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Objective: Adipose tissue plays a crucial role in serum uric acid (UA) metabolism, but the
relative contribution of adipose tissue insulin resistance (IR) to serum UA levels and
hyperuricemia have not explicitly been illustrated. Herein, we aimed to investigate the
association between the adipose tissue insulin resistance index (Adipo-IR) and
hyperuricemia in this cross-sectional study. The homeostasis model assessment of
insulin resistance (HOMA-IR) index, another widely applied marker to determine
systemic IR, was also explored.

Methods: A total of 5821 adults were included in this study. The relationship between
Adipo-IR or HOMA-IR and serum UA levels was assessed by multivariate linear
regression. Binary logistic regression analyses were applied to determine the sex-
specific association of the Adipo-IR tertiles and HOMA-IR tertiles with hyperuricemia.
Participants were then divided into normal BMI (18.5 ≤ BMI < 24) and elevated BMI (BMI ≥
24) groups for further analysis.

Results: Both Adipo-IR and HOMA-IR were positively correlated with serum UA (P <
0.001). Compared with the lowest tertile, the risks of hyperuricemia increased across
Adipo-IR tertiles (middle tertile: OR 1.52, 95%CI 1.24-1.88; highest tertile: OR 2.10, 95%
CI 1.67–2.63) in men after full adjustment (P for trend < 0.001). In women, only the highest
tertile (OR 2.09, 95%CI 1.52-2.87) was significantly associated with hyperuricemia. Those
associations remained significant in participants with normal BMI status. As for HOMA-IR,
only the highest tertile showed positive relationships with hyperuricemia in both genders
after full adjustment (P for trend < 0.001). The association between HOMA-IR and
hyperuricemia disappeared in men with normal BMI status.

Conclusions: Adipo-IR was strongly associated with serum UA and hyperuricemia
regardless of BMI classification. In men with normal BMI, Adipo-IR, rather than HOMA-
IR, was closely associated with hyperuricemia. Altogether, our finding highlights a critical
role of adipose tissue IR on serum UA metabolism and hyperuricemia.
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INTRODUCTION

Uric acid (UA), the final degradation metabolite of endogenous
and exogenous purine, is produced from the liver, intestine, and
muscles and mainly excreted through the kidney (1, 2).
Hyperuricemia, a serious threat to public health, is attributable
to the imbalance between UA synthesis and clearance (3).
Hyperuricemia is not only the precursor of gout and kidney
stones but also the obvious risk factor of metabolic syndrome,
hypertension, cardiovascular disease, and chronic kidney disease
(1, 3–5). Recent studies confirmed that adipose tissue was
another major organ responsible for UA production (2, 6);
meanwhile, the causal role of adiposity in hyperuricemia has
been established in many studies, highlighting the importance of
adipose tissue on UA metabolism (7, 8). Regardless, there are no
existing studies specifically addressing the exact role of insulin
resistance (IR) in adipose tissue played in serum UA levels
and hyperuricemia.

Adipose tissue is an insulin-sensitive organ essential for glucose
and lipid metabolism (9). Under normal circumstances, insulin
stimulates glucose uptake and lipogenesis while suppressing the
lipolysis of fat cells. Adipose tissue IR is marked with the blunted
antilipolytic effect of insulin and consequently increased FFA
release from adipose tissue (10). Excessive circulation FFA
delivery to liver and muscles thereby results in ectopic fat
storage in these organs and subsequent hepatic and muscle IR.
Therefore, the assessment of adipose tissue IR is vital as it is the
early metabolic defect prior to systematic IR. The determination of
lipolysis fluxes by isotope-labeled tracing through the multistep
pancreatic clamp and hyperinsulinemic–euglycemic clamp
techniques used to be the gold-standard measurement methods
for accessing adipose tissue insulin sensitivity, which is somehow
expensive, time consuming, and inapplicable to large-scale
populations (11, 12). Recently, a surrogate index, adipose insulin
resistance (Adipo-IR) index, calculated as fasting plasma free fatty
acid (FFA) (mmol/L) × fasting plasma insulin (FINS) mIU/L
concentrations, has been validated to be a unique, simple and
reliable predictor of adipose tissue IR in obesity-related metabolic
disorders (11–15). For instance, our previous study confirmed that
Adipo-IR progressively increased from overweight to class III
obesity (15). In addition, Adipo-IR has been proven to be the
major determent of hepatic fat content and the fibrosis degree of
Nonalcoholic fatty liver disease (NAFLD) (10, 16). Adipo-IR is
also correlated with abnormal glucose intolerance and metabolic
syndrome (9, 13). Results from the San AntonioMetabolism Study
and two other prospective studies revealed that Adipo-IR rose
progressively during the development of Type 2 diabetes mellitus
(17–19). A prospective study further indicated that elevated
Adipo-IR was associated with a higher risk of incident
dysglycemia (20). Nonetheless, the association between Adipo-
IR and hyperuricemia has never been elucidated.

