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Bone diseases are the leading causes of disability and severely compromised quality of
life. Neuropeptide Y (NPY) is a multifunctional neuropeptide that participates in various
physiological and pathological processes and exists in both the nerve system and bone
tissue. In bone tissue, it actively participates in bone metabolism and disease progression
through its receptors. Previous studies have focused on the opposite effects of NPY on
bone formation and resorption through paracrine modes. In this review, we present a brief
overview of the progress made in this research field in recent times in order to provide
reference for further understanding the regulatory mechanism of bone physiology and
pathological metabolism.
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INTRODUCTION

The mammalian skeleton is a vital organ formed by several bone types, and it is also the place for
hematopoiesis and mineral storage, with powerful self-repair ability and mineralized extracellular
matrix. The traditional view of factors affecting bone metabolism such as endocrine, paracrine, and
mechanical stimulation has long been discussed. Recent findings reported that bone tissue
(including the periosteum, cortical and trabecular bone, bone marrow) was abundantly
innervated by autonomic nerve terminals, which is one of the key factors regulating bone
metabolism and remodeling through direct or indirect manner (1, 2), making the autonomic
nerve system and bone metabolism closely linked.

When neuropeptide Y (NPY) was first discovered in 1983, the awareness of its function in energy
balance, obesity, and bone metabolism has gradually increased (3, 4). As a 36-amino acid peptide
belonging to the pancreatic polypeptide family, NPY is most abundantly produced and expressed in
the nervous system (5). In the central nervous system, NPY is distributed in the amygdala, locus
coeruleus, and cerebral cortex, with the highest expression level in the hypothalamus. It acts to
coordinate signals from a wide variety of sources to participate in appetite, circadian rhythm, and
energy utilization regulation (6, 7). In the periphery, NPY was found to be co-stored and co-released
with neurotransmitter noradrenaline (NA) in postganglionic sympathetic nerves (8). Recent studies
have reported that NPY and its receptors have also been identified in bone tissue, such as in
osteoblasts, osteocytes, and adipocytes (2, 9, 10), indicating the potential role of NPY on bone
remodeling in local sites. Moreover, it can also act as a mediator of the autonomic nervous system to
mediate bone marrowmesenchymal cell (BMSC) differentiation fate by constructing a mouse model
that lacks osteocyte-specific NPY (2). Even though various physiological conditions and
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pathophysiological processes such as obesity (11), anxiety (12),
food intake (13), chronic pain (14), neurodegenerative
disorders (15), and bone disease (2) have been proven to
require NPY to participate, its effect on bone metabolism is
still poorly understood.

In this review, we focus on the effects of NPY on bone
metabolism in some physiological and pathological states.
The aims of this article are to review the regulatory effects
and to achieve a comprehensive understanding of NPY on
bone metabolism.
NEUROPEPTIDE Y AND ITS RECEPTORS

Bone remodeling involves mineralized bone removal by
osteoclasts followed by bone matrix formation through
osteoblasts that subsequently become mineralized (16). It is a
key process for maintaining bone mass in a dynamic balance and
continues throughout life. Previous studies have proven the vital
role of NPY in the regulation of food intake and energy
homeostasis, and its role in bone metabolism has gradually
become a hot topic in recent years.

NPY is a highly conserved endogenous peptide and
multifunctional neurotransmitter acting via five G-protein-
coupled receptor subtypes named Y1R, Y2R, Y4R, Y5R, and
Y6R, of which Y1R and Y2R modulate bone mass at differing
sites and through different ways (2, 14, 17). The arcuate nucleus
of the hypothalamus exhibited the greatest expression level of
NPY, and Y2R is the most abundant subtype in the central
nervous system (18), which is also peripherally found in the liver,
intestine, spleen, muscle, and adipose tissue, suggesting Y2R may
have local effects in these tissues (19). Y2 antagonist treatment
resulted in reduced bone resorption level and greater bone
mineral density in ovariectomized (OVX) mice (20).
Hypothalamic Y2R knockout mice exhibited increased
osteoblast activity, mineralization rate, and bone mass,
indicating a catabolic role of Y2R in stimulating cortical and
cancellous bone formation (Table 1) (28, 29).

