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Metabolic syndrome refers to obesity-associated metabolic disorders that increase the
risk of type 2 diabetes, coronary diseases, stroke, and other disabilities. Environmental
imbalance during the early developmental period affects health and increases
susceptibility to non-communicable diseases, including metabolic syndrome, in later
life; therefore, the Developmental Origins of Health and Disease (DOHaD) theory was
established. According to the DOHaD theory, the hypothesis of the energy-saving ‘Thrifty
Phenotype’ in undernourished fetuses is one of the well-accepted schemes as a risk of
developing metabolic syndrome. This phenotype is evolutionarily advantageous for
survival of the fittest in a hangry environment after birth, a strong selection pressure,
but increases the risk of developing metabolic syndrome under an obesogenic diet
according to the ‘Mismatch’ hypothesis. Increasing evidences support that chronic
inflammation pathophysiologically connects obesity to metabolic disorders in metabolic
syndrome, leading to the concept of ‘Metaflammation’. ‘Metaflammation’ in humans is
proposed to originate from the evolutionary conservation of crosstalk between immune
and metabolic pathways; however, few studies have investigated the contribution of
evolutionary maladaptation to the pathophysiology of ‘Metaflammation’. Therefore, it is
promising to investigate ‘Metaflammation’ from the viewpoint of selective advantages and
its ‘Mismatch’ to an unexpected environment in contemporary lifestyles, in consideration
of the principal concept of evolutionarily conserved nutrient sensing and immune
signaling systems.

Keywords: developmental origins of health and disease (DOHaD), metabolic syndrome, obesity, pregnancy,
adipose tissue
INTRODUCTION

Metabolic syndrome refers to the co-occurrence of cardiovascular risk factors, including obesity-
associated metabolic disorders, such as insulin resistance, atherogenic dyslipidemia, and
hypertension, and is now a global public health issue despite being initially reported in Western
countries (1). The prevalence of metabolic syndrome was recently reported to be higher in the urban
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populations of some developing countries than in Western
countries, which has, in turn, increased the prevalence of type
2 diabetes, coronary diseases, stroke, and other disabilities (2).

Numerous epidemiological and animal studies demonstrated
that environmental disturbances in the early critical period have
an impact on health and increase susceptibility to non-
communicable diseases, such as metabolic syndrome, in later
life; therefore, the theory of Developmental Origins of Health
and Disease (DOHaD) was established (3–6). According to the
DOHaD theory, one of the well-accepted proposals for the risk of
developing metabolic syndrome is the hypothesis of the energy-
saving ‘Thrifty Phenotype’ in undernourished fetuses, which is
evolutionarily advantageous for survival of the fittest in a starved
environment after birth, a strong selection pressure, but increases
the risk of metabolic syndrome under an obesogenic diet
according to the ‘Mismatch’ hypothesis (7). This concept
connects metabolic syndrome to the maladaptation of the
evolutionarily acquired plasticity of metabolic regulation
against the selection pressure of starvation.

Recent studies reported that chronic inflammation is
pathophysiologically associated with obesity and metabolic disorders
in metabolic syndrome; therefore, the concept of “Metaflammation”
hasbeenestablished (8, 9). ‘Metaflammation’ inhumans isproposed to
originate from the evolutionary conservation of crosstalk between
immune and metabolic pathways, for example, based on the
composition of the fat body of Drosophila melanogaster (9). In the
evolutionary history of humans, immune and metabolic crosstalk
appeared to be associated, at least partly, with responses and/or
adaptation to the selection pressures of infection and/or starvation;
however, to the best of our knowledge, few studies have focused on its
contribution to the pathophysiology of ‘Metaflammation’ inmetabolic
syndrome. On the other hand, according to the DOHaD hypothesis,
offspring with the energy-saving ‘Thrifty Phenotype’ (10) are
predisposed to metabolic syndrome under an obesogenic diet
according to the ‘Mismatch’ hypothesis (7).

In this mini review, we introduce the relationship between the
‘Thrifty Phenotype’ andmetabolic syndrome in theDOHaD scheme
as well as that between ‘Metaflammation’ and evolutionarily
conserved nutrient sensing and immune signaling systems. We also
discuss the importance of investigating ‘Metaflammation’ from the
viewpoint of selective advantages and its ‘Mismatch’ to unexpected
modern environments in consideration of the DOHaD concept, in
addition to the principal concept of evolutionarily conservednutrient
sensing and immune signaling systems.
THE ‘THRIFTY PHENOTYPE’ HYPOTHESIS
IN THE DOHaD THEORY; STARVATION AS
A SELECTION PRESSURE

