).
No other correlations were found between the remaining genes
and hormone values.
DISCUSSION

This study demonstrated pronounced testicular differences
within the un-dilated seminiferous tubules between different
types of NOA patients and normal control group. The
maturation state of Sertoli cells, the number of germ cells, and
the thickness of tubule wall were distinct in NOA subtypes.
Frontiers in Endocrinology | www.frontiersin.org 7
Collectively, the microenvironments within the un-dilated
tubules are different in different subtypes of NOA patients.

The maturation state of Sertoli cells was evaluated by AMH
and AR expression on both mRNA and protein level. The higher
AMH mRNA expression and more tubules with AMH
expression in all three NOA subtypes compared to that in the
normal group suggests that there were more immature Sertoli
cells within the un-dilated tubules from all three NOA subtypes.
Earlier studies also showed that immature Sertoli cells were
observed in the testis from infertile adult men (32–34). After a
higher dilution of AMH antibody employed, we found that there
was a threshold level of detection and variable AMH expression
in the normal control group. The results are consistent with a
previous report that showed both AMH positive staining within
the seminiferous tubules of patients with Sertoli-cell-only
syndrome (SCOS) and in men with normal spermatogenesis,
but staining intensity was stronger in SCOS than in normal
group (28). Furthermore, in adult men, AMH is secreted in both
serum and seminal plasma (35). It was reported that the seminal
AMH concentration was variable ranging from undetectable to a
high level (36) suggesting a Sertoli cell secretion. Collectively, this
argues for a mild AMH expression in tubules from normal fertile
men. In HS and MA, the number of AR-positive mature Sertoli
cells appeared to be reduced. This tendency was also shown in
AR mRNA expression level. In SCO, the number of SOX9- and
AR-positive cells was slightly higher than the normal group, but
no significant differences were found, and the AR mRNA
expression showed a decreased tendency. Thus, there are both
mature and immature Sertoli cells in SCO patients, to what
extend both were increased needs to be addressed in a future
study. The increased expression of AMH in Sertoli cells may
reflect a maturation failure of Sertoli cells in connection with
puberty (37, 38) or alternatively de-differentiation of mature
FIGURE 4 | Immunofluorescence staining of gH2AX (red), somatic cell marker Vimentin (green), nuclear marker DAPI (blue) in un-dilated seminiferous tubules in
samples from HS, MA, and SCO samples. White arrow indicated gH2AX-positive Sertoli cells in MA. As almost all Sertoli cells expressed gH2AX in SCO, we did not
add arrow to indicate them. There were no gH2AX-positive Sertoli cells in HS and normal control group. Scale bar: 100 mm.
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Sertoli cells to acquire a more immature state (34). However, the
current study is unable to distinguish between maturation failure
and de-differentiation of the Sertoli cells.

It has been reported in mice that the overexpression of GDNF
showed accumulation of undifferentiated spermatogonia (14)
and inhibiting GDNF signaling could promote differentiation
of SSC (39). We found GDNF mRNA overexpressing in MA
suggesting GDNF could contribute to the maturation failure in
MA. It has been reported that FSH induces the GDNF expression
(40) and the higher FSH values (i.e. 20.6 IU/L in MA NOA
subgroup as compared to 1.5-12.4 IU/L in the normal group)
could explain the observed higher expression of GDNF. All three
subtypes of NOA showed overexpression of BMP4 mRNA
confirming a previous study that showed BMP4 overexpression
in MA-NOA and SCO-NOA at the protein level in relation to
Frontiers in Endocrinology | www.frontiersin.org 8
control group (41). In contrast, mRNA expression of BMP4 was
reported lower in SCO (42). This discrepancy may be due to
mixing the control group with both tissues from men with
hypospermatogenesis and normal spermatogenesis.

The germ cell status was evaluated by using qPCR and
immunofluorescence. The mRNA expression of DDX4 and
MAGE-A4 was significantly reduced in SCO and exhibited a
decreased tendency in HS and MA. This is consistent with other
studies that reported a reduced germ-cell niche in HS and MA
from infertile men (43–45). The number of MAGE-A-positive
germ cells was slightly reduced in HS andMAwhile absent in SCO.
Similarly, the germ cell specific UCHL1 expression was absent in
SCO. The attenuated germ cell numbers may either be related to
meiotic defects (46, 47) and/or impairment and immaturity of
Sertoli cells being unable to support full germ cell maturation.
A

B

C

FIGURE 5 | Immunofluorescence staining of germ cell markers in un-dilated seminiferous tubules from HS, MA, SCO, and NC samples. (A) MAGE-A (green) for
germ cells, (B) UCHL1 (red) for germ cells, DAPI (blue) for nuclear staining, Scale bar: 100 mm. (C) The number of MAGE-A-positive cells per mm2 was counted
based on ten tubules of each biopsy. Asterisk indicated significant difference between SCO and normal control group (*p < 0.05).
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The presence of histone H2AX phosphorylation (gH2AX)
was used to identify germ cells in the prophase of the first meiotic
division (48), but Sertoli cells expressing DNA damage response
also become stained (25). H2AX is a histone variant that belongs
to the H2A family and prevent genome instability and cancer
Frontiers in Endocrinology | www.frontiersin.org 9
(49–51), while the phosphorylated form gH2AX is regarded as a
robust marker of DNA double-strand breaks (DSBs) (52, 53).
We found that the gH2AX expression was different between
three types of NOA patients. There were more Sertoli cells
expressing gH2AX in SCO than in HS and MA biopsies. The
FIGURE 6 | The mRNA expression analysis of niche related cells in un-dilated seminiferous tubules from non-obstructive azoospermia patients (NOA) and healthy
adult men. The relative mRNA expression of germ cell DDX4, MAGE-A4, and somatic cell AMH, AR, GDNF, BMP4, CYP17A1, fibroblast-specific protein 1 (FSP1) to
internal control GAPDH. Kruskal-Wallis test, *p < 0.05.
TABLE 2 | Correlation between mRNA expression and clinical hormones.

