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Sex hormones contribute to differences between males and females in body fat
distribution and associated disease risk. Higher concentrations of estrogens are
associated with a more gynoid body shape and with more fat storage on hips and
thighs rather than in visceral depots. Estrogen-mediated protection against visceral
adiposity is shown in post-menopausal women with lower levels of estrogens and the
reduction in central body fat observed after treatment with hormone-replacement therapy.
Estrogen exerts its physiological effects via the estrogen receptors (ERa, ERb and GPR30)
in target cells, including adipocytes. Studies in mice indicate that estrogen protects
against adipose inflammation and fibrosis also before the onset of obesity. The
mechanisms involved in estrogen-dependent body fat distribution are incompletely
understood, but involve, e.g., increased mTOR signaling and suppression of autophagy
and adipogenesis/lipid storage. Estrogen plays a key role in epigenetic regulation of
adipogenic genes by interacting with enzymes that remodel DNA methylation and histone
tail post-translational modifications. However, more studies are needed to map the
differential epigenetic effects of ER in different adipocyte subtypes, including those in
subcutaneous and visceral adipose tissues. We here review recent discoveries of ER-
mediated transcriptional and epigenetic regulation in adipocytes, which may explain
sexual dimorphisms in body fat distribution and obesity-related disease risk.
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INTRODUCTION

Sexual dimorphism in obesity and related cardiometabolic risk involves differences in fat
distribution (1, 2), described by Vague already in 1947 (3). Most body fat is stored in two main
white adipose tissue (WAT) depots; subcutaneous adipose tissue (SAT) and visceral adipose tissue
(VAT). Increased visceral adiposity is particularly associated with increased mortality and risk of a
range of metabolic conditions including insulin resistance, type 2 diabetes, and cardiovascular
disease (4–11). In contrast, preferential fat accumulation on the hips, thighs and other subcutaneous
sites in females compared to males may help explain the lower risk of metabolic diseases generally
seen in females (11). VAT (omental and mesenteric fat) normally constitutes about 10-20% of total
body fat in males and 5-10% in females (12), although these percentages vary greatly for different
individuals (4–6, 8, 13). There is a relative increase in adipose tissue (AT) mass and decrease in
n.org February 2022 | Volume 13 | Article 8287801

https://www.frontiersin.org/articles/10.3389/fendo.2022.828780/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.828780/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:simon.dankel@uib.no
https://orcid.org/0000-0001-8255-4282
https://orcid.org/0000-0003-4733-801X
https://doi.org/10.3389/fendo.2022.828780
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.828780
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.828780&domain=pdf&date_stamp=2022-02-22


Bjune et al. Estrogen-Dependent Regulation in Adipocytes
muscle mass with age (14, 15), which is associated with altered
concentrations and activity of sex hormones (16), including
testosterone and estrogens, which are potent regulators of
adipogenesis and energy metabolism (17, 18). Importantly,
with loss of estrogens after menopause, females often begin
storing more VAT and have higher risk of metabolic diseases,
more like males (1, 19, 20). This shift in AT function and
distribution can in turn alter the metabolic functions of other
tissues, in part via changes in adipokine secretion, release of
lipids for energy expenditure or storage in tissues such as liver,
muscle and heart, and other mechanisms (2, 21).

Among all natural or synthetic estrogens (22), endogenous
estrogens in humans consist of estrone (E1), estriol (E3) and
17b-estradiol (E2), the latter being the most biologically active
(22, 23). In premenopausal women, E2 is the dominating
estrogen, while E1 produced by adipose tissue is more
important after menopause (24). Androgens are converted to
estrogens by the enzyme aromatase, thus linking the
sex hormones in both males and females (25). Estrogens bind
to two ‘classical’ estrogen receptor (ER) subtypes, alpha (ERa)
and beta (ERb), which have multiple isoforms and exhibit
distinct tissue expression patterns (26). E2 has similar affinity
to both receptors (26, 27). Estrogen-mediated activation of ER-
dependent transcriptional activity alters epigenetic programming
and global gene expression patterns, contributing critically to the
cellular effects of estrogens, such as in breast cancer (28) and
hippocampal memory formation (29). Thus, in breast cancer
cells, estrogen deprivation has been found to cause DNA
hypermethylation and histone deacetylation and consequent
downregulation of global gene expression, which was largely
reversed by E2 re-stimulation (30). It is possible that such
epigenetic mechanisms are central in ER subtype-specific
effects, given tissue differences in ER subtype expression
levels (26).

