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Fibroblast growth factor (FGF) 19 subfamily, also known as endocrine fibroblast growth
factors (FGFs), is a newly discovered metabolic regulator, including FGF19, FGF21 and
FGF23. They play significant roles in maintaining systemic homeostasis, regulating the
balance of bile acid and glucolipid metabolism in humans. Osteoporosis is a chronic
disease, especially in the current status of aging population, osteoporosis is the most
prominent chronic bone disease, leading to multiple complications and a significant
economic burden that requires long-term or even lifelong management. Members of the
FGF family have been shown to be associated with bone mineral density (BMD), fracture
repair and cartilage regeneration. Studies of the FGF19 subfamily in different populations
with osteoporosis have been increasing in recent years. This review summarizes the role
of the FGF19 subfamily in bone metabolism, and provides new options for the treatment of
bone diseases such as osteoporosis.

Keywords: myokine, fibroblast growth factor 19 subfamily, FGF21, osteoporosis, metabolic syndrome, polycystic
ovary syndrome
INTRODUCTION

Osteoporosis is a systemic skeletal disease caused by disorders of bone metabolism. An article
published in Lancet in 2019 showed that fractures resulting from osteoporosis became increasingly
common in women after age 55 years and men after age 65 years, leading to increased substantial
bone-associated morbidities, mortality and health-care costs (1). It can be seen that osteoporosis is
one of the main causes of disability and death in the elderly (2, 3). Therefore, the incidence and
complications of osteoporosis should arouse public attention.

Earlier studies have suggested that osteoporosis is likely to be caused by complex interactions among
local and systemic regulators of bone cell function (4). Recent studies have found that skeletal muscle,
acting as an endocrine organ, can produce a variety of important myokines, which are associated with
the pathogenesis of osteoporosis (5). As a myokine, the fibroblast growth factor (FGF) family plays an
important role in tissue homeostasis, repair, regeneration, angiogenesis and bone metabolism (6).
Adhikary et al. treated primary osteoblasts and C2C12 myoblasts with fibroblast growth factor-2 (FGF-
2) and dexamethasone, and found that exogenous FGF-2 alleviated the GC induced effects by inhibiting
the expression of sclerostin and myostatin in bone andmuscle respectively (7). Therefore, they believed
that exogenous FGF-2 can maintain osteogenesis and inhibit muscular atrophy in the presence of GC,
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suggesting that FGF-2may be a potential target for the treatment of
osteoporosis. Activating mutations in fibroblast growth factor
receptor 2 (FGFR2) cause several craniosynostosis syndromes by
affecting the proliferation and differentiation of osteoblasts, which
form the calvarial bones (8). In addition, FGF-2 was involved in
fracture repair, bone formation and cartilage regeneration after
fracture damage or strenuous exercise (9). In mammals, the FGF
family has 23 members (including FGF-15 in mice) and consists of
22 peptides (10). The FGF19 subfamily, also known as endocrine
fibroblast growth factors (FGFs), consisting of FGF-19, FGF-21 and
FGF-23, has been a hot topic of research in recent years (10). They
bind to FGF receptors (FGFRs) through blood circulation and play
a regulatory role in phosphate, bile acid, carbohydrate and lipid
metabolism (11). Due to endocrine FGFs have a low affinity for
FGFRs, they can freely cross the HS-dense cell gap into the
bloodstream and eventually form complexes with Klotho
proteins to stimulate cellular activity (12, 13). Endocrine FGFs
are involved in the metabolic activities of various organs such as
parathyroid glands, kidney, liver and adipose tissue through the
binding of Klotho proteins to the corresponding FGFRs (14–18).
At present, several members of the FGF family have been shown to
be involved in the regulation of skeletal muscle growth and
development, and studies on the endocrine regulation of the
FGF19 subfamily in different populations with osteoporosis have
been increasing in recent years. In this review, we will focus on
recent findings on the association of the FGF19 subfamily with
osteoporosis and its role in different populations suffering
from osteoporosis.
THE ENDOCRINE SUBFAMILY OF FGFS

FGF-19
FGF-19 is secreted by ileal epithelial cells and plays a regulatory
role in the maintenance of bile acid and corresponding metabolic
homeostasis (19). Once secreted, FGF-19 triggers a signaling
cascade involving the recruitment of cytosolic articulators by
binding to its preferred receptor FGFR4 and co-receptor b-
klotho (Table 1). Although FGF-19 is primarily metabolized in
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the liver through activation of the FGFR4-b-klotho complex,
studies in recent years have shown that FGF-19 also performs
biological functions in white adipose tissue (WAT) and brain
(11). In addition, studies have found that the FGF19 levels are
significantly lower in postmenopausal patients with osteoporosis
than in healthy women and are positively correlated with bone
mineral density (BMD) (20).