Different from Adipo-IR, the homeostatic model assessment
of insulin resistance (HOMA-IR), calculated as fasting plasma
glucose [(FBG) (mmol/L) × FINS mIU/L)]/22.5, is a widely
applied parameter that focuses on glucose metabolism and
mainly introduced to demonstrate systemic IR, especially the
hepatic IR (21–23). Although a high correlation between the two
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indexes has been observed, recent studies indicated their
discordance in reflecting whole-body metabolism (24, 25).
Compared to HOMA-IR, Adipo-IR was more related to
visceral obesity, serum TG, and liver fibrosis (24). A previous
study has indicated the association of HOMA-IR with
hyperuricemia (21, 26). Nevertheless, the distinct association of
the two indexes with serum UA levels and hyperuricemia has not
been compared and elucidated.

This study aimed to demonstrate the impact of adipocyte IR
on serum UA and hyperuricemia by using the Adipo-IR index
for the first time, additionally, to compare the distinct roles of
Adipo-IR and HOMA-IR played in hyperuricemia in both male
and female subjects with a different BMI status.
METHODS

Study Population
This cross-sectional study included 5,925 participants in
Northern China who underwent routine physical examination
between April 2017 and August 2021 in Beijing Chao-yang
Hospital. We excluded participants under 18 years old (n = 5),
with missing UA data (n = 8), missing HbA1c value (n = 10),
missing blood pressure value (n = 66), and with reduced renal
dysfunction (n = 15), a final number of 5,821 subjects were
included in the final analysis. Ethical approval was obtained from
the ethics committee of Beijing Chao-yang Hospital. All
participants signed written informed consent in the study.

Anthropometric and
Biochemical Measurements
Height, body weight, systolic blood pressure (SBP), and diastolic
blood pressure (DBP) were measured by the same trained team
using standard methods as previously described (27). The venous
blood samples were collected after overnight fasting. Serum UA
levels were determined using a Siemens Advia 2400 biochemical
analyzer (Siemens Healthcare Diagnostics Inc., Tarrytown, New
York, USA). The FFA, total cholesterol (TC), triglyceride (TG),
low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), and serum creatinine (Scr)
were measured by colorimetric enzymatic assays using a
biochemical auto-analyzer (Hitachi 7170). FBG, FINS, and
glycated hemoglobin (HbA1c) levels were detected as
previously described (28). The estimated glomerular filtration
rate (eGFR) was calculated as previously described (29).

Definition of Variables
Hyperuricemiawasdefinedas serumUA≥420mmol/L inmenand≥
360 mmol/L in women. Hypertension was identified as SBP ≥ 140
mmHg, DBP ≥ 90 mmHg, or a self-reported previous diagnosis of
hypertension by a physician. Diabetes was determined as FBG ≥ 7.0
mmol/L, HbA1c ≥ 6.5% or self-reported previous diagnosis of
diabetes by a physician. Dyslipidemia was defined as TC ≥ 6.22
mmol/L, TG ≥ 2.26 mmol/L, LDL-C ≥ 4.14 mmol/L, HDL-C < 1.04
mmol/L, or a self-reported previous diagnosis of hyperlipidemia by a
physician. Adipo-IR was calculated by the formula: Adipo-IR= FFA
(mmol/L) × FINS (mIU/L). HOMA-IR was calculated by the
June 2022 | Volume 13 | Article 835154
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following formula: HOMA-IR = FBG (mmol/L) × FINS (mIU/L)/
22.5. Body mass index (BMI) was calculated as weight divided by
height squared (kg/m2).Participantsweredivided intonormalweight
(18.5 ≤ BMI < 24) and elevated weight (BMI ≥ 24) subgroups as
previously described (30).