Studies on mechanisms of sexual dimorphism in body fat
distribution have pointed to the role of sex hormones as well as
the microenvironment and cell-specific properties within fat
depots (31). Due to the importance of epigenetic/
transcriptional programming for the unique functional
properties of different adipocyte subtypes (32), it may be
critical to determine how and to what extent estrogens
contribute to these distinct properties, and consequently to sex
differences in body fat distribution and associated risk of
metabolic diseases. In this review, we discuss the role of
estrogens in adipose tissue distribution and function, and
emphasize emerging knowledge of estrogen-dependent
epigenetic mechanisms that may govern sexual dimorphism in
obesity and adipogenesis.
ROLE OF ESTROGEN IN ADIPOSE TISSUE

ERa expression is inversely associated with obesity in both females
(33),males (34) andover 100different strainsof inbredmice (34). In
human (20) aswell as rodent (35) females, the decline in circulating
E2 after menopause corresponds to increased fat mass and lower
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glucose tolerance. Conversely, estrogen replacement therapy
reverses these effects (35–38). Moreover, E2 treatment in
nutritionally challenged female mice reduced VAT mass and
adipocyte size, and altered gene expression of lipogenic markers,
adipokines, specific nuclear receptors, and thermogenic markers
(39).However, effects of estrogen-ERa signalingoftendiffer greatly,
both between the two sexes, and between SAT and VAT (as
described in detail in the sections below and summarized
in Figure 1).

Estrogen exerts anti-obesity effects through multiple
mechanisms, such as central regulation of energy intake and
expenditure (reviewed in (40)). However, estrogen also has direct
effects inWAT, and it has been shown that loss of estrogens has a
much stronger effect on gene expression in WAT compared to
for example the hypothalamus (41). In WAT, E2 is shown to
decrease expression of genes involved in triglyceride synthesis
(lipogenesis) and promote catecholamine-induced lipolysis (42,
43). While estrogens can affect adiposity, adiposity can also
increase the production of estrogens locally in several tissues.
Although AT is not steroidogenic, it is the most important site
for steroid production outside the gonads due to the presence of
the aromatase cytochrome P450 enzyme, which converts
androgens taken up from the circulation into estrogens (44,
45). Due to the presence of aromatase in AT, the locally
produced estrogen can affect metabolism independent of
plasma E2 levels (44). In rats, it has been shown that local E2
levels are about tenfold higher in AT compared to the circulation
(44). Conversely, another study observed no statistically
significant differences between the sexes in neither plasma nor
overall adipose E2 levels between male and female rats, while a
significant depot-dependent effect was found in both sexes,
where E2 levels showed 1.5-2-fold higher levels in SAT
compared to different VAT depots (44).

Female ovariectomized mice display increased VAT and
reduced leptin sensitivity compared to controls, which upon E2
administration can be restored to levels seen in intact cycling
females (46). Interestingly, male mice given E2 show decreased
insulin sensitivity, increased SAT volume, higher sensitivity to
leptin, and overall increased body fat (46), at least in part
explained by reduced physical activity and energy expenditure
(46). No stimulatory effects on food intake were seen, and
estrogen may rather have leptin mimetic/anorectic functions
that suppress food uptake (46, 47), pointing to other tissue-
specific obesogenic effects of E2 in males.

In male humans, an increase in AT mass is associated with
increased levels of aromatase (48, 49), and hence increased ability
to synthesize estrogens (50). Conversely, administration of
aromatase inhibitors increases the testosterone-estrogen ratio
and reverses hypogonadal obesity, resulting in the stimulation of
muscle protein synthesis and increased muscle mass (51, 52).
The aromatization process progressively reduces testosterone
levels and elevates estrogen levels in males (52). Decreased
testosterone concentrations in males are associated with
elevated concentrations of leptin, which is produced by fat cells
as a reflection of fat stores. Further expansion of visceral AT and
production of aromatase through this hypogonadal-obesity cycle
February 2022 | Volume 13 | Article 828780
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may result in a vicious cycle of continuedvisceralATexpansion and
insulin resistance (52). On the other hand, higher levels of AT
aromatase activity in male mice leads to a decreased adipose tissue
inflammation and improved insulin sensitivity (53). Given the
generally protective effect of estrogen against visceral adiposity, an
importantquestion iswhether estrogenhas different effects inmales
compared to females. To answer this question, we need more
detailed insight into how estrogen exerts its biological effects, and
whether there are differences in intracellular signalingmechanisms
in relevant metabolic cells between the sexes.
MECHANISMS OF ACTION AND
METABOLIC REGULATION BY ESTROGEN
IN ADIPOSE TISSUE