FGF-21
FGF-21 plays a key role in the metabolic process as a hepatic,
adipokine and myokine. It appears to function through FGFR1c-
mediated binding to b-klotho to form complexes (21).
Circulating FGF21 is primarily expressed by the liver when the
body is starving, obese, mitochondrial dysfunction and aging,
while FGF21 expression is barely detectable in healthy conditions
(22). In recent years, numerous studies have shown that
increasing the level of myogenic FGF-21 could enhance skeletal
muscle glucose uptake, fatty acid oxidation and insulin
sensitivity, thereby improving lipid metabolism and reducing
body weight (23–25). In addition, FGF-21 has also been shown to
be involved in the browning of white fat (26). Up to now, the
research on the relationship between FGF21 and BMD has
inconsistent results in animals or humans, possibly related to
the different experimental subjects. In addition, recombinant
human FGF21 (rhFGF21) injected into mice may undergo
biochemical reactions (27–29).

FGF-23
FGF-23 is known as a bone-derived endocrine hormone, mainly
secreted by osteocytes and osteoblasts, mediated by the FGFR
(FGFR1c, FGFR3c and FGFR4) and combined with a-Klotho to
stimulate phosphate excretion and inhibit formation of 1, 25
(OH)2D3, active vitamin D (11). Parathyroid hormone (PTH)
stimulates synthesis and secretion of FGF23 by activating PTH/
PTHrP receptor on osteocytes/osteoblasts (Figure 1) (30). In the
parathyroid glands, FGF-23 is involved in metabolic activities
by downregulating the production and secretion of PTH (31).
It suppresses the synthesis of 1,25(OH)2D3 by inhibiting
key enzyme 1-a-hydroxylase (encoded by Cyp27b1) in the
TABLE 1 | Endocrine FGF physiological function.

Endocrine FGFs Receptor complex Functions

FGF19 FGFR4-b-klotho ↓Bile acid synthesis

↓Triglycerides

↓Gluconeogenesis

↑Glycogen and protein synthesis
FGF21 FGFR1c-b-klotho ↑Hepatic fatty acid oxidation

↑Gluconeogenesis

↑WAT browing

↑weight loss

↑Glucose absorption

↑Insulin sensitivity
FGF23 FGFR1c-a-klotho

FGFR3c-a-klotho

FGFR4-a-klotho

↓Renal phosphate absorption

↓Vitamin D synthesis

↓PTH secretion
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kidney (31). In complete contrast to FGF23, PTH acts on the
kidney to upregulate Cyp27b1 expression and increase blood
1,25(OH)2D3 levels (32).
FGF19 SUBFAMILY IN METABOLIC
SYNDROME (METS)

MetS is a global health problem increasing worldwide, which
includes a set of common metabolic abnormalities such as
insulin resistance, impaired glucose tolerance, abdominal
obesity, dyslipidemia, and hypertension (33). The interaction
of these factors makes the body susceptible to cardiovascular
disease, diabetes and osteoporosis (34). Wong et al. fed rats with
a high-carbohydrate high-fat (HCHF) diet with 25% fructose-
supplemented drinking water to induce MetS (35). They detected
elevated levels of FGF-23 in bone after MetS establishment,
which subsequently led to significant bone loss, with
al terat ions of bone histomorphometric parameters
characterized by increased osteoclastic activity and decreased
osteoblastic activity (35). In humans, the positive relationship
between MetS and BMD was driven by high BMI (36, 37), but
when fat mass was considered alone, MetS had a negative effect
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on BMD (37). In addition, gender was an interesting factor in the
relationship, the negative effects of MetS were more prominent in
men compared to women (37). Bone formation and resorption
are mainly controlled by osteoblasts and osteoclasts, and
imbalance in this process leads to deterioration of bone
microstructure and bone strength, ultimately promoting the
development of osteoporosis.