Statistical Analysis
The IBM SPSS Statistics software, version 25 (IBM Corporation,
Armonk, NY, United States), the Graphpad 7.0 software and the
MedCalc version 17 software were used for data analysis. Basic
characteristic analysis was conducted in participants with
hyperuricemia and non-hyperuricemia. We performed analysis
separately in men and women to avoid potential sex influences
on the proportion of hyperuricemia. The Shapiro–Wilk test was
used for normality test and data were expressed as mean ±
standard deviation (SD) for continuous normally distributed
variables, median (upper and lower quartiles) for continuous
skewed distributed variables and number (%) for categorical
variables in this study. The difference of normally distributed
variables between two groups was calculated with unpaired
Student’s t test. The Mann–Whitney U test and Kruskal–
Wallis test were applied to compare the difference of
continuous skewed variables between two groups or three
groups, separately. For categorical data, the chi-square test was
used as appropriate for categorical variables. The linear trends of
hyperuricemia proportion across the Adipo-IR and HOMA-IR
tertiles were tested by the Cochran Armitage trend test.

Sex-specific linear regression analysis was accessed to explore
the association of serum UA (dependent variable) with Adipo-IR
and HOMA-IR (independent variable). UA was Ln-transformed
for analysis due to skewed distribution. The variables without
collinearity were selected for adjustment. Model 1 was without
adjustment; Model 2 was adjusted for age, BMI, SBP, TC, H-
DLC, TG, HbA1c, and eGFR; and Model 3 was conducted by
excluding participants with diabetes and was adjusted for
Model 2.

Adipo-IR and HOMA-IR were then divided into tertiles,
Adipo-IR, male: lowest tertile ≤ 2.87; middle tertile 2.88–5.30;
highest tertile ≥ 5.30; Female: lowest tertile ≤ 2.96; middle tertile
2.97–5.11; highest tertile ≥ 5.11; HOMA-IR, male: lowest tertile ≤
1.44; middle tertile 1.45–2.41; highest tertile ≥ 2.41; Female:
lowest tertile ≤ 1.25; middle tertile 1.26–2.01; highest tertile ≥
2.01. The sex-specific associations of Adipo-IR tertiles or
HOMA-IR tertiles with the prevalence of hyperuricemia were
detected by binary logistic regression analyses, with the lowest
tertile as the reference. Model 1 was crude, model 2 was adjusted
for age, BMI, HbA1c, eGFR, hypertension and dyslipidemia.
Model 3 was conducted by excluding participants with diabetes
and was adjusted for Model 2. Further analyses were conducted
in BMI subgroups (normal BMI and elevated BMI). Age, HbA1c,
eGFR, hypertension, and dyslipidemia were adjusted.
Additionally, the association of per SD increase of both
indexes with hyperuricemia were analyzed, respectively. Data
were summarized as odds ratios (ORs) and 95% confidence
intervals (CIs). Furthermore, we use the receiver operating
characteristic (ROC) curve analysis to compare the predictive
powers of the two indexes for hyperuricemia among men and
Frontiers in Endocrinology | www.frontiersin.org 3
women. The comparison of the area under the curve (AUC) was
analyzed by Delong’s ROC test. For the above analysis, Two-
tailed P values <0.05 were considered statistically significant.
RESULTS

Characteristics of Participants With
Hyperuricemia and Non-Hyperuricemia
As presented inTable 1, the prevalence of hyperuricemia was 35.2%
in men and 13.3% in women. The Adipo-IR and HOMA-IR and
BMI levels were all higher in participants with hyperuricemia than
individuals without hyperuricemia in both genders (P < 0.001).
Female subjects with hyperuricemia were older and were more
prone to have metabolic disorders such as diabetes, hypertension,
and dyslipidemia than non-hyperuricemia subjects (all P < 0.001).
Interestingly, male participants with hyperuricemia were
significantly younger (P < 0.001) and the proportion of
individuals with diabetes was smaller (P = 0.012) compared to
non-hyperuricemia subjects. Additionally, the proportions of
individuals with hypertension were comparable among male
participants with and without hyperuricemia (P = 0.232).

Association of Serum UA Levels With
Adipo-IR or HOMA-IR Index by Linear
Regression Analysis
The correlation between Adipo-IR or HOMA-IR and serum uric
acid by spearman analysis was presented in Supplementary
Table 1. Both Adipo-IR and HOMA-IR showed positive
correlations with UA in both genders (all P < 0.001). The
correlations existed in both normal BMI and elevated BMI
subgroups (all P < 0.001). Further linear regression analysis
indicated that higher Adipo-IR or HOMA-IR levels were
associated with higher Ln UA levels in both genders (Table 2)
(all P < 0.001). The positive correlations remained in both
genders after full adjustment (all P < 0.001). As the proportion
of diabetes was distinct in men and women, we excluded
participants with diabetes and found consistent positive
relationships between both the indexes and Ln UA in both
genders (all P < 0.001). Furthermore, the serum UA levels (all
P < 0.01) as well as the ratio of hyperuricemia (P for trend <
0.001) exhibited increasing trends from the lowest to highest
tertiles of the two indexes in both genders (Figure 1 and
Supplementary Figure 1).