Y1R has also been reported to be involved in many
physiological activities, such as mitogenic activity, macrophage
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migration, and pulpal development (17, 21, 22). In bone tissue,
Y1R is highly expressed in BMSCs, osteoblast, osteocyte,
monocyte/macrophage, and osteoclast (2), prompting it to play
a regulatory role in the local area. Y1R germline deletion resulted
in elevated osteoblast activity and mineral apposition rate,
together with increased formation of highly multinucleated
osteoclasts and enhanced surface area, demonstrating a
negative role of Y1R on bone mass maintenance (23, 24).
Furthermore, the Y1R antagonist regulated gut microbiota and
exhibited an anti-osteoporotic effect in OVX rats (25), revealing
that Y1R may affect bone mass through multiple ways.

To date, little is known about the role of Y4R, Y5R, and Y6R
in bone mass maintenance. Y4R was reported to mainly affect
body weight, fat mass, energy expenditure, and anxiety-like and
depression-related behavior (31, 32). Interestingly, male mice
lacking both Y2R and Y4R displayed a synergistic effect in
trabecular bone volume upregulation compared with Y2R
knockout mice, but female double knockout mice did not show
this bone phenotype, suggesting a synergy between Y2 and Y4
receptor pathways (33). Igura et al. reported that Y5R expression
level in bone marrow cells declined with age and Y5R
overexpression strengthened the proliferation effect induced by
NPY, indicating that Y5R may take part in bone metabolism by
affecting the self-renewal ability of bone marrow cells (34). Y6R,
which is restricted to the suprachiasmatic nucleus (SCN) of the
hypothalamus, is required for the maintenance of bone mass in
mice. Mice lacking Y6R displayed reduced numbers of osteoblast
precursors and increased osteoclast activity (37).
NPY AND BONE FORMATION

As seed cells in bone marrow, BMSCs are able to commit to
osteogenic lineage and differentiate into mature osteoblasts.
Intensive studies in recent years have demonstrated that a
number of transcription factors are involved in this process.
Among them, runt-related transcription factor 2 (runx2) and
osterix are considered as master transcription factors in
osteogenic differentiation and they control bone formation
(39). Zhang et al. found that runx2 level and mineralized
TABLE 1 | Characterization, distribution, and functions of NPY receptors.

Receptor Tissue distribution Physiological functions on bone Other functions Ref.

Y1R Hypothalamus, hippocampus, neocortex,
thalamus, bone cells, pancreas, intestine

BMSC proliferation, osteogenic and adipogenic
differentiation, macrophage migration,
regulated gut microbiota, pulpal development

Vasoconstriction, anxiolysis, food
intake, heart rate, anxiety

(17, 21–27)

Y2R Hippocampus, hypothalamus, brain stem,
articular cartilage, liver, intestine, spleen, muscle,
and adipose tissue

Osteoblast activity and mineralization rate,
cartilage homeostasis

Memory, circadian rhythm,
angiogenesis, epilepsy

(10, 19, 20, 28–
30)

Y4R Total brain, heart, thoracic aorta, coronary artery,
nasal mucosa, skeletal muscle, mesentery
vasculature, stomach, ileum, and endometrium

Synergize with Y2R Energy expenditure, anxiety-like and
depression-related behavior, ion
transportation, arterial pressure

(31–33)

Y5R Hypothalamus, hippocampus BMSC proliferation Food intake, epilepsy, circadian
rhythm

(34–36)

Y6R Hypothalamus Osteoblast precursor survival and Osteoclast
activity

food intake (37, 38)
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nodules were decreased after NPY treatment in osteogenic
differentiation of BMSCs, confirming that NPY inhibits
osteogenesis by inhibiting runx2, and this effect may be
achieved through Y1R (2). Germline deletion of Y1R and
knockout of NPY produce anabolic responses in bone, with
upregulated runx2 and osterix level, resulting in a generalized
increase in bone mass owing to stimulated osteoblast activity and
an increased bone formation rate (40, 41). Besides, dorsomedial
nucleus NPY knockdown mice showed increased basal and
obesity-induced decrease in bone mineral density (BMD)
together with reduced activating transcription factor 4 (ATF4)
expression level (42). Activator protein 1 (AP1) antagonists
targeted to NPY neurons resulted in increased trabecular bone
formation and mass (43). In glucocorticoid-induced osteoporotic
skeleton, NPY expression and marrow adipogenesis were
upregulated, together with increased post-translational
modification of peroxisome proliferator-activated receptor
gamma (PPARg) (44).