In the early 1990s, Mizutani et al. and Pedersen et al. reported the
presence of ER along with other steroid receptors such as
Frontiers in Endocrinology | www.frontiersin.org 3
glucocorticoid and androgen receptors, but not progesterone
receptors, in human mature adipocytes (54, 55). The effect of
estrogen on AT distribution is mainly controlled by the
adipocyte ERa (56), and the estrogen-ERa signaling has anti-
obesity effects (57). In a rat study by Rodriguez-Cuenca et al.,
VAT from both males and females exhibited lower levels of E2,
but higher expression levels of ERa and ERb compared to SAT
(44). These data suggest that VAT is more sensitive to E2 than
SAT (44), which supports the observation that estrogen-
stimulated lipolysis occurs mainly in visceral compartments
(58). Moreover, it may explain why ERa-KO mice of both
sexes gain weight only in visceral compartments (56).

Estrogen has been shown to reduce adipogenesis through
activation of mTOR signaling, promoting inhibition of PPARg
(40, 59–62) or reduction of autophagy in female VAT (63).
Importantly, the pro-lipolytic effect of E2 has been found to be
blunted specifically in female SAT (64), via estrogen-mediated
increase in anti-lipolytic a2A-adrenergic receptors (59, 64).
Interestingly, this was not observed in VAT (64) which may
FIGURE 1 | Effects of estrogen signaling in female and male SAT and VAT. Estrogen signaling in subcutaneous adipose tissue (SAT) and visceral adipose tissue
(VAT) of both sexes has been found to promote increased proliferation of preadipocytes. Estrogen has been shown to promote anti-lipolytic effects through
increasing the expression of a2A-AR in female SAT, which may, at least in part, explain the concomitant increase in SAT mass and overall anti-obesogenic effect of
estrogen. In addition, Estrogen induced expression of several browning genes in female SAT. In response to estrogen, female VAT showed increased lipolysis, while
lipogenic gene expression was decreased, together resulting in reduced VAT mass. On the contrary, estrogen increased male SAT volume. Adipocyte size was
reduced in both female SAT and VAT by estrogen, while there were no reports of this in males. However, estrogen decreased macrophage infiltration and
inflammation in male VAT. Female VAT has been shown to have reduced autophagy, adipogenesis and ROS levels in response to estrogen treatment. ER, estrogen
receptor; a2A-AR, alpha2A-adrenergic receptors; exp., expression. Figure created in BioRender.com.
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help to explain why only SAT and not VAT in females is affected
by changes in serum levels of estrogen and how estrogen overall
has anti-obesity effects but at the same time promotes fat storage
subcutaneously (59, 64). These effects of estrogen may explain
some of the findings in genome-wide association studies with
more than 224,000 individuals (65), showing that metabolic
changes are likely involved in the sexual dimorphism of
obesity and fat distribution, implicating mechanisms via
differential control of adipogenesis and insulin resistance
between sexes (1, 65, 66).

Studies have previously shown that estrogen and its receptors
are involved in regulating preadipocyte and adipocyte growth
and function, and some differences between the sexes are
reported (67–69). Interestingly, E2 stimulates the proliferation
of preadipocytes from both sexes (67). However, subcutaneous
and visceral preadipocytes from females were more responsive to
E2 and proliferated faster compared to preadipocytes from males
(67). Both male and female mice harboring a knockout (KO) of
ERa showed increased levels of body fat compared to their wild-
type (WT) littermates, despite similar body weights (68). The
same study reported that these male and female ERa KO mice
had larger adipocytes, and higher expression of markers of
macrophage infiltration and markers of fibrosis than WT mice
(68). Another report found that female whole body ERa KO
mice also showed reduced adiponectin expression, and increased
fibrosis and inflammation (69).

