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Brown adipose tissue (BAT) is a unique organ in mammals capable of dissipating energy in
form of heat. Additionally, white adipose tissue (WAT) can undergo browning and perform
thermogenesis. In recent years, the research community has aimed to harness
thermogenic depot functions for new therapeutic strategies against obesity and the
metabolic syndrome; hence a comprehensive understanding of the thermogenic fat
microenvironment is essential. Akin to WAT, immune cells also infiltrate and reside
within the thermogenic adipose tissues and perform vital functions. As highly plastic
organs, adipose depots rely on crucial interplay with these tissue resident cells to
conserve their healthy state. Evidence has accumulated to show that different immune
cell populations contribute to thermogenic adipose tissue homeostasis and activation
through complex communicative networks. Furthermore, new studies have identified -but
still not fully characterized further- numerous immune cell populations present in these
depots. Here, we review the current knowledge of this emerging field by describing the
immune cells that sway the thermogenic adipose depots, and the complex array of
communications that influence tissue performance.
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INTRODUCTION: OBESITY AND THE ADIPOSE TISSUE

Obesity and its underlying metabolic complications are a worldwide concern with significant medical
and social implications (1–4). Adipose depots are the primary site of energy storage and also perform
vital endocrine functions that regulate and maintain energy homeostasis (5). In mammals, two main
types of adipose tissue exist, being different in origin, location, morphology and function (6–9).
White adipocytes contain large unilocular lipid droplets that store large amounts of lipids, whereas
brown adipocytes contain multilocular small lipid droplets as well as a high number of mitochondria
and dissipate energy as heat. Additionally, beige adipocytes originate from a white adipocyte lineage
but can undergo browning and acquire brown adipocyte-like features (10). Thus, both brown and
beige fat tissues have thermogenic potential and will be referred to as thermogenic adipose tissues
(TAT). After its re-discovery in adult humans (11–14), TAT gained considerable therapeutic interest
for the treatment of metabolic disease (15, 16). A profound understanding of TAT functions and
heterogeneity is required to properly harness its benefits, hence, great focus has been devoted on
investigating key cells, such as immune cells, that are critical contributors of TAT health.
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IMMUNE CELLS ARE RELEVANT BOTH
IN WHITE AND THERMOGENIC
ADIPOSE TISSUES

TAT not only harbor adipocytes, but stromal cells, nerves, pre-
adipocytes and immune cells also reside within these tissues
(17–19). Similarly to WAT, where immune cells reside and
infiltrate the tissue for healthy expansion and homeostasis
(20, 21) or contribute to chronic inflammation during obesity
(22–25) immune cells in TATmay support tissue remodeling but
might also contribute to alter thermogenic function. As of today,
the knowledge about immunity and inflammation in the context
of TAT is recent and more limited (26–31).
UNDERSTANDING THE ROLES OF
IMMUNE CELLS IN THERMOGENIC
ADIPOSE DEPOTS

The immune system is a complex family of molecules, cells and
organs. Immune cells can be classified into myeloid or lymphoid
lineages depending on the progenitor cell they arose from (32).
Besides, the immune response can be rapid and unspecific
(innate response) or slower but more sophisticated (adaptive
response), which allows a simple classification of cells based on
their origin and their ability to respond to a foreign threat. In
absence of danger, immune cells contribute to tissue surveillance
and homeostasis (33). In TAT, immune cells are essential not
only to maintain tissue homeostasis, but also to help the tissue
adapt to external stimuli, such as cold or pathogenic conditions.
A summary of all immune cells described to perform important
functions in TAT is presented in Table 1.

Macrophages: Patrollers With
Wide Functions
Macrophages comprise the most well studied immune cell
population in the AT. While the AT literature mostly classifies
macrophages into the simple M1/M2 (pro/anti-inflammatory)
subsets, macrophages are highly plastic, and many more subsets
may be described according to a wide series of markers and
functions (60, 61).