HS (n = 5)
Variable AR AMH GDNF BMP4 FSH Inhibin B

VASA -0.30,.68 0.40,.52 0.20,.78 -0.10,.95 0.10,.95 0.50,.45
MAGE-A4 -0.30,.68 -0.90,.08 -0.70,.23 0.00, >0.99 -0.10,.95 -0.10,.95
CYP17A1 -0.50,.45 -0.10,.95 -0.70,.23 -0.90,.08 0.10,.95 -0.40,.52
FSP 0.10,.95 0.30,.68 0.10,.95 -0.70,.23 0.70,.23 -0.20,.78
LH 0.67,.27 0.67,.27 0.36,.63 -0.56,.37 0.36,.63 -0.87,.07
T 0.60,.35 0.80,.13 0.40,.52 -0.50,.45 0.20,.78 -0.80,.13

MA (n=14)
Variable AR AMH GDNF BMP4 FSH Inhibin B

VASA -0.02,.95 0.02,.93 0.22,.46 0.20,.48 0.41,.15 -0.08,.80
MAGE-A4 -0.29,.33 0.09,.76 0.18,.56 0.01,.99 0.49,.09 -0.27,.36
CYP17A1 0.45,.11 -0.13,.65 0.09,.75 0.13,.67 -0.55,.04 0.26,.36
FSP 0.52,.06 0.03,.92 0.28,.34 0.20,.50 -0.41,.14 0.45,.11
LH -0.25,.38 0.17,.55 -0.46,.10 -0.34,.23 0.58,.03 -0.68,.01
T 0.36,.20 0.02,.94 0.28,.32 0.29,.32 -0.11,.71 0.15, 61

SCO (n=15)
Variable AR AMH GDNF BMP4 FSH Inhibin B

VASA -0.29,.29 -0.18,.52 0.35,.30 0.23,.50 -0.28,.30 -0.07,.80
MAGE-A4 0.02,.95 -0.02,.95 -0.40,.75 0.60,.42 -0.23,.41 -0.32,.24
CYP17A1 -0.19,.49 0.01,.96 0.12,.68 0.31,.25 -0.36,.19 0.30,.28
FSP 0.03,.91 -0.10,.71 0.13,.65 0.08,.78 -0.06,.82 0.18,.51
LH 0.25,.37 0.20,.47 -0.13,.64 -0.09,.75 0.66,.01 -0.31,.27
T -0.21,.45 0.07,.80 0.15,.59 -0.07,.81 0.40,.14 0.31,.27
June 2022 | Volume 13 | Arti
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accumulation of gH2AX positive staining in Sertoli cells
demonstrated that the Sertoli cells may be undergoing
accelerated degradation.

The present study suggested that Sertoli cells in un-dilated
seminiferous tubules of NOA patients were immature and
expressed an increased DNA damage compared to normal
controls. In MA, few Sertoli cells appeared to have DNA
damages response. In SCO, many gH2AX-positive Sertoli cells
may undergo DNA damage response.

Collectively, the present study suggests that un-dilated
seminiferous tubules from three subtypes of NOA patients
show a different expression of cell specific markers that
most likely reflect their compromised ability to sustain
spermatogenesis or alternatively that compromised germ cells
influence Sertoli cell function. However, both HS and MA
subtype of NOA patients demonstrate, in un-dilated
seminiferous tubules, the quantitative presence of germ cell
numbers approaches that of normal testis in some instances. It
may therefore be envisioned that these germ cells could be
matured to haploid germ cells and used in connection with
ART. This will require the development of an in vitro culture
system providing a proper environment, for instance by co-
culture with spent media from cultures of mature normal Sertoli
cells. Alternatively, testis tissue from men with NOA could be
cultured together with mature Sertoli cells from a normal testis
without direct cell contact between the NOA tissue and the
supplied normal Sertoli cells. Alternatively, or in combination,
growth factors and hormones known to advance meiosis may be
used to advance meiosis in cultures of testis tissue from NOA
patients in whom sperm retrieval was unsuccessful (54, 55). The
fact that some of these men with NOA actually present with a few
dilated areas of seminiferous tubules with spermatogenesis
suggests that it is possible to define conditions of sufficient
quality to advance meiosis to the haploid state.

The thicker tubule wall of seminiferous tubules in NOA
patients with SCO may affect the contractility of the tubules
and the propulsion of the tubular contents to the rete testis.

A limitation of our study is the relatively small sample size.
More samples are necessary in the future for further exploration
of mechanisms behind NOA.

In conclusion, this study provides insights into understanding
the un-dilated (atrophic) tubules which constitute a major part of
seminiferous tubules of NOA patients. Improvement of Sertoli
cell function either during in vitro culture or by co-culture with
Sertoli cells from fertile men may constitute strategies for fertility
restoration in patients with different types of NOA that fail
surgical sperm retrieval. The impairment and immaturity of
Frontiers in Endocrinology | www.frontiersin.org 10
Sertoli cells and germ-cell loss are likely to contribute to the
impaired spermatogenesis.
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