Initial evidence to support the concept of DOHaD was the
deterioration of health in adulthood of British small babies
with low birth weight (11, 12) and Dutch fetuses with
undernourishment due to maternal starvation in World War II
(13, 14). Rapid infantile growth, presumably indicative of an
abundant nutrient supply after birth, particularly with low birth
Frontiers in Endocrinology | www.frontiersin.org 2
weight, is also causatively associated with obesity and/or
metabolic syndrome in later life (15–19). These findings
suggest that the continuous trajectory from an undernourished
environment during the fetal period to an excessive nutrient
supply after birth specifically leads to metabolic disruptions in
later life. Hales and Barker proposed the ‘Thrifty Phenotype’
hypothesis, in which the body size of fetuses is reduced as an
adaption to an insufficient energy supply in utero through the
acquisition of the permanent energy-saving phenotype, resulting
in a low birth weight (10, 20, 21). The ‘Thrifty Phenotype’ in
offspring is hypothesized to be advantageous for survival of the
fittest in a starved environment because of low energy demands,
but increases the risk of diabetes and/or obesity under an
obesogenic diet (10, 21) due to reduced insulin sensitivity, a
predisposition to authentic and ectopic fat accumulation, and a
lower respiratory oxygen quotient, which are risk factors for
metabolic syndrome (20–23).

Starvation is one of strongest selection pressures from an
evolutionary viewpoint not only in humans, but also in animals
(24). The ‘Thrifty Phenotype’ is acquired phenotypic plasticity
that changes offspring into energy-saving individuals in response
to the presence or absence of a starved environment after birth as
an adaptation to the selection pressure of repeated starvation
waves (25). Based on the long evolutionary history of humans
with repeating periods of starvation, the recent era of an
overwhelming food supply in developed and some rapidly
developing countries is an evolutionary exception. Therefore, it
is plausible that the developmentally acquired plasticity of the
‘Thrifty Phenotype’ with energy-saving metabolic regulation
mismatches an environment with an excess energy supply,
thereby increasing the risk of obesity and diabetes, the so-
called state of metabolic syndrome.

Gluckman and Hanson proposed not only the ‘Mismatch’
hypothesis (7), but also the ‘Predictive Adaptive Responses
(PARs)’ hypothesis (26, 27). In the intrauterine setting, PARs
primarily function to improve future fitness to expected
conditions after birth, such as starvation, through evolutionarily
acquired phenotypic plasticity for adaptation (26). The ‘Mismatch’
hypothesis indicatesmaladaptation to the unexpected environment
of the new era, which increases susceptibility to non-communicable
diseases inadulthood(7).These concepts indicate that theupstream
risk of metabolic disorders is connected, at least partly, to the
maladaptation of developmentally modified phenotypes by
evolutionarily acquired plasticity, particularly in response to the
expectation of starvation, a strong selection pressure (27, 28).
EVOLUTIONARY ASPECT OF
‘METAFLAMMATION’; EVOLUTIONARY
CONSERVATION OF CROSSTALK
BETWEEN IMMUNE AND METABOLIC
PATHWAYS

The pathogenesis of obesity with various metabolic disorders is
based on a close relationship between nutrient excess and the
activation of the innate immune system in the majority of organs
February 2022 | Volume 13 | Article 839436
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involved in energy homeostasis (8, 9, 29–31). Increasing evidence
indicates that inflammation occurs with obesity and may play a
causative role not only in the development of insulin resistance
and disruption of other aspects of energy homeostasis, but also in
the augmentation of fat accumulation (9, 29). The characteristics
of obesity-associated chronic inflammation differ from other
general inflammatory paradigms in that it involves tonic
activation of the innate immune system, which has an impact
on metabolic homeostasis, generally for a lifetime, and affects
multiple organs, such as adipose tissue, the pancreas, liver,
muscle, and brain (9, 29). This led to the establishment of the
concept of ‘Metaflammation’ (8, 9).

In addition to starvation, infection is a strong selection
pressure in animals (32). The avoidance of these two major
selection pressures through adjustments to nutrient and immune
conditions has been the most important task for animals to
survive for hundreds of millions of years (32, 33). The strong
relationship between nutrient sensing and immune signaling is
rooted in their common evolutionary origins. For example, the
hematopoietic system, adipose tissue, and liver are all organized
in one functional unit in the fat body of D. melanogaster (8). This
developmental heritage is responsible for the highly overlapping
biological repertoire of these organs, their effects on metabolic
and immune cells, and the close relationship between immune
and metabolic response systems, which supports the concept of
‘Metaflammation’ from an evolutionary viewpoint (8, 9). The fat
body of Drosophila is capable of sensing both infectious and
metabolic disturbances, and studies on Drosophila have provided
important insights into highly conserved immuno-metabolic
pathways in mammals (8, 9).