Paradoxically, several studies have reported that NPY acts as a
promoting factor in the process of bone formation and fracture
repair. Liu et al. found that low doses of NPY stimulate BMSC
osteogenic differentiation and mineralization while a high NPY
concentration had the opposite effect (45). In patients with
combined injuries, NPY levels were increased than in those
with simple fractures, and further experiment demonstrated
that NPY directly promotes BMSC osteogenic differentiation
(46). Y1R antagonist-treated mice or Y1R-deficient mice
exhibited a delay in fracture repair and cartilage removal, as
evidenced by reduced calcified nodule area and decreased bone
callus volume and strength (47, 48). Researchers recently used
overexpression plasmids and small interfering RNA (siRNA)
targeting NPY transfected into the MC3T3−E1 osteoblastic cell
line and found that NPY overexpression markedly enhanced the
osteogenic ability by an autocrine mechanism, together with the
upregulation of osterix and runx2 level (49). Knockdown of the
Y1R induced alkaline phosphatase (ALP) activity and
mineralization together with upregulated mRNA expression of
specific genes that characterize osteoblastic differentiation in
MC3T3−E1 cells (50).

As an anxiolytic factor, NPY was reported to protect against
chronic stress‐induced bone loss specifically through Y2R,
evidenced by increased bone mass and bone formation rate (51).
Also, NPY can regulate bone formation through an indirect
manner. Ma et al. found that NPY stimulated human osteoblast
osteogenic activity by enhancing gap junction intercellular
communication (52). The Y1R antagonist upregulated serum Ca2
+ concentration, changed the gut microflora community
composition, and improved bone mass in OVX rats (25).
Although the studies mentioned above seem inconsistent, it is
certain that bone formation is strongly influenced by NPY.
NPY AND BONE RESORPTION

Bone resorption was mediated by mature osteoclast, which is a
tissue-specific multinuclear giant cell derived from
hematopoietic stem cells through the myelomonocytic
Frontiers in Endocrinology | www.frontiersin.org 3
precursor cells/macrophage lineage. In brief, hematopoietic
stem cells are committed to macrophage colony-forming units
(CFU-M) in the presence of macrophage colony-stimulating
factor (M-CSF). When the receptor activator of nuclear factor-
kappa B ligand (RANKL) binds RANK on the surface of
osteoclast precursors, osteoclastogenesis is immediately
triggered. CFU-M is further differentiated into mononucleated
osteoclasts and subsequently fused to multinucleated osteoclasts,
then fully matured upon a cognate interaction with osteoblasts
(53). Wu et al. reported that NPY greatly increased the amount
of RAW264.7 cell (mouse leukemic monocyte macrophage cell
line) migration at different concentrations, and this effect can be
diminished by the Y1R antagonist and ERK1/2 inhibitor, which
suggest that NPY promotes osteoclast migration through Y1R
and ERK1/2 activation (22). NPY has also been shown to exhibit
an inhibitory effect on isoprenaline-induced osteoclastogenesis
by suppressing RANKL expression in mouse bone marrow cells
(54). In addition, an in-vitro experiment confirmed that the
regulator of osteoclastogenesis RANKL/OPG ratio was higher in
NPY-treated BMSCs, and this effect can be reversed with Y1R
antagonist treatment, making evidence that NPY may facilitate
bone resorption through Y1R (55).

On the contrary, Park et al. found that NPY can mobilize
hematopoietic stem/progenitor cells (HSPCs) from the bone
marrow to the peripheral blood and ameliorated low bone
density in an ovariectomy-induced osteoporosis mouse model
by reducing osteoclast number (56). Seldeen et al. used an
osteoporotic mouse model injected once daily with JNJ-
31020028, a brain-penetrant Y2R small molecule antagonist.
Then, primary bone cell cultures were isolated from the tibiae,
and it was found that bone marrow cultures obtained from the
Y2R antagonist-treated mice exhibited significantly more
osteoclasts and greater areal coverage with in-vitro osteoclast
differentiation induction, which means that central NPY
inhibited osteoclastogenesis through Y2R (20).