Vitamin D is an important factor in bone metabolism.
Animal studies have shown that vitamin D3 supplementation
has a positive effect on fracture healing (38). A clinical study
found that serum FGF19 levels were negatively correlated with
body weight and hip BMD in older adults older than 60 years
(39). Furthermore, FGF-19 was associated with treatment of
active vitamin D3, because all patients taking active vitamin D3
drugs had significantly higher serum FGF19 levels than controls
and tended to show improvements in serum parameters related
to lipid metabolism, such as high high-density lipoprotein (HDL)
and low triglyceride (TG) levels (39). Since MetS is prone to
osteoporosis, the improvement of blood lipids and pressure is
beneficial to reduce the prevalence of osteoporosis in MetS
patients. What’s more, this experiment also found that FGF-21
was associated with TG levels, and hypertension. The serum
FGF21 levels also tended to be high in patients with dyslipidemia
(39). At the same time, they also found that FGF-23 was
FIGURE 1 | The role of FGF23 in the circulation.
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negatively associated with markers for bone formation and
absorption, namely tartrate-resistant acid phosphatase 5b
(TRACP5b), suggesting that high FGF23 levels may be
associated with low bone turnover (39). TRACP5b can be used
as a diagnostic and therapeutic monitor for early osteoporosis
(40). Finally, this article mentioned that measurement of FGF-21
and FGF-23 was useful for detecting chronic kidney disease
(CKD) and its complications, such as cardiovascular disease and
metabolic bone disease (39). In conclusion, FGF-21 and FGF-23,
as members of the FGF subfamily, are involved in MetS and bone
metabolic activities and may subsequently provide new options
for the treatment of osteoporosis and MetS. FGF-19 is associated
with the pharmacological treatment of active vitamin D3 and
may improve MetS by improving serum lipid metabolism-related
parameters such as HDL and TG in patients taking active
vitamin D3 drugs.

The decline of renal function in CKD is accompanied by
chronic kidney disease-mineral and bone disorder (CKD-MBD),
which can lead to renal osteodystrophy and osteoporosis (41).
When kidney function is severely impaired, kidney
transplantation (KT) is the treatment of choice for most
patients with renal failure. However, the early period after KT
(the first 6 months) is a period of high risk for major fractures
(MF), and the incidence of fractures is higher in women than in
men (42). A retrospective study of 74 KT patients found that
higher FGF-23 levels and lower HDL cholesterol in KT with
MetS compared to controls (43). Therefore, they concluded that
high serum FGF-23 levels were positively associated with MetS in
KT patients. In addition, they used multivariable logistic
regression analysis found that FGF-23 was an independent
predictor of MetS in KT patients (43).
FGF19 SUBFAMILY IN
POSTMENOPAUSAL OSTEOPOROSIS
(PMO)

The risk of bone fracture increases with age, especially in
postmenopausal women, who have the highest prevalence of
osteoporosis of all bone metabolic diseases, so women should be
screened for osteoporosis starting at age 65 (44, 45). As the
physiological process progresses in menopausal women, there is
a significant decrease in estrogen secretion, an increase in
osteoclast activity, and a decrease in bone matrix secretion
(46). It’s worth noting that bone formation actually increases
after menopause, but resorption increases even more. As a result,
the body is unable to effectively regulate bone resorption and
bone formation, resulting in a decrease in bone mass and bone
density, which ultimately leads to osteoporosis.

Previous studies have shown that FGF21 enhanced PPAR-g
activity by inhibiting osteoblastogenesis and increasing bone
marrow adipogenesis in bone marrow mesenchymal stem cells
(BMSCs) to increase bone resorption and decrease bone formation
(47). Recombinant FGF21 protein improved insulin sensitivity,
lowered blood glucose and TG, and reduced body weight in
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diabetic mice (48). However, it was reported that high fat diet-
induced obesity (DIO)mice given continuous 4-week intraperitoneal
injections of rhFGF21 found no effect of rhFGF21 on bone mass or
any bone biomarkers. Li et al. also administered rhFGF21
intraperitoneally to DIO mice for 2 weeks and observed the same
results (49). In addition, they intervened with the PPAR-g agonist
rosiglitazone in wild-type (WT) and FGF21 knockout (KO) mice
and found that increased adipogenesis and bone marrow adipocytes
in rosiglitazone intervened mice, but not in FGF21 intervened mice
(49). Thus, they concluded that FGF21 does not appear to be a
downstream mediator of PPAR-g on adipocyte differentiation, nor
does it play a role in rosiglitazone-induced bone loss, and that the
pathway of FGF21 and PPAR-g appears to be independent (49).