Association of Adipo-IR and HOMA-IR
With Hyperuricemia by Logistic
Regression Analyses
The association of sex-specific Adipo-IR and HOMA-IR tertiles
with the prevalence of hyperuricemia is shown in Table 3. The
lowest tertile was used as the reference. Overall, the risk of
hyperuricemia increased across Adipo-IR tertiles and HOMA-IR
tertiles (all P for the trend <0.001). In the crude model, the ORs
of middle and highest Adipo-IR tertiles for hyperuricemia in
men were 1.71 (95% CI 1.41–2.08) and 2.82 (95% CI 2.33–3.41),
respectively. After adjusting for confounders, the ORs of the
June 2022 | Volume 13 | Article 835154
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middle and highest Adipo-IR tertiles for hyperuricemia were
1.52 (95% CI 1.24–1.88) and 2.10 (95% CI 1.67–2.63),
respectively. Among women, only the OR of the highest
Adipo-IR tertile for hyperuricemia was statistically significant
compared to the lowest tertile, either in a crude (OR 3.53, 95%CI
2.66–4.70) or fully adjusted model (OR 2.09, 95%CI 1.52–2.87)
(all P for trend < 0.001). Similar relationships between Adipo-IR
and hyperuricemia were observed in non-diabetic participants.
Furthermore, we observed a 24% and 47% higher risk of
hyperuricemia with each SD increment in Adipo-IR in men
and women, respectively.

As for the HOMA-IR index, similar to Adipo-IR, the highest
tertile of HOMA-IR showed higher hyperuricemia risk in
women (Model 1: OR 3.20, 95%CI 2.42–4.23; Model 2: OR
1.74, 95%CI 1.26–2.42; Model 3: OR 1.60, 95%CI 1.15–2.24).
Frontiers in Endocrinology | www.frontiersin.org 4
Meanwhile, in men, different from Adipo-IR, only the highest
tertile HOMA-IR (OR 1.61, 95%CI 1.28–2.03) showed a positive
relationship with hyperuricemia after full adjustment.

Association of Adipo-IR Tertiles and
HOMA-Tertiles With Hyperuricemia by
Logistic Regression Analyses in Normal
BMI and Elevated BMI Subgroups
To evaluate the association of Adipo-IR and HOMA-IR with
hyperuricemia among participants with normal weight, we
conducted a subgroup analysis in participants with normal
BMI or elevated BMI status. The UA levels and the proportion
of subjects with hyperuricemia showed an increasing trend from
the bottom to top Adipo-IR and HOMA-IR tertiles even in
normal BMI subgroups of both genders (Figure 2 and
TABLE 1 | Basic characteristics of the participants with and without hyperuricemia.