In our study, osteoclast number and activity seem not be
significantly influenced by bone-specific deficiency of NPY in
young and aged mice (2). Matic et al. generated a mouse model
where NPY was overexpressed specifically in mature osteoblasts
and osteocytes and characterized the bone phenotype of 3-
month-old mice. It was found that bone volume was reduced;
however, bone formation rate and osteoclast activity were not
significantly changed (57). The direct and indirect effects of NPY
on bone resorption need further exploration.
OTHERS

In addition to participating in bone metabolism through
affecting bone turnover, NPY may also affect bone mass
through other ways. Blood vessels play an irreplaceable
important role in the metabolic balance of bones. Several
studies have confirmed that NPY-immunoreactive fibers were
predominantly localized alongside with blood vessel walls in
bone; moreover, Y1R, Y2R, and Y5R were confirmed to be
expressed on endothelial cells (ECs), providing a material basis
for the vasoregulatory role of NPY in addition to directly
February 2022 | Volume 13 | Article 833485
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regulating bone tissue cells (58). It has been observed that BMSC
migration and VEGF expression were upregulated after NPY
treatment (45) and increased levels of VEGF stimulate
angiogenesis and osteoblastic differentiation of BMSCs (59).
Besides, Y1R signaling disruption is responsible for enhancing
the deposition and maturity of collagen and mineral
hydroxyapatite layers in the skeletal muscle, and bone
mechanical property was furthered improved (60) (Figure 1).
RELATIONSHIP OF NPY AND COMMON
BONE DISEASE

Osteoporosis
Osteoporosis (OP) is a common skeletal disorder characterized by
compromised bone mass and degraded bone microarchitecture,
often resulting in fragility fractures and severely compromised
quality of life in elderly people. Increasing age and
postmenopausal state are proven to be associated with this
condition. Zhang et al. reported that ovariectomy induced NPY
upregulation in bone tissue after constructing a model of OP in
adult female mouse. g‐Oryzanol (ORZ), a functional substance
extracted from rice bran, alleviated the severity of postmenopausal
and senile OP through the autonomic nervous system by inhibiting
osteocytic-NPY secretion (2). In glucocorticoid-mediated bone loss,
NPY mRNA expression and protein concentration were elevated,
while BMD and bone microstructure were significantly reduced
(44). Xie et al. reported that the OP group exhibited deteriorated
bone microstructure and more microdamage than the osteoarthritis
(OA) group, and they also measured NPY and Y1R expression
levels in patients after constructing a postmenopausal osteoporotic
rat model and found these to be both upregulated in OP groups.
Y1R antagonist treatment in vivo for OVX rats could improve bone
Frontiers in Endocrinology | www.frontiersin.org 4
microstructure and decrease bone microdamage, and this may be
achieved via the cAMP/PKA/CREB signaling pathway (10). Also,
NPY is increased in the rat spinal cord after nerve injury in the
model of peripheral nerve trauma (61). Above all, it is possible that
NPY participates in the pathogenesis of osteoporosis. In detail, NPY
plays a negative role in the process of osteoporosis.

Bone Fracture
Bone fracture healing is a multistep and overlapping process
involving inflammation, osteogenesis, and angiogenesis (62).
Among these processes, the formation of primary bone is a
crucial one since it is the key process of fracture healing. Gu et al.
focused on patients with traumatic brain injury–fracture-
combined injuries and found that the NPY level was increased,
accomplished with an increase of bone formation markers,
indicating an active role of NPY in fracture healing (46). Sousa
et al. generated germline (Y1−/−) and osteoblastic-specific Y1R
knockout mice to characterize whether Y1R plays a role in
fracture healing. The fracture healing process was delayed in
the global deletion of Y1R in mice, and this delay is independent
from osteoblast-specific Y1R. In Y1R-specific deficient mice,
delayed endochondral fracture healing seems to be the result of
impaired inflammatory response and cartilage removal since
Y1R is widely expressed in neuronal but also in non-neuronal
cells, such as immune cells (47). However, Long et al. established
an angular fracture rat model and found that regenerating NPY
fibers were increased in the early stages and then reduced
between 21 and 56 days on the concave side compared with
the convex side, suggesting that NPY innervation appears to
correlate with the loss of callus thickness in angular fractures
(63). Based on the evidence mentioned above, the authors
hypothesized that NPY plays an important role in fracture
healing, and this role may not be achieved through Y1R.
Further study is needed to clarify the underlying mechanism.
FIGURE 1 | Schematic diagram showing NPY-mediated BMSC mobilization, EC angiogenesis, and bone turnover changes.
February 2022 | Volume 13 | Article 833485