Furthermore, similar phenotypes were observed in both male
and female adipocyte-specific ERa knockout (AdipoERa) mice
compared to whole-body KOs, with some exceptions (69).
Despite no increase in weight gain, the male AdipoERa mice
showed reduced glucose clearance as measured by an oral
glucose tolerance test, suggesting adipocyte dysfunction in the
absence of estrogen-ERa signaling in males. Surprisingly, glucose
clearance in female AdipoERa mice, showing increased weight
gain compared to WTs, was not affected (69). While both male
and female AdipoERa mice showed increased adipocyte size
compared to their WT counterparts, only adipocytes of male
mice had increased expression of markers of macrophage
infiltration, inflammation and fibrosis, indicating sex-
dependent regulation of adipocyte function (68). Interestingly,
adipocyte-specific loss of ERa in ERb deficient mice leads to
lower glucose tolerance also in female mice (as seen for male
AdipoERa mice with expression of ERb), as well as increased
markers of inflammation and fibrosis. These findings suggest
that ERb may regulate glucose homeostasis, fibrosis and
inflammation in female AdipoERa mice but not in males (68).

Moreover, E2, via ERb signaling, increased the expression of
thermogenic uncoupling protein-1 (UCP-1) in mouse brown
adipose tissue (BAT), leading to increased energy expenditure
and thus reduced fat mass (60). In 2018, it was shown that
activation of ERs in white adipocytes in both humans and mice
increased markers of beiging (70). However, whether there are
sex differences in this regulation remains to be determined. Of
note, both the anorectic function of E2 as well as its role in
increasing the energy expenditure can also be mediated through
both ERa and b in the hypothalamic area of the brain (71).
Frontiers in Endocrinology | www.frontiersin.org 4
Estrogen signaling also is best known to affect gene expression
in target tissues, but can also affect processes outside the nucleus,
involving ion channels and protein kinases, which is so-called
non-genomic or non-nuclear signaling. In contrast to the
relatively slow activation of gene transcription, these non-
genomic pathways occur rapidly (within seconds or minutes)
via membrane-associated forms of the ERs (72). It has been
shown that E2 treatment of ovariectomized mice rapidly
increased fat oxidation through activation of AMPK (42).
Moreover, E2 can inhibit glucose oxidation in adipocytes
through non-genomic mechanisms (73). Estrogen may also
bind other non-classical receptors, including GPR30, which is
a G protein-coupled estrogen receptor (GPER) in the
endoplasmic reticulum that has a high affinity for E2 (74, 75).
These pathways have been mostly studied in neurons or
pancreatic b cells, and have been suggested to be the most
important mediators of estrogen signaling in these tissues (40,
76). However, recent in vitro and in vivo studies have shown that
GPR30 plays an important role in adipogenesis by reducing the
fat mass and adipocyte size (77). Compared to BAT, GPR30 is
highly expressed in WAT (77). Deletion of GPR30 by reducing
plasma insulin and leptin levels protects female mice from
developing obesity, glucose intolerance and insulin resistance
after nutritional challenge (77). How GPR30-mediated estrogen
signaling interacts with mechanisms of epigenomic regulation
remains to be determined.

Adipose Tissue Gene Regulation
by Estrogen Receptors
ERs can bind directly or indirectly to promoters of target genes to
repress or activate their expression (26). Manipulation of
estrogen levels or ERs have provided insights into adipocyte
target genes and thereby the mechanisms of ER-mediated gene
regulation. For example, loss of estrogens by ovariectomizing
reduced WAT expression of glutathione peroxidase 3 (Gpx3)
(41), a gene important for the protection of cells from oxidative
stress in the form of reactive oxygen species (ROS) (78).
Furthermore, E2 reduced ROS levels and enhanced browning
in female mouse SAT through promoting macrophage heme
oxygenase-1 (Hmox1, also known as HO-1) expression (79).
Similarly, E2 treatment of 3T3-L1 adipocytes increased
expression of genes encoding the ROS reducing antioxidants
HO-1, NAD(P)H:quinone oxidoreductase 1 (NQO1) and
glutamate-cysteine ligase (GCL), directly in the adipocytes (80).
High levels of ROS have previously been linked to decreased
mitochondrial respiration (81) and increased fat storage (82),
which are typical hallmarks of adipocyte dysfunction (83).
Correspondingly, postmenopausal females showed increased
VAT ROS levels compared to premenopausal individuals (80).
Together, these data may suggest that intact E2 signaling could,
through regulation of genes involved in antioxidant processes,
play a role in increasing the resilience to nutritional/metabolic
stress and prevent adipose dysfunction, a key contributor of
obesity and metabolic syndrome (84).