Variable men Women

Normal Hyperuricemia P-value Normal Hyperuricemia P-value

N (%) 1,950 (64.8) 1,060 (35.2) 2,436 (86.7) 375 (13.3)
Age, years 46.76 ± 12.85 42.96 ± 12.56 < 0.001 43.39 ± 13.29 47.64 ± 15.22 <0.001
BMI, kg/m2 25.16 ± 3.17 26.73 ± 3.45 < 0.001 22.76 ± 3.45 25.30 ± 4.50 <0.001
DBP, mmHg 126.04 ± 16.50 128.11 ± 16.79 0.001 117.54 ± 18.24 125.01 ± 21.07 <0.001
SBP, mmHg 75.49 ± 11.37 77.33 ± 12.02 < 0.001 68.63 ± 11.03 72.06 ± 11.64 <0.001
FBG, mmol/L 4.96 (4.60-5.44) 4.97 (4.58-5.43) 0.850 4.76 (4.43-5.12) 4.98 (4.59-5.45) <0.001
HbA1c, % 5.5 (5.3-5.8) 5.5 (5.3-5.8) 0.505 5.4 (5.2-5.7) 5.6 (5.3-6.0) <0.001
FINS, mIU/L 7.7 (5.4-10.7) 9.7 (6.7-13.7) < 0.001 7.2 (5.3-9.9) 10.0 (6.5-14.3) <0.001
FFA, mmol/L 0.46 (0.35-0.60) 0.50 (0.39-0.62) < 0.001 0.52 (0.40-0.67) 0.60 (0.46-0.75) <0.001
TG, mmol/L 1.36 (0.98-1.92) 1.74 (1.22-2.50) < 0.001 1.01 (0.77-1.39) 1.41 (0.96-2.12) <0.001
TC, mmol/L 4.89 (4.31-5.51) 5.09 (4.53-5.72) < 0.001 4.86 (4.31-5.52) 5.23 (4.59-5.99) <0.001
H-DLC, mmol/L 1.18 (1.00-1.35) 1.10 (1.00-1.30) < 0.001 1.50 (1.27-1.71) 1.30 (1.10-1.50) <0.001
L-DLC, mmol/L 3.00 (2.48-3.60) 3.20 (2.67-3.73) < 0.001 2.80 (2.30-3.36) 3.14 (2.55-3.89) <0.001
UA, mmol/L 357.0 (320.0-388.0) 468.0 (441.0-508.0) < 0.001 273.0 (240.0-307.0) 390,0 (373.0-418.8) <0.001
eGFR, mL/min per 1.73 m2 111.32 (102.82-120.07) 111.26 (100.89-120.41) 0.290 116.57 (106.62-126.18) 107.97 (99.56-121.51) <0.001
Adipo-IR 3.50 (2.23-5.52) 4.87 (3.04-7.31) < 0.001 3.73 (2.44-5.62) 5.67 (3.48-9.18) <0.001
HOMA-IR 1.74 (1.17-2.53) 2.19 (1.44-3.21) < 0.001 1.53 (1.08-2.16) 2.27 (1.39-3.39) <0.001
Hypertension, n (%) 430 (22.1) 254 (24.0) 0.232 316 (13.0) 90 (24.0) <0.001
Diabetes, n (%) 229 (11.7) 93 (8.8) 0.012 96 (3.9) 30 (8.0) <0.001
Dyslipidemia, n (%) 861 (44.2) 626 (59.1) < 0.001 524 (21.5) 167 (44.5) <0.001
June
 2022 | Volume 13 | Article
Data were expressed as the mean ± SD or median (upper and lower quartiles) or number (proportion). BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure;
FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; FINS, fasting insulin level; FFA, free fatty acid; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; UA, uric acid; eGFR, estimated glomerular filtration rate; Adipo-IR, adipose tissue insulin resistance; HOMA-IR, homeostasis model
assessment of insulin resistance.
TABLE 2 | Linear regression analysis for association of Adipo-IR and HOMA-IR (independent variables) with LnUA (dependent variable).

Variable Ln UA (men) Ln UA (women)

B(SE) Standardized b P-value B(SE) Standardized b P-value

Adipo-IR
Model 1 0.013 (0.001) 0.235 <0.001 0.015 (0.001) 0.266 <0.001
Model 2 0.007 (0.001) 0.125 <0.001 0.009 (0.001) 0.151 <0.001
Model 3 0.008 (0.001) 0.127 <0.001 0.009 (0.001) 0.146 <0.001

HOMA-IR
Model 1 0.016 (0.002) 0.145 <0.001 0.033 (0.003) 0.235 <0.001
Model 2 0.007 (0.002) 0.064 0.001 0.016 (0.003) 0.114 <0.001
Model 3 0.009 (0.003) 0.059 0.004 0.022 (0.004) 0.117 <0.001
Model 1: Crude model.
Model 2: Adjusted for age, BMI, SBP, TC, H-DLC, TG, HbA1c, and eGFR.
Model 3: Excluding participant with diabetes and adjusted for Model 2.
835154
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A B

DC

FIGURE 1 | The serum UA levels (A, B) and prevalence of hyperuricemia (C, D) across the Adipo-IR tertiles. Data were expressed as median (upper and lower
quartiles) or proportion (%). P trend: from test for linearity.
TABLE 3 | Logistic regression analysis for association between Adipo-IR or HOMA-IR and hyperuricemia.