Macrophages within WAT and BAT present different profiles
(62). BAT macrophages are generally profiled as the M2 subset
(63) and have been proposed to support thermogenic functions
(27). In addition to their role in BAT, M2 macrophages were also
reported to facilitate browning by clearing out dead adipocytes
and favoring the recruitment of PDGFRa+ progenitor cells after
b3-adrenergic receptor activation (64). A later study showed that
mice receiving adipose stem cell-derived exosomes induced M2
macrophage activation, favored WAT browning and improved
metabolism (65). In another study, the suppression of M2
polarization affected BAT activity and WAT browning in obese
mice (35). Conversely, other studies linked the M1 phenotype
induction with loss of browning in WAT and impaired BAT
thermogenic function (36, 37). Thus, M2 polarization, browning,
and BAT functions are positively correlated (38, 39). However, a
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recent study claimed a subset of M2 macrophages to partially
hijack beige progenitor proliferation and browning (66). Overall,
the precise link between macrophage alternative activation and
thermogenesis still remains to be formally established, and it is
important to highlight that a deep categorization of all
macrophage populations was missing in these studies, raising
the possibility that further distinct subpopulations of
macrophages mediate different effects, potentially explaining
some discrepancies.

M2 macrophages were initially reported to sustain adaptive
thermogenesis through catecholamine production in response to
cold (67, 68), bringing a new perspective in the study of TAT
modulation through immune cells. However, recent studies
disclaimed this fact, as no changes in energy expenditure were
found between wild-type, Ucp1-/- and Il4ra-/- mice, nor were AT-
resident macrophages (ATMs) expressing the catecholamine
synthetizing enzyme, tyrosine hydroxylase (69). In fact, a
subpopulation of macrophages, the so-called sympathetic
neuron-associated macrophages (SAMs), has been suggested
to metabolize catecholamines via the expression of the
norepinephrine (NE) transporter solute carrier family 6
member 2 (SLC6A2) and the degradation enzyme monoamine
oxidase A (MAOA) (40). Macrophages were also found to
degrade NE via NLRP3 inflammasome activation (70). These
conflicting results could rise from the fact that macrophages
sustain sympathetic innervation (71, 72), and although not
directly synthetizing it, they might contribute to the local titers
of NE produced by sympathetic neurons present in TAT by
directly communicating with them (73, 74). More recently, a
study pointed out CX3CR1+ SAMs as a potential source of IL-27,
which has been shown to contribute to thermogenesis and
energy expenditure (75). Besides, a novel study proposed a
subpopulation termed cholinergic adipose macrophages
(ChAMs) to secrete acetylcholine and regulate thermogenic
activation of beige fat (41), adding another layer of complexity
to the global contribution of macrophages to sympathetic
activation. The sufficiency of M2 macrophages in promoting
browning independently of sympathetic neuron involvement
was described in a Fasn-/- mouse model (76). Furthermore,
macrophages can also express uncoupling protein 1 (UCP1)
and aid on beige AT remodeling after cold exposure (77).

Lineage tracing human studies suggested that WAT
macrophages could dedifferentiate towards pre-adipocytes and
vice versa (78). If applicable to the thermogenic depots, this
could become a valuable approach to increase the portion of
energy-burning cells within TAT. In other tissues such as the
heart, macrophages have been proposed to be essential for
mitochondria turnover leading to severe alterations in cardiac
function and metabolism when ablated (79). This opens up a new
horizon for alternative roles of macrophages in TAT and could
lead to new therapeutic approaches.

Eosinophils and Type 2 Innate Lymphoid
Cells: The Type 2 Immunity
Eosinophils and type 2 innate lymphoid cells (ILC2s) are usually
present in the mucosas and act during helminthic infections and
allergies (80, 81), although their functions are more diverse and
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vary depending on their location in the body (82). In adipose
depots, eosinophils express high levels of Siglec-F and produce
IL-4 and IL-13 to induce M2 macrophage polarization (42).
Genetic ablation of eosinophils or the IL4/13-IL4Ra-STAT6
pathway has been linked to impaired cold-induced browning
as a result of loss of macrophage M2 polarization (67). Therefore,
the overall contribution of M2 macrophages to TAT functions
and browning may be regulated upstream by the presence of
Frontiers in Endocrinology | www.frontiersin.org 3
eosinophils and/or IL-4/13 signaling. Type 2 immune signaling
could hence be a promising approach for the treatment of
metabolic diseases. This strategy was tackled in a study which
tried to counteract the HFD-induced eosinopenia by treating
mice with helminth antigens (83). Despite increased eosinophils
in WAT, the treatment neither did affect eosinophil numbers in
BAT nor induced WAT activation or browning. Considering
that immune cell profiles vary depending on their environment,
TABLE 1 | Overview of the general roles and specific functions of immune cells in thermogenic adipose depots.