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Chen and Zhang Effects of NPY on Bone
Inflammation
NPY is produced not only by the central and peripheral nervous
system but also by immune cells such as macrophages, B cells,
neutrophils, and lymphocytes (64). It can cause the activation of
immune cell response and induce the release of proinflammatory
cytokines including TNF-a or interleukin-6, acting as a potent
modulator of the immune responses during inflammation,
infection, and autoimmunity (65–67). In animal models of
systemic inflammation such as endotoxemia, the expression of
NPY in the hypothalamus was slightly increased and positively
correlated with the severity of inflammation (68, 69). A cross-
sectional design of rheumatoid arthritis (RA) patients found that
serum levels of NPY are significantly related to TNF-a levels and
disease activity in RA independently of IL-6, TNF-a, or leptin levels
(67). In patients with knee osteoarthritis, concentrations of NPY in
synovial fluid were gradually upregulated with the severity of pain,
suggesting a role for NPY as a putative regulator of joint homeostasis
(66). This suggested that NPY plays a crucial role in both systematic
and local sites, and often reflected the severity of inflammation.

Osteoarthritis
As the most common joint disease worldwide, OA is characterized
by cartilage degradation, synovial inflammation, subchondral bone
remodeling, and osteophyte formation and primarily identified as a
non-inflammatory musculoskeletal degeneration (70). Several
studies suggest the involvement of NPY in the pathogenesis of
OA, and it has already been identified as the major peptide involved
both in the generation of pain. NPY concentration in synovial fluid
was significantly higher in OA patients compared with controls and
positively correlated with pain intensity (66, 71). Kang et al. reported
that NPY was overexpressed in human OA cartilage accompanied
with increased Y2R expression. Stress stimulus resulted in the
sympathetic release of NPY, which in turn promoted the
upregulation of NPY and Y2R in articular cartilage and
participated in chondrocyte hypertrophy together with cartilage
matrix degradation (30). Hernanz et al. demonstrated a significant
stimulatory activity of NPY on inflammatory factors such as IL-1b,
IL-6, and TNF-a production by whole blood leukocytes from OA
patients in vitro, which play critical roles in pain in the early stage of
OA, indicating a positive effect of NPY in inflammation (72, 73).

Mood Disorders and Bone Abnormalities
Mood disorders such as chronic stress and depression often have
adverse consequences onmany organs, including the bone. In view of
the negative effects of NPY signaling on bone metabolismmentioned
above, NPY activity associated with chronic stress and depression
Frontiers in Endocrinology | www.frontiersin.org 5
would predict a deleterious influence on bone homeostasis. In
multiple sclerosis (MS) patients, autonomic nervous system
dysfunction and low BMD are intertwined with some mood
disorders such as depression, fatigue, and migraine (74). Higher
levels of depression were demonstrated in osteocalcin-deficient mice
when compared with wild-type mice, giving evidence to bone signal
back to the brain (75). Animal experiments also showed that
antidepressants may exhibit clinical efficacy by increasing NPY
expression levels (76). However, as a well-described anxiolytic
factor, NPY was also reported to exhibit a stress-protective role
specifically through Y2 receptors (51). The relationships between
NPY and mood disorder and between NPY and bone mass
maintenance are intriguing and need further investigations.
CONCLUSION

Previous studies have verified that NPY is widely present in the
brain and bone tissue and strongly influences bone metabolism
through direct and indirect manner. In addition to directly
regulating bone formation and resorption, NPY may also
participate in bone metabolism by affecting gut microbiota and
blood vessel formation. Furthermore, NPY has also been reported to
play an intermediary role in autonomic nerve regulation on bone
metabolism. As a substance synthesized by multiple places, it will be
a challenge to clearly clarify the role of NPY on bone turnover and
elucidate the pathophysiology of common bone diseases mentioned
above. Also, whether NPY derived from sympathetic nerve endings
and osteocytes has different physiological effects remains to be
explored. Even though previous studies have shown that NPY
participates in bone metabolism, especially in the bone formation
process and BMSC fate decision, the effect of NPY on
osteoclastogenesis and mood disorder is not fully understood.

In spite of NPY being mostly expressed in the central nervous
system, the role ofNPYsecretedby surrounding tissues, organs, and
cell types inbonemetabolismandcell signal transductionmaybean
important future research consideration. Future research on NPY
and its receptors will be beneficial for new drug development and
identifying new treatments for bone diseases.
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