Variables men Women

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Adipo-IR
Lowest tertile Ref. Ref. Ref. Ref. Ref. Ref.
Middle tertile 1.71(1.41,2.08)*** 1.52(1.24,1.88)*** 1.49(1.20,1.85)*** 1.28(0.92,1.77) 1.04(0.74,1.46) 1.02(0.72,1.44)
Highest tertile 2.82(2.33,3.41)*** 2.10(1.67,2.63)*** 2.07(1.64,2.62)*** 3.53(2.66,4.70)*** 2.09(1.52,2.87)*** 2.02(1.46,2.79)***
P for trend <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Per SD increase 1.45(1.34,1.57)*** 1.24(1.13,1.36)*** 1.33(1.19,1.49)*** 1.75(1.59,1.93)*** 1.47(1.31,1.64)*** 1.52(1.34,1.72)***

HOMA-IR
Lowest tertile Ref. Ref. Ref. Ref. Ref. Ref.
Middle tertile 1.41(1.17,1.71)*** 1.14(0.92,1.40) 1.13(0.91,1.39) 1.11(0.81,1.53) 0.92(0.66,1.29) 0.85(0.61,1.20)
Highest tertile 2.32(1.93,2.80)*** 1.61(1.28,2.03)*** 1.63(1.28,2.07)*** 3.20(2.42,4.23)*** 1.74(1.26,2.42)** 1.60(1.15,2.24)**
P for trend < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Per SD increase 1.25(1.16,1.35)*** 1.07(0.98,1.17) 1.19(1.04,1.37)* 1.72(1.54,1.93)*** 1.43(1.25,1.64)*** 1.58(1.32,1.89)***
Frontiers in Endocrinolog
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Model 1: Crude model.
Model 2: Adjusted for age, BMI, HbA1c, eGFR, hypertension, and dyslipidemia.
Model 3: Excluding participant with diabetes and adjusted for Model 2.
*P < 0.05; **P < 0.01; ***P < 0.001.
The meaning of the bold values is the values were statistically significant.
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Supplementary Figures 2–4) (P for trend < 0.001). In the
normal BMI subgroup, one SD increase in Adipo-IR showed
48% (P for trend = 0.025) and 52% (P for trend = 0.002) higher
risks for hyperuricemia in men and women, respectively. By
contrast, one SD increase in HOMA-IR was not associated with
higher hyperuricemia risk in men (Figure 3) (Table 4). When
Frontiers in Endocrinology | www.frontiersin.org 6
Adipo-IR and HOMA-IR were entered as tertiles, both the
middle and highest Adipo-IR tertiles showed significantly
positive association with hyperuricemia in men irrespective of
BMI classification. In contrast, no association was observed
between HOMA-IR tertiles and hyperuricemia in male normal
BMI subgroup (Table 4).
A B

DC

FIGURE 2 | The serum UA levels (A, B) and prevalence of hyperuricemia (C, D) across the Adipo-IR tertiles in normal BMI and elevated BMI subgroups. Data were
expressed as median (upper and lower quartiles) or proportion (%). P trend: from test for linearity.
A B

FIGURE 3 | Logistic regression analysis for the OR of per SD increment of Adipo-IR or HOMA-IR for hyperuricemia risk in normal BMI (A) and elevated BMI (B) subgroups.
Models were adjusted for age, HbA1c, eGFR, hypertension, and dyslipidemia. .
June 2022 | Volume 13 | Article 835154
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The AUC of Adipo-IR and HOMA-IR
for Hyperuricemia
Supplementary Figure 5 displays the ROC curves related to the
diagnostic ability of Adipo-IR and HOMA-IR for hyperuricemia
incidence among men and women, respectively. In women, the
AUC for Adipo-IR (0.667, 95%CI 0.649–0.684) and HOMA-IR
(0.654, 95%CI 0.636–0.672) were comparable (P = 0.18), whereas in
men, Adipo-IR showed larger AUC (0.624, 95%CI 0.607–0.642)
than HOMA-IR (0.604, 95%CI 0.586–0.622) (P = 0.003), which
implied a closer relationship between Adipo-IR and hyperuricemia.
DISCUSSION

This is the first study exploring the relationship between Adipo-
IR and UA as well as hyperuricemia in a Northern Chinese
population. Our study revealed that Adipo-IR was positively
associated with serum UA levels and hyperuricemia. This
relationship was independent of age, BMI, eGFR, diabetes,
dyslipidemia, and hypertension. Furthermore, we found that
HOMA-IR was not as good as Adipo-IR to predict
hyperuricemia in men, especially in a normal BMI status,
indicating a possibly closer relationship between Adipo-IR and
serum UA metabolism compared to hepatic insulin resistance.