Cell Lineage Line of
defense

Subsets General functions Functions in thermogenic adipose depots

Macrophage Myeloid Innate
immunity

M1 Pro-inflammatory. M1 cells
exert anti-microbial and anti-
tumoral activity. Involved in
tissue damage (34).

Promote a pro-inflammatory state. Secretion of pro-inflammatory cytokines.
Whitening of BAT and loss of thermogenic potential. Exacerbation of obese
conditions (35–37).

M2a, M2b,
M2c, M2d

Anti-inflammatory. M2 cells
regulate tissue homeostasis
and repair. Phagocytic,
angiogenic and
immunomodulatory capacity
(34).

Promote an anti-inflammatory state. Direct communication with eosinophils
through secreted molecules to maintain thermogenic homeostasis. Contribute to
browning of WAT possibly through catecholamine or acetylcholine production. A
macrophage subset (SAM) impairs thermogenic activation through catecholamine
degradation. Discrepancies may arise due to the wide heterogeneity of
macrophage populations (38–42).

Eosinophil Myeloid Innate
immunity

– Involved in defense against
parasites and helminths, and
allergies (34).

Sustain adaptive thermogenesis by communicating with M2 and ILC2s. Involved in
tissue browning and anti-inflammatory state promotion. Genetic loss of eosinophils
negatively affects cold responses in TAT (42, 43).

T cell Lymphoid Adaptive
immunity

CD4+ T
helper (Th)

Th cells orchestrate and
modulate adaptive immune
responses (34).

Naïve Th cells in TAT differentiate towards Tregs upon cold stimuli. Altered tissue
conditions may trigger skewing towards pro-inflammatory subsets (Th1) (44, 45).

CD4+ T
regulator
(Treg)

Tregs express Foxp3 and are
involved in immune
suppression and
homeostasis (34).

Support and regulate homeostasis in TAT by suppressing inflammatory signals.
Treg loss affects cold responses and thermogenic identity. Their alteration through
inflammatory signals affects metabolic syndrome (44–46).

CD8+ T
cytotoxic

(Tc)

Tc cells kill virus infected and
cancer cells (34).

Suppression of browning through IFN signaling (47).

B cell Lymphoid Adaptive
immunity

Activated B
cell

In charge of antibody
production, antigen
presentation and production
of cytokines (34).

B cells comprise 20-30% of all leukocytes in TAT. Their number increases upon
diet-induced obesity, and they negatively modulate IL-10 receptor in beige
adipocytes (48, 49).Plasma cell

Innate
lymphoid
cell (ILC)

Lymphoid Innate
immunity

ILC1, ILC2,
ILC3

ILCs belong to the lymphoid
family but do not express
antigen-specific receptors.
Thought to be the innate
counterparts of Th1, Th2 and
Th17 cells (34).

Induction of proliferation of PDGFRa progenitor cells and modulation of M2
macrophages and eosinophils to promote browning. ILC2 populations in TAT are
altered during obesity (43, 50, 51).

gd T cell Lymphoid Adaptive
immunity

Vd1, Vd2 gd T cells express a unique T-
cell receptor (gd TCR) different
from conventional dcells (ab
TCR). They have cytotoxic
and modulatory capacity (34).

Support Treg function and tissue innervation through IL-17 signaling (52, 53).

NKT cell Lymphoid Adaptive
immunity

Type1,
Type2,
NKT-like

NKT cells express an
invariant TCR a chain and
share properties from both
NK and T cells. They
recognize lipid antigens
presented by CD1d (34).

Modulation of Treg homeostasis and function through IL-2 secretion. Induction of
FGF-21 production to promote browning (54, 55).

Monocyte Myeloid Innate
immunity

Classical,
Non-

classical,
Intermediate

Monocytes circulate in the
blood and infiltrate inflamed
tissues to differentiate into
macrophages (34).