In support of this theory, adipose-specific deletion of Estrogen
receptor 1 (Esr1, gene encoding ERa) in both female and male
February 2022 | Volume 13 | Article 828780

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Bjune et al. Estrogen-Dependent Regulation in Adipocytes
mice have recently been shown to decrease mitochondrial DNA
(mtDNA) copy number in both WAT and BAT (34) (Figure 1).
The investigators demonstrated that ERa binds directly to the
nuclear-encoded mtDNA polymerase subunit g (Polg1), thereby
controlling mtDNA replication in WAT (34). Moreover, loss of
ERa was further accompanied by reduced expression of key
genes involved in mitochondrial biogenesis (Pgc1b, Nrf1), and
transcription (Polrmt) (34). Other studies have previously shown
that NRF1 is under control of E2-mediated ERa and ERb
activities in other tissues such as breast cancer, mammary
glands, and the uterus (85, 86). In female mice BAT, ERa is
necessary for mitochondrial remodeling through Dynamin-
related protein 1 (Drp1) (34), and thermogenesis through Ucp1
(34) and Cidea (41). Overall, these data suggest that estrogen
signaling is important for maintaining mitochondrial function in
females, an important prerequisite for preventing adipocyte
dysfunction and metabolic complications (87).

A number of microRNAs (miRNAs) have been found to play
crucial roles in both white and beige/brown adipocyte
development and function (reviewed in (88)). Knockdown of
ERa in rat bone marrow-derived mesenchymal stem cells
(BMSCs) has been found to alter the expression of almost 200
miRNAs, including downregulation of miR-210-3p,
accompanied with increased Pparg protein levels and reduced
expression of the osteogenic regulator Runx2 (89). Conversely,
overexpression of miR-210-3p was found to increase Wnt
signaling and promoted osteogenesis over adipogenesis (89).
Interest ingly , endometriosi s i s an estrogen-driven
inflammatory disease characterized by reduced BMI and
abnormal levels of circulating miRNAs (90), including miR-
342 (91) and Let-7b (92, 93). Overexpression or inhibition of
these miRNAs in primary preadipocytes from healthy donors
altered the expression of C/ebpa, C/ebpb and Pparg (94). Of note,
miRNAs may affect gene expression not only in the cells they are
produced, but also in distant cells and tissues through secreted
extracellular vesicles, including exosomes (95). Importantly,
small motifs in the miRNAs have recently been found to
dictate their retention or secretion, with white adipocytes
demonstrating by far the highest production and secretion
rates per cell compared to several other cell types (96). Thus,
future studies should be better equipped to predict and assess
local and systemic effects of ER-regulated miRNAs.
ESTROGEN-MEDIATED EPIGENETIC
REGULATION IN ADIPOCYTES

Epigenetics plays a causal role in the development of obesity (97),
and adipogenesis is extensively regulated by DNA methylation
and demethylation, histone tail modifications and chromatin
remodeling (97, 98). Strikingly, E2-bound ERs have been shown
to be involved in these epigenetic processes in various tissues
through recruitment of co-regulators and epigenetic remodeling
enzymes (99, 100). We will here review general known
mechanisms of epigenetic regulation via estrogens and
highlight known aspects in adipocytes (Figure 2).
Frontiers in Endocrinology | www.frontiersin.org 5
Histone Modifications by ERa
Cellular DNA is wrapped around histone proteins to form
nucleosomes and higher-order chromatin structures (101, 102),
which constitutes a major layer in transcriptional regulation
(101, 102). H2, H3 and H4 histone family members, with tails
of various lengths, are subjected to extensive post-translational
modifications, including methylation and acetylation (101, 102).
ERa interacts with, and promotes the activity of MLL2 (99, 103),
a specific H3K4 histone methyltransferase (HMT) that confers
epigenetic activation of gene expression (104) (Figure 2A).
Mutations in MLL2 lead to insulin resistance and reduced
glucose tolerance in mice (105) and humans (98, 106). Because
MLL2-dependent H3K4me3 activating marks are mutually
exclusive with repressing H3K9me3 marks, the MLL2/ERa
complex also includes KDM4B, a H3K9 demethylase that
coordinates the conversion from repressive to activating marks
(103). In preadipocytes, KDM4B is known to act on the
promoters of Pparg and C/ebp and promote adipogenesis
(107). Taken together, ERa may promote adipogenesis through
KDM4B/MLL2 (Figure 2A), but this remains to be confirmed.
Of particular interest would be whether this mechanism exists
predominantly in subcutaneous (gluteal and femoral) WAT.