However, Studies on the relationship between FGF21 levels
and BMD have yielded inconsistent results in humans. A cross-
sectional analysis of healthy postmenopausal women showed
that their circulating FGF-21 levels were positively correlated
with lumbar spine BMD (27). One study showed no correlation
between FGF21 levels and BMD (28). Another study revealed
that plasma FGF21 levels were inversely correlated with BMD in
femoral neck and Ward’s triangle of hip region (29). This
inconsistent may be due to the different experimental subjects.
Li’s subjects were DIO mice, while the other study subjects were
PMO patients (postmenopausal Han women). In addition, Li
et al. injected rhFGF21 into DIO mice, and the protein may
undergo metabolic activity in the mice.

A cross-sectional study of 28 patients with PMO, 32 with
postmenopausal osteopenia and 30 healthy control subjects
(postmenopausal non-osteoporosis) found that significantly
higher levels of FGF-23 in the PMO group compared to the
postmenopausal osteopenia and control groups (50). In addition,
PMO patients had significantly lower levels of lomber and femur
BMD than postmenopausal osteopenia and control groups.
When subjects in the PMO group were divided into three
groups according to age of menopause, the FGF-23 levels were
found to be significantly higher in the group of menopausal age
<5 years than the group of menopausal age >10 and the group of
menopausal age 5-10 years. Therefore, they concluded that
serum FGF-23 level was an important determinant of
increased bone turnover at early periods in PMO patients (50).
It can be seen that both FGF21 and FGF23 are involved in bone
metabolic processes in PMO patients and have an impact on
BMD. A prospective study of PMO found that the anabolic effect
of PTH on osteoblasts led to an increase in FGF-23 when PTH
was given intermittently (51). Therefore, this study suggested
that FGF-23 may mediate the skeletal anabolic effects of
parathyroid hormone (51).

Zhao et al. divided 150 postmenopausal Chinese women into
osteoporosis group, osteopenia group, and healthy control group
based on their BMD, and assessed serum bile acid, FGF19, and
bone turnover biomarker levels (20). This cross-sectional study
found that serum bile acid and FGF19 levels were significantly
lower in PMO and osteopenia than in healthy women. In
addition, serum total bile acid and FGF19 levels were positively
correlated with BMD (20). This finding also suggested that bile
acid played an important role in bone metabolism based on
April 2022 | Volume 13 | Article 830022
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clinical evidence (20). FGF19 is the downstream molecule of bile
acid signaling. Bile acid binds to and activates farnesoid X
receptor (FXR) in the small intestinal cells to induce the
upregulation of FGF19 (52). FXR is expressed not only in the
liver and intestine, which are the classical target organs of bile
acids, but also in bone marrow stromal cells and SaOS2
osteoblast-like cells (52). One study found that in vivo deletion
of FXR resulted in a significant reduction in bone mass in mice
(53). FGF15/19, as an intestine-derived endocrine hormone,
plays a key role in mediating the gut- hepatic bile acid
signalling feedback to inhibit hepatic bile acid synthesis (54).
Therefore, bile acids can up-regulate FGF19 by activating FXR
to participate in bone metabolism. Studies have found that
bile acid-induced FGF19 acts through mTOR/ERK signaling
and transcriptional factor EB (TFEB) phosphorylation to
feedback inhibit TFEB nuclear translocation in hepatocytes
(55). Wang et al. revealed that TFEB induced cholesterol 7a-
hydroxylase (CYP7A1) in human hepatocytes and mouse livers,
and prevented hepatic cholesterol accumulation and
hypercholesterolemia in Western diet mice-fed mice in a high
fat, high sucrose, high cholesterol manner (55). A recent study
found that administration of SH-479, which is a bile acid
receptor agonist, to mice with PMO increased BMD and
improved skeletal microarchitecture (56). Therefore, bile acids
were considered to be used in the treatment of metabolic
diseases, such as type 2 diabetes, hyperlipidemia, and obesity
(57, 58). In conclusion, the bile acid metabolic pathway involved
in FGF19 could be a new therapeutic target for PMO (20).
FGF19 SUBFAMILY IN POLYCYSTIC
OVARY SYNDROME (PCOS)