Support BAT homeostasis by promoting tissue expansion (56).

Mast cell Myeloid Innate
immunity

– Mast cells contain granules
like histamine and play key
roles in allergy and
anaphylaxis (34).

Mast cells communicate directly with progenitor cells through molecules such as
histamine or serotonin, albeit whether this supports or hampers TAT functions
remains to be clarified (57–59).
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the immune response against helminths might have not been
enough to induce the same eosinophil profile required for
browning in vivo. However, advancements in understanding
eosinophil plasticity could aid on harnessing type 2 immune
responses against metabolic disorders.

Eosinophils infiltrate BAT in response to CCL-11 and IL-5
(43, 83, 84). ILC2s are the major source of IL-5 and their
functions are negatively affected during obesity (43). ILC2s
sustain adipose eosinophils and macrophages through IL-5 and
IL-13 production (43) albeit it has been proposed that ILC2s
alone could be sufficient to elicit browning and promote
metabolic homeostasis independently from eosinophils (50).
Upon activation by IL-33, ILC2s promote PDGFRa+ adipocyte
precursor proliferation and commitment to the beige lineage via
IL-4Ra, which overall culminates in increased beige fat mass
and improved energy expenditure (51). A new study also
revealed an intercoordinated mechanism between ILC2s and
eosinophils to enhance sympathetic innervation in WAT (85).
Detailed mechanisms by which ILC2s contribute to beige
adipogenesis, and metabolism have been described elsewhere
(86, 87). Overall, type 2 immune cells are able to directly and
indirectly contribute to the positive functions of TAT in energy
homeostasis. While the underlying mechanisms are emerging,
further research is needed to decipher the complex array of
communications between type 2 immune cells and adipocytes.

Regulatory T Cells and Unconventional
T Cell Subsets
Regulatory T cells (Tregs) constitute a CD4+ T cell subset that
highly expresses the forkhead box P3 (FOXP3) transcription
factor and are crucial for the maintenance of self-tolerance and
immune homeostasis. AT resident Tregs were only discovered by
the end of the last decade (88), however, large-scale research
allowed adipose Tregs to be one of the best characterized along
all tissues. AT resident Tregs express PPAR-g (89) as well as a
distinct T cell-receptor (TCR) repertoire compared to other
Tregs in the lymph node (88). Correspondingly to many other
immune cells, Treg characterization and relevance have been
more largely described in WAT (90), albeit it is predictable that
these cells also play major roles in TAT.

BAT Tregs harbor a specific transcriptomic signature different
from splenic Tregs or T conventional (Tconv) cells in all tissues,
including Tconv cells in BAT (46). Interestingly, this signature is
also different fromWAT Tregs, which incites to question whether
these cells perform different functions in WAT and TAT. Tregs
have been proposed to maintain BAT identity and promote
browning (46, 91), and a recent study showed that inflammatory
signals mediated by the insulin receptor in visceral WAT and BAT
Tregs give rise to detrimental outcomes in the regulation of diet-
and age-inducedmetabolic syndrome (92). Other studies in mouse
and humans also showed the presence of resident naïve CD4+ T
cells that skew towards a regulatory phenotype under certain
stimuli (i.e cold), describing them as cold-inducible Tregs (44, 45).
Cold-inducible Tregs mainly increase in BAT and beige AT and
their depletion automatically affects the thermogenic identity of
the tissue. Inversely, UCP1 ablation impairs Treg induction (44).
Therefore, each cell type relies on one another to sustain adaptive
Frontiers in Endocrinology | www.frontiersin.org 4
thermogenesis. Still, whether Treg-adipocyte communication
happens directly upon cold exposure or trough complex
signaling events that lead to secretion of molecules needs to
be investigated.

On the other hand, Tregs resemble the boring parents that shut
down the party when it is time to go home. But how are these cells
prevented to restrict too harshly? The AT harbors such a wide array
of immune cells that it even allows to regulate the regulatory cells.
This is the case for invariant natural killer T (iNKT) cells, a singular
adipose resident immune cell subset, which tightly modulates the
proliferation and suppressor function of adipose Tregs through the
secretion of IL-2 (54). Besides, a-galactosylceramide-activated
iNKT cells upregulate fibroblast growth factor 21 (FGF-21),
which subsequently promotes adipocyte browning (55). Another
subset of T cells, the so-called unconventional gd T cells, has also
been shown to support Treg cell homeostasis and tissue innervation
through IL-17 signaling (52, 53).