Adipose tissue is an essential endocrine organ for UA
metabolism. Theoretically, xanthine oxidoreductase (XOR) is the
responsible enzyme for the final step of UA production. Apart from
the small intestine and liver, adipose tissue is another major organ
with abundant expression and activities of XOR and is indispensable
forUAproduction and secretion (6, 31). The causal role of obesity to
elevated serum UA levels has been well established for years (7, 8).
Genetically, adiposity was also considered to be positively associated
with serumUA concentrations and the risk of gout (7, 8). Consistent
with this, XOR was reported to be a regulator of adipogenesis and
correlated positively with adipose mass. Obese adipose tissues own
higher XOR activities and thereby possess a higher ability for UA
secretion (31). The elevated XOR activity during obesity may be
related to hypoxia and active lipid metabolism consuming
Frontiers in Endocrinology | www.frontiersin.org 7
nicotinamide adenine dinucleotide phosphate. Reciprocally, long-
term elevated UA levels could result in a pro-inflammatory state of
adipose tissue by inducing monocyte chemotactic protein 1 release
and thus causing a vicious cycle (32).

IR has been suggested to be the mediator between obesity and
hyperuricemia (33). The amelioration of IR decreased the serum
UA level independent of weight loss, while the UA-lowering
therapy did not change insulin sensitivity in hyperuricemia
subjects (34, 35). By contrast, other studies indicated that
hyperuricemia could be detected before hyperinsulinemia (3,
36).In a prospective study, elevated serum UA could predict IR
in 15 follow-up years (4). Although current studies indicated a
reciprocal causation between IR and hyperuricemia, it is doubtless
that compensatory hyperinsulinemia is the bridge between IR and
hyperuricemia (37). Compensated hyperinsulinemia caused by IR
could decrease the renal clearance of UA, as has long been proven
(26, 38, 39). Admittedly, both compensated hyperinsulinemia
during hepatic IR or adipose IR could contribute to reduced UA
excretion. It is noteworthy that adipose IR precedes hepatic IR or
systemic IR during the course of obesity. Current evidence has
revealed that visceral obesity, more closely linked to adipose
dysfunction, was more responsible for hyperuricemia than
overall adiposity (40, 41). Although subcutaneous fat constitutes
a major proportion of total fat, visceral fat contributes more to
serum UA levels. The possible explanation may be that visceral fat
has a stronger lipolysis ability and attributes to adipose IR to a
greater degree. Firstly, compensatory hyperinsulinemia caused by
excess visceral fat IR could decrease the renal clearance of UA as
described above. Secondly, a stronger lipolysis of visceral adipose
tissue can increase the flow of FFA to the liver, accelerating the de
novo lipogenesis in the liver. The increased need for nicotinamide
adenine dinucleotide phosphate (NADPH) in this process is
accompanied by activated PPP pathways and purine synthesis.
Therefore, the above process resulted in the acceleration of hepatic
UA production. Consistently, studies indicated that Adipo-IR
increased proportionally with visceral fat (41). In our study, we
firstly used the simple Adipo-IR index to demonstrate the role of
IR in adipose tissue played in UAmetabolism and found a positive
TABLE 4 | Logistic regression analysis for association between Adipo-IR or HOMA-IR and hyperuricemia in both normal BMI and elevated BMI subgroups.

Variables men Women

18.5 ≤ BMI < 24 BMI ≥ 24 18.5 ≤ BMI < 24 BMI ≥ 24

Adipo-IR
Lowest tertile Ref. Ref. Ref. Ref.
Middle tertile 1.63(1.13,2.35)** 1.59(1.23,2.06)*** 1.12(0.70,1.78) 1.23(0.70,2.15)
Highest tertile 1.65(1.01,2.70)* 2.63(2.03,3.40)*** 1.99(1.25,3.17)** 2.81(1.70,4.63)***
P for trend 0.025 < 0.001 0.002 < 0.001
Per SD increase 1.48(1.10,1.98)** 1.32(1.21,1.46)*** 1.52(1.24,1.87)*** 1.52(1.34,1.74)***

HOMA-IR
Lowest tertile Ref. Ref. Ref. Ref.
Middle tertile 1.39(0.97,2.01) 1.11(0.86,1.44) 0.96(0.61,1.51) 1.00(0.56,1.81)
Highest tertile 1.58(0.91,2.76) 1.85(1.42,2.40)*** 1.88(1.18,3.00)** 2.03(1.20,3.45)**
P for trend 0.020 <0.001 0.002 <0.001
Per SD increase 1.07(0.90,1.28) 1.19(1.08,1.31)** 1.48(1.09,2.02)* 1.51(1.30,1.76)*
June 2022 | Volume 1
Models were adjusted for age, HbA1c, eGFR, hypertension and dyslipidemia.
*P < 0.05; **P < 0.01; ***P < 0.001.
The meaning of the bold values is the values were statistically significant.
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relationship between them beyond total adiposity, further
implying the pathogenic effect of adipose tissue dysfunction in
serum UA homeostasis.