PCOS is the most common endocrine metabolic disorder in
women of reproductive age and is defined by a combination of
signs and symptoms of androgen excess and ovarian dysfunction
(59). It is often associated with abdominal obesity, insulin
resistance, obesity, metabolic disorders, and cardiovascular risk
factors (60). In addition, women with PCOS are at higher risk of
insulin resistance, hypertension, dyslipidemia, diabetes and
osteoporosis (61). Studies have shown that hyperinsulinemia
may play a crucial role in the development of PCOS and lead to
elevated androgen levels, yet increased androgens in women with
PCOS can lead to insulin resistance (61). In addition, insulin may
stimulate osteoblast differentiation, thereby enhancing
osteocalcin production (62). Osteocalcin, a peptide produced
and secreted by osteoblasts, is associated with bone synthesis and
conversion, and stimulates pancreatic b cell proliferation and
skeletal muscle insulin sensitivity (63). Elevated insulin levels in
women with PCOS lead to insulin resistance, which in turn leads
to the deterioration of BMD (61). In addition, the ovarian and
adrenal-derived hyperandrogenemia in women with PCOS could
affect bone turnover and BMD (64). Therefore, we explored the
findings of studies related to FGFs and PCOS.

FGFs not only play a key role in development, cell growth,
tissue repair and transformation, but also stimulate the ovarian
Frontiers in Endocrinology | www.frontiersin.org 5
granulosa cell differentiation, expression of the luteinizing
hormone (LH) receptors by granulosa cells, and proliferation
of ovarian germinal cells (65). Among the fibroblast growth
factor family, FGF-13 and FGF-18 are associated with ovarian
function (66). FGF-21 is mainly expressed by the liver and acts as
a potent activator of glucose uptake by inducing glucose
transporter 1 (GLUT1) on adipocytes, which reverses hepatic
steatosis and improves insulin sensitivity in obese mice (67). A
study on the effect of insulin on endocrine FGFs in women with
PCOS found that insulin administration increased plasma levels
of FGF-21 in healthy controls and women with PCOS,
suppressed plasma levels of FGF-19 in healthy controls, and
had no effect on plasma levels of FGF-23 (21). An earlier study
evaluated FGF-21 levels in PCOS and found that circulating
FGF-21 levels were higher in PCOS patients and correlated with
homeostasis model assessment insulin resistance index (HOMA-
IR) (68). However, Sahin et al. found that serum concentrations
of FGF-21 were not different in PCOS patients compared to the
healthy group (67). Furthermore, FGF-21 levels did not correlate
with metabolic parameters such as BMI, fasting glucose, insulin,
HOMA-IR and lipid parameters in PCOS patients. Therefore,
they concluded that FGF-21 was not a useful marker for
metabolic abnormalit ies such as insulin resistance,
dyslipidemia, obesity and hypertension in women with PCOS
(67). Subsequently, it has also been discovered that circulating
FGF21 levels were associated with obesity but not with PCOS
(69). The reason for these two different experimental results may
be that the earlier study involved only a small sample of 24 PCOS
patients and 13 healthy controls, whereas the latter two studies
included a larger number of study subjects. In addition, the
different ethnicity of the study subjects may also have influenced
the results. Certainly, there are few studies on the relationship
between PCOS and circulating FGF21 levels, and more studies
are needed to further elucidate the role of FGF-21 in glucose
homeostasis, especially in patients with PCOS.
CONCLUSIONS

Overall, the FGF19 subfamily has been the focus of attention
since its discovery. A large number of studies in recent years have
revealed that the FGF19 subfamily is associated with bone
metabolism, which has caused controversies and debates.
Serum FGF19 and bile acid levels are positively correlated with
BMD, while both levels are reduced in the serum of PMO
patients. Therefore, FGF19 may provide a new therapeutic
target for PMO patients by participating in the enterohepatic
circulation of bile acid. The relationship between FGF21 and
BMD is controversial in both mouse and human studies, but
FGF21 does participate in the metabolic activity of MetS, PMO
and POCS patients, and more basic and clinical experiments are
needed to further clarify the relationship subsequently. As a
bone-derived hormone, FGF23 can act on kidneys and
parathyroid glands to regulate bone metabolism activity, which
may offer new options for the treatment of osteoporosis and
other bone diseases. In addition, scientific consensus has
unanimously established that the FGF19 subfamily, especially
April 2022 | Volume 13 | Article 830022
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FGF21, is a new key player in bone metabolism and its role is
emerging as a possible therapeutic option to treat bone diseases.
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