In contrast, as detailed further above, estrogen and/or ERa
has mainly been found to inhibit adipogenesis (108–111). ERa
mediates epigenetic silencing by recruiting histone deacetylase
HDAC1 and HMTs like EZH2 to convert activating H3K27ac
marks to repressive H3K27me3 marks (99) (Figure 2A). In rats,
E2 treatment increased the binding of ERa/EZH2 to the
promoters of Pparg, C/ebpa and Cfd (encoding Adipsin) in
mesenchymal stem cells (MSCs), leading to increased H3K27
methylation and repression of these genes (112). These data
support a predominantly inhibitory effect of estrogen on
adipogenesis, and this effect is at least partly due to epigenetic
silencing of adipogenic master regulators.

DNA Methylation and Demethylation by
ERa
DNA methylation on CpG islands (99), which are present in
most promoters (113), has a repressive effect on gene expression
(114). This reaction can be catalyzed by two types of DNA
methyltransferases (DNMTs) depending on the purpose of the
methylation. While DNMT1 is active during cell division where
it copies the parental DNA methylation pattern, DNMT3 can
establish new methylation patterns, also known as de novo DNA
methylation (115). ERa promotes the latter by indirect
recruitment and activation of DNMT3 (99) to EREs
(Figure 2B). Thus, mapping the genomic binding pattern
of ERa in different adipose tissues at different developmental
stages is critical to understand its epigenetic effects. Strikingly,
ERa has shown a strong preference for binding to intergenic
regions (116). Interestingly, about half of the CpG islands are
also found in intergenic regions, and have recently been shown to
be an essential part of poised enhancers, acting as anchors
between the enhancer and target promoters (113).
Consequently, methylation of CpG islands plays a crucial role
in determining enhancer-promoter selectivity. Importantly,
February 2022 | Volume 13 | Article 828780
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A

B

FIGURE 2 | Epigenetic effects of ERa/b in adipocytes. (A) ERa can bind to promoter regions with repressive H3K9me3 marks (I-VI), where it recruits the histone
demethylase KDM4B (also known as JMJD2B), which specifically removes these marks (II). This enables the recruitment and activity of the methyl transferase MLL2,
which trimethylates lysine 4 on histone 3, forming activating H3K4me3 marks, which promotes gene expression (III). This process may occur on the promoters of
Pparg and C/ebp, promoting adipogenesis. Conversely, ERa can also bind to actively transcribed genes characterized by H3K27ac marks (IV), where it binds various
coregulators, including NRIP1, that enables binding of histone deacetylases (HDACs), which remove the acetyl groups on H3K27 (V). Finally, the ERa/NRIP1/HDAC
complex can further bind the PRC2/EZH2 polycomb complex, which adds methyl groups to form repressive H3K27me3 marks (VI). This process can also occur on
the Pparg and C/ebp promoter/enhancers, inhibiting adipogenesis. Although the repressive pathway appears most predominant, further studies should investigate
whether the activating pathway indeed plays a role in certain preadipocyte/mesenchymal stem cell subpopulations. (B) ERa and ERb affects DNA methylation through
several mechanisms. ERa promotes de novo methylation and gene silencing by binding to actively transcribed regions (I), where the ERa/HDAC/PRC2/EZH2 complex
first converts activating H3K27ac marks to repressive H3K27me3 marks (see Figure 2A IV-VI for details). The DNA methyl transferase DNMT3 recognizes the
H3K27me3 marks, and stabilized by the ERa/HDAC/PRC2/EZH2 complex it adds a methyl group to cytosine residues on the surrounding DNA, leading to stable gene
silencing (II-III). Conversely, ERa can inhibit passive DNA methylation after cell division. This occurs by transcriptional inhibition of DNMT1, which copies the DNA
methylation pattern of the old DNA strand onto the newly synthesized DNA (IV-V). Red methyl groups (bottom panel V) represent hypomethylated regions in response
to ERa-mediated repression of DNMT1, leading to increased beiging. ERa and/or ERb can also promote active demethylation by recruitment of TET2, AID/APOBEC/
BER complexes, which alter methylated cytosines in numerous ways that ultimately restores unmodified cytosine (VI-I). Active demethylation likely remodels adipogenic
super-enhancers, and has been found to inhibit adipogenesis and increase Glut4 expression. C, Cytosine; 5mC, 5-methylcytosine; 5hmC, 5-hydroxymethylcytosine;
5fmC, 5-formylcytosine; 5caC, 5-carboxylcytosine; 5hmU, 5-hydroxymethyluracyl. Figure created in BioRender.com.
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there are significant changes in enhancer interactions during
adipocyte differentiation (117). Collectively, ERa may be
involved in methylation-dependent regulation of enhancer-
promoter interactions during adipogenesis. However, future
studies are needed to test this hypothesis.