Accumulated evidence has also highlighted the crucial role of
metabolic reprogramming in macrophage activation not only in
immuno-metabolic pathways, but also in the pathophysiological
concept of ‘Metaflammation’ (34–36). The infiltration of
macrophages and also its associated immune cells into metabolic
organs, such as the liver, brain, pancreas, and adipose tissue, is an
important factor influencing the maintenance of tissue homeostasis
as well as the pathogenesis of metabolic disorders (9). Tissue
macrophages function as direct modulators of metabolism, for
example, by inducing the polarization of macrophages towards a
pro-inflammatory (M1-polarized) phenotype that blocks the effects
of insulin (37), to which the contribution of epigenomic alterations
(38) andmacrophage-secreted products (39) has beendemonstrated.
It is important to note that many other immune cell types, including
dendritic cells,mast cells, eosinophils, and lymphoidcells,mayalsobe
involved in metabolic tissue homeostasis and the control of glucose
metabolism (9). Therefore, the evolutionary preservation of crosstalk
between immune and metabolic pathways is one of the principal
concepts of metabolic syndrome.
‘METAFLAMMATION’ IN THE
DOHaD SCHEME

To the best of our knowledge, limited evidence is currently available
to support a direct relationship between ‘Metaflammation’ and the
Frontiers in Endocrinology | www.frontiersin.org 3
scheme of DOHaD for the pathophysiology of metabolic syndrome.
The liver and adipose tissues are representative organs of
‘Metaflammation’, where infiltration of immune cells as well as
fat accumulation is frequently observed in metabolic syndrome (8).
We developed mice animal model of fetal undernutrition by
maternal energy restriction, the offspring of which showed
deterioration of fat deposit in the adipose tissue (40) and liver
(41) on a high fat diet. Interestingly, the offspring also showed the
significant infiltration of macrophages into the adipose tissue (40)
and liver (41) (Figure 1); thus, we proposed this as a model of
‘Metaflammation’ in the DOHaD scheme. We also demonstrated
that intrauterine undernutrition induced significant increases in
endoplasmic reticulum (ER) stress markers in the fatty liver of adult
pups (41), while the oral administration of the ER stress alleviator,
tauroursodeoxycholic acid (TUDCA), markedly ameliorated
macrophage infiltration and hepatic steatosis only in pups that
experienced undernourishment in utero (41, 42) (Figure 1). Based
on these findings, we propose the involvement of ER stress
programming in the developmental origins of ‘Metaflammation’
(Figure 2). This speculation is consistent with recent findings
showing the critical involvement of ER stress in the co-regulation
of chronic inflammation and metabolic disorders (43–45).

Fetal-derived immune cells have been implicated in the
development of immune diseases. Mass et al. proposed fetal-
derived immune cells as prime transmitters of the long-term
consequences of prenatal adversity, namely, inflammatory,
degenerative, and metabolic disorders, and, thus, are potential
contributors to the DOHaD theory (46). Previous studies
suggested the commitment of erythro-myeloid progenitors
produced in the extra-embryonic yolk sac to the establishment
of long-lasting immunological memory (36, 46–48). Yahara et al.
proposed the involvement of erythro-myeloid progenitors in
bone regeneration after birth (49). Wu et al. also reported the
potential contribution of erythro-myeloid progenitors to
homeostasis after birth (50). Nevertheless, the mechanisms by
which the memory of tissue-resident macrophages, if actually
present, is transferred to mature macrophages remain unclear.
DISCUSSION

The DOHaD theory is partly derived from retrospective
epidemiological observations of susceptibilities to metabolic
disorders in offspring that experienced maternal starvation
during gestation, such as in the Dutch Famine in World War
II (13, 51) and the Great Chinese Famine (52, 53). Since the basic
structures of all organs are formed and basic cross-talk between
organs is constituted during the embryonic and fetal stages, the
‘Thrifty Phenotype’ hypothesis of acquiring a permanent
constitution of low energy consumption in order to adapt to
the low nutrient supply in utero is plausible (10). The ‘Thrifty
Phenotype’ is a type of evolutionarily acquired plasticity in
metabolic regulation for humans to survive against the
powerful selection pressure of cyclically repeating periods of
starvation. However, the ‘Thrifty Phenotype’ mismatches an
obesogenic diet and is causatively associated with diabetes,
February 2022 | Volume 13 | Article 839436
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obesity, and associated metabolic disorders in developed and
some rapidly developing countries; therefore, the ‘Mismatch’
hypothesis was proposed (7). The essential concepts of the
‘Thrifty Phenotype’ and ‘Mismatch’ hypothesis of the DOHaD
theory involve the evolutionary acquisition of plasticity in
nutrient sensing against starvation and its maladaptation to an
unexpected modern environment (Figure 2).