As a simple serum index, Adipo-IR has been validated against
the cumbersome isotope- tracing experiment for accurately
accessing adipose insulin sensitivity. Adipo-IR was shown to be
positively correlated with BMI (15, 18, 25). Additionally, previous
studies indicated that the Adipo-IR index could reflect the state of
adipose tissue IR only in subjects with overweight and obesity (11,
14). Recently, growing studies indicated that Adipo-IR could
mirror metabolism disorders regardless of obesity. Adipo-IR
showed strong correlations with both the hepatic fat and fibrosis
of NAFLD patients independently of BMI and Type 2 diabetes
mellitus (10, 42). Obese subjects with normal insulin-sensitive
adipose tissue seldom develop ectopic fat deposition in the liver
(43). In our study, Adipo-IR was shown to be an independent risk
factor for hyperuricemia even in participants with normal BMI,
indicating the critical role of adipose tissue function beyond fat
mass on UA metabolism.

Theoretically and practically, Adipo-IR is highly correlated
with HOMA-IR (25, 32, 42). However, the discordance between
the two indexes for demonstrating metabolic diseases has gained
great attention recently (24, 44). One study claimed that elevated
Adipo-IR was more closely linked with visceral adiposity and
hypertriglyceridemia, while elevated HOMA-IR was associated
with a lower basic metabolic rate (24). Another study indicated
that Adipo-IR was more closely associated with developing
prediabetes relative to HOMA-IR (13, 18), indicating a more
initial role of adipose tissue IR for glucose dysregulation.
Furthermore, compared to HOMA-IR, Adipo-IR was more
related to the severity of fibrosis in NAFLD and could be more
critical for aortic valve calcification (10, 45). These inconsistencies
are possibly due to the differential metabolic effects of adipose
tissue and other metabolic organs, more importantly, the
pathogenic role of adipose tissues in those diseases.

Several studies indicated a positive relationship between
HOMA-IR and hyperuricemia (21). It was not equivalent to
the exact role of adipose tissue IR on hyperuricemia. In addition,
the present study revealed that Adipo-IR was more closely
related with hyperuricemia than HOMA-IR, verifying a more
essential role of adipose tissue IR on serum UA metabolism, at
least in men. One explanation may be that FFA outweighs
glucose for the initiation of hyperuricemia. Another factor that
cannot be ignored is sex hormones. Consistent with our results,
L.-K. Chen et al. claimed a positive association between serum
UA and HOMA-IR in older women but not in men among a
Taiwan population (46). Another study revealed a sex-difference
association between metabolically healthy obese status and
hyperuricemia (47). Further studies are warranted to explore
the sex-related roles of IR in hyperuricemia.

Previous studies indicated a bell-shaped relationship between
HbA1c, FBG, and serum UA levels (1, 2, 48, 49). UA was positively
correlated with FBG and HbA1c before the onset of diabetes (2).
However, in individuals with diabetes, UA would be decreased as
urine glucose facilitated the excretion of UA (49). Therefore, we
also evaluated the relationship between Adipo-IR and uric acid in
the non-diabetes participants.We got the conclusion that Adipo-IR
Frontiers in Endocrinology | www.frontiersin.org 8
correlated well with serum UA levels irrespective of the blood
glucose status.

There are some limitations to this study. First of all, the direct
causal relationship between Adipo-IR and hyperuricemia cannot
be inferred from the observational association in this research.
Secondly, the serum UA level is also affected by other confounding
factors, such as alcohol consumption, purine-rich diets, diuretic
therapy, and genetic risk (4, 7, 50), which we did not collect in this
study. Furthermore, the variables that reflect the content of visceral
fat, such as waist circumference or the percentage of the body fat,
were not collected in this study. Finally, all the participants were of
yellow race. This may limit the generalizability of our results to
other races. Consequently, more studies are needed to demonstrate
the causality, and to extend our findings in different ethnicities
and regions.

CONCLUSION

To summarize, this is the first study to explore the association of
Adipo-IR and serum UA as well as hyperuricemia. Our study
indicated a critical role of adipose tissue IR on serum UA
metabolism in both normal weight and overweight/
obesity participants.
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