Other Immune Populations in
Thermogenic Adipose Depots
Elucidating all the immune populations in TAT and their
contribution to metabolism has become an attractive field of
research. More immune populations have been recently
described in TAT. Monocytes have been shown to support BAT
homeostasis by promoting tissue expansion (56). B cells comprise
20 to 30% of leukocytes in BAT, and their number is further
increased upon diet-induced obesity (48). Along with T cells, B
cells have been suggested to negatively influence thermogenesis via
adipocyte IL-10 signaling (49). CD8+ T cells have also been
suggested to negatively influence beige adipogenesis through
IFN-g secretion in a lymphocyte deficient mouse model (47).
Mast cells are also present in TAT and communicate with adipose
cells through factors like histamine or serotonin, albeit whether
they promote or hamper WAT browning remains to be clarified
(57–59). Accordingly, further studies on these populations will be
required to sustain the presented findings. More recent studies
using single-cell or nuclei RNA sequencing approaches have
shown still undescribed immune cell populations, such as
neutrophils or dendritic cells, to be present in TAT of mice (56,
76, 93) and humans (93). It is therefore encouraging to expect that
the roles of more immune cell populations in thermogenic depots
will be unveiled in the coming future. Furthermore, it will be
important to not only consider the ability of TAT immune cells to
influence tissue identity and function, but also to modulate energy
expenditure, following appropriate guidelines (94, 95).
THE COMPLEX AND RECIPROCAL
INTERPLAY BETWEEN ADIPOCYTES
AND IMMUNE CELLS: CYTOKINES,
CHEMOKINES AND BATOKINES

The TAT environment is full of cells that continuously interact
reciprocally to maintain tissue homeostasis and adapt to
physiological conditions (Figure 1). Some of these intercellular
crosstalks include autocrine communication between adipocytes,
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Agueda-Oyarzabal and Emanuelli Immunomodulation of Thermogenic Fat Depots
paracrine communication with immune cells, paracrine
communication among different –or newly recruited– immune
cells and communications among other cells within the tissue. We
have previously outlined some of the cytokines and chemokines by
which immune cells communicate among themselves to influence
TAT homeostasis and function. Thermogenic adipocytes also
secrete many of these factors (in this case called “BAT”okines)
to directly communicate with immune cells.

IL-6 was one of the first interleukins found to be secreted by
brown adipocytes upon noradrenergic stimulation (96) and was
later implied in a direct effect on macrophage polarization and
the decline of obesity-associated inflammation in WAT (97).
FGF-21 is a circulating factor primarily originating from the liver
that performs important metabolic functions, including
increasing energy expenditure and browning (98). FGF-21 can
be produced from other tissues to mediate local action, including
BAT, which is an important source of FGF-21 following cold
exposure (99, 100). FGF-21 was later shown to synergize with the
chemokine CCL-11 to accumulate M2 macrophages and
adipocyte precursor cells to enhance browning (101). Indeed,
the type 2 immune response and browning is abolished in
absence of FGF-21, whilst only CCL-11 treatment is sufficient
to restore these processes, which brings in new key processes
coupling immunity and thermogenic fat activation.

A different study reported the meteorin-like (Mtrnl) factor,
produced by beige AT upon cold exposure, to communicate with
Frontiers in Endocrinology | www.frontiersin.org 5
eosinophils to produce IL-4 and promote M2 macrophage skewing,
thus enabling an anti-inflammatory environment in BAT and
improving glucose tolerance and energy expenditure (102, 103).
Another study revealed that CXCL14 is released by brown
adipocytes in response to noradrenergic activation to directly
induce macrophage recruitment and support thermogenesis in
beige WAT (100). Additionally, in vitro studies by the same group
revealed activated brown adipocytes to directly influence the anti-
inflammatory state of macrophages through secreted GDF-15 (104).