ERa and ERb are also involved in demethylation, both passively
during cell division by transcriptional inhibition of DNMT1, and
actively by interacting with a range of enzymes that modify and
remove the methyl group (99, 118) (Figure 2B). ERb promotes
active demethylation and increased expression of Glut4 in mouse
embryonic fibroblasts by recruiting the demethylation machinery
to the Glut4 promoter (119, 120). This ER-bound demethylation
machinery includes TET2, which has been shown to inhibit
adipogenesis (121), and p300, a known master epigenetic writer
of enhancers during adipogenesis (122). It is therefore plausible
that ERa and/or ERb-dependent DNA demethylation is involved
in the epigenetic regulation of adipogenesis, although this was not
directly investigated. However, E2 has been shown to epigenetically
promote beiging in mice by promoting demethylation of the Adrb3
and Dio2 promoters, leading to increased Ucp1 expression (39).
These changes were accompanied by reduced visceral lipogenic
gene expression, improved fatty acid utilization, which reversed
diet-induced visceral obesity and glucose intolerance (39).
Moreover, activation of both ERa (70) and ERb (123) has been
shown by others to activate WAT browning (124). Taken together,
ERa may promote thermogenesis by relieving repressive
methylation marks on key positive regulators of beiging and
mitochondrial uncoupling.
DISCUSSION

At the time morphological differences between individuals with
obesitywerefirst described (3), the direct influence of sexhormones
on adipocytes had not been explored. Since then, much has been
learned about how metabolic processes differ by sex and how
estrogen affects developmental, metabolic and epigenetic
processes, including adipogenesis and the fate of adipocyte
progenitor cells towards thermogenicbrown/beige orwhite fat cells.

In the research performed by Pedersen et al., Santos et al. and
Zhou et al. (34, 64, 70), an effort has been made to differentiate
the mechanism of estrogen signaling in different subtypes of
adipocytes. However, despite technological advances allowing
improved distinction of the metabolic properties of
subcutaneous and visceral adipose depots, the effects of
estrogen on distinct subtypes of fat cells in different depots
remains to be described. More detailed insight into the role of
estrogen signaling in adipocyte subtypes may be critical, as
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different adipocytes possess unique metabolic and endocrine
profiles regardless of adipogenic capacities (125, 126).

The first evidence for epigenetic control of adipogenesis by
estrogen was provided by the study of Rüegg et al. in 2011 (119),
and progress has since been made in this field of research.
However, more research is needed to fully understand
estrogen-dependent mechanisms in different adipose tissue
depots and adipocyte subtypes, and to what extent these
mechanisms are distinct in males and females. New detailed
insight into estrogen-mediated epigenetic changes may also help
to assess health effects of environmental xenoestrogens, which
partly act via epigenetic changes (127). Furthermore, it will be
important to clarify functional differences and similarities
between ERa and Erb in metabolic and epigenetic regulation
in different adipose cell types and depots.

At the same time, we must consider that estrogen effects on
adipocytes are not limited to the classical types of ERs. For
example, Wang et al. revealed that the relatively recently
described non-genomic estrogen receptor GPR30 regulates
adiposity in mice in a sex-specific manner (77). A relevant
challenge is therefore also to evaluate whether GPR30-
mediated estrogen signaling might interact with mechanisms of
epigenomic regulation.

In conclusion, the emerging knowledge of estrogen-mediated
metabolic and epigenetic regulation in different adipocytes
provides a deeper understanding of how cellular programming
regulates metabolic health. Further research in this area may
uncover new molecular targets for improving body composition,
insulin resistance and reducing the risk of lifestyle-
related diseases.
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