The current knowledge on batokines and their targets has been
detailly described (105, 106). Proteomics studies have shownmany
more immune factors such as complementproteins, additional pro-
and anti-inflammatory cytokines and chemokines to be part of the
brown adipocyte secretome upon its stimulation (107, 108).
Furthermore, alternative ways of communication also exist via
lipid metabolites, extracellular vesicles and micro-RNAs (109–111).
So far, the proper characterization of these novel batokines remains
vague or inexistent. Some of the identified factors could conserve
their chemotactic effects in TAT, as it has been described for
CXCL14, and allow the infiltration of certain immune cell subsets
to sustain TAT functions and health. Moreover, proteins like
complement system factors are known to generally elicit
inflammatory responses, making it quite intriguing to decipher
whether this function is conserved in the physiological response to
cold. Somehow, this would resemble the same first clues arisen
around the anti-inflammatory roles of IL-6 in TAT compared to its
FIGURE 1 | Immune cell interactions with thermogenic adipocytes in the thermogenic adipose tissue microenvironment. Different immune cells communicate with
each other and/or thermogenic adipocytes and sympathetic neurons through secreted factors to modulate thermogenic adipose tissue functions. TAT, thermogenic
adipose tissue; NE, norepinephrine; Ach, Acetylcholine; IL, interleukin; CXCL, chemokine C-X-C motif ligand; CCL, chemokine C-C motif ligand; FGF-21, fibroblast
growth factor 21; GDF-15, growth differentiation factor 15; Mtrnl, meteorin-like; IFNg, interferon gamma; ILC2, innate lymphoid cell type 2; SAM, sympathetic neuron
associated macrophage; ChAM, Cholinergic adipose macrophage; iNKT, invariant natural killer T cell; gd T cell, gamma-delta T cell; Treg, T regulatory cell; b3-AR, b3
adrenergic receptor.
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contrary effects in WAT (112); which endorses the key role of the
environment in deciding the fate of immunological factors.

Overall, the mechanisms by which adipocytes communicate
with the immune environment are just starting to be uncovered.
Unraveling these complex interactive networks remains a
challenge and still requires profound investigation.
IMMUNE CELL RECRUITMENT TO TAT:
INFILTRATION IS NOT INFLAMMATION

It is now evident that TAT secretes factors upon activation that
target immune cells. Based on this, one would think that the
primary response to cold is to produce an inflammatory state in
the tissue, which would affect TAT function. However, based on
the immune cells that harbor and infiltrate TAT, one realizes that
it is not the cells per se but their state that impacts tissue
condition and performance. Most of the immune cells present
in TAT show an anti-inflammatory phenotype, and the
physiological response to cold seems to further impulse this
state. The secretory profile of activated brown adipocytes
converges with this idea, as immunosuppressor proteins such
as IL-10 or the complement factor H are found in these data sets
(107, 108). Furthermore, the shift towards pro-inflammatory
states and signals are associated with the whitening of BAT,
decreased energy expenditure and altered metabolism both in
mouse and humans (35, 74, 113–115). Consequently, it is
tempting to think that not only does TAT contribute to
metabolic homeostasis by burning excess fat mass, but also
by generating an overall anti-inflammatory environment that
could even be spread in an endocrine manner to the white
depots, thus helping to restrain obesity induced chronic
inflammation (116).
CLOSING REMARKS AND FURTHER
PERSPECTIVES

The improved metabolic profile of animals and patients upon
TAT activation turns this energy burning depot into an
Frontiers in Endocrinology | www.frontiersin.org 6
appealing alternative therapy ameliorating metabolic health.
However, TAT is a heterogeneous tissue and many cells
beyond brown adipocytes exert indispensable roles. Many
immune cells contribute and tightly regulate metabolic
processes that allow the normal function of the tissue. Akin,
signal alterations consequence of the obese profile directly shift
TAT immune cell behavior subsequently influencing
thermogenic adipocyte responses. This tight link between
immune cells and thermogenic adipocytes could be harnessed
to boost thermogenic functions and improve the overall
complications associated with obesity. Whether this could be
approached through secreted molecules or by directly targeting
specific cell populations will need deeper understanding. Despite
being a rather novel field of research, promising animal studies
that alter immune components in TAT provide reasonable hope
that immune modulation of TAT may become an attractive
therapeutic strategy to positively impact human metabolic health.
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