Chronic low-grade inflammation has recently been proposed
as a bridge between augmented fat accumulation and metabolic
disorders, such as insulin resistance (29); therefore, the concept
of ‘Metaflammation’ is now widely accepted (8, 9). The concept
of ‘Metaflammation’ is also based on evolutionary adaptation
against the selection pressures of starvation and infection, i.e.
nutrient sensing and immune signaling (8, 9). The fat body of
Drosophila is capable of sensing both infectious and metabolic
disturbances and evolutionarily differentiated into adipose tissue,
the liver, and immune cells in mammals; therefore, this mutual
functional control mechanism has been preserved between
immune cells and the representative organs of adipose tissue
and the liver (8, 9). A similar mutual regulatory mechanism with
immune cells has also been proposed in other organs, such as the
pancreas and brain, in the concept of ‘Metaflammation’ (9).
Therefore, a similar evolutionary trajectory of nutrient sensing
and immune signaling underlies the ‘Metaflammation’
concept (Figure 2).

The ‘Thrifty Phenotype’ is hypothesized to be advantageous
for survival of the fittest in a starved environment; however, to
the best of our knowledge, there is limited evidence to support
the contribution of ‘Metaflammation’ to survival against
Frontiers in Endocrinology | www.frontiersin.org 4
infection and/or starvation. The contribution of the potentially
long-lasting memory of erythro-myeloid progenitors to the risk
of specific diseases in later life, but not to overall survival, has
been investigated (36, 46–48). However, we cannot deny the
possibility of some unidentified host survival advantage to
chronic inflammation or low-grade inflammatory responses
incapable of pathogen elimination due to its preservation
throughout evolution (Figure 2). Although the involvement of
crosstalk between immune and metabolic pathways in the
acquisition of the ‘Thrifty Phenotype’ in the DOHaD scheme
has not yet been elucidated, the evolutionary conservation of this
crosstalk has been suggested to contribute to the maintenance of
homeostasis in individual organs and is presumably associated
with the significant accumulation of fat deposits concomitant
with metabolic disruption in metabolic syndrome (Figure 2).

Our mouse model revealed that undernourishment in utero
significantly enhanced the infiltration of macrophages into adipose
tissue (40) and the liver (41) (Figure 1) only in mice fed a high-fat
diet, and this was concurrent with the deterioration of metabolic
disorders. We previously reported that this mouse model of
undernourishment in utero partly represented the ‘Thrifty
Phenotype’ due to low levels of diet-induced thermogenesis and a
predisposition to obesity (54). The findings of these animal studies
strongly suggest that a ‘Mismatch’ to an obesogenic diet in ‘Thrifty
Phenotype’ offspring is causatively associated with a malfunction or
imbalance in immunometabolic crosstalk, namely, ‘Metaflammation’,
particularly under an obesogenic diet (Figure 2). Therefore, a more
detailed understanding of the fundamental pathophysiology of
‘Metaflammation’ is needed to clarify plasticity in the memory of
FIGURE 1 | Immunohistochemistry of F4/80-positive hepatic macrophages from 22-week-old pups fed a high-fat diet (Reference 41). Positive staining is brown.
TUDCA, Tauroursodeoxycholic acid.
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tissue-resident immunecells, suchasmacrophages, fromtheviewpoint
of selective advantages and its mismatch to an unexpected new
environment, in addition to the principal concept of evolutionarily
conserved nutrient and immune sensing systems.

ER is a major site in cells for protein folding and trafficking
and ER malfunctions, such as ER stress, promote the unfolded
protein response and activate various stress signaling pathways
(43, 45). Previous studies proposed roles for ER stress in the
common upstream regulators of immune and metabolic
functions in ‘Metaflammation’ (43, 45). In our mouse model of
the ‘Thrifty Phenotype’, the oral administration of the ER stress
alleviator, TUDCA, to pups significantly ameliorated the
infiltration of macrophages in the liver only if they experienced
undernourishment in utero (41) (Figure 1). These findings
suggest the importance of the regulation of ER stress as a
promising research target upstream of developmentally
induced ‘Metaflammation’ (Figure 2).

On the other hand, functional ‘Trade-off’ for adapting to the
environmental disruption is also an important concept of the
DOHaD theory (6). It is known that the immune function of
hibernating animals is suppressed during the hibernation
period when a large amount of fat is stored (55), suggesting a
possible presence of a kind of ‘Trade-off’ between fat
Frontiers in Endocrinology | www.frontiersin.org 5
accumulation and immune activation for the purpose of
adapting to the cyclical transitions between hibernation and
activity periods. Since coordinate regulation of nutrient and
immune functions is a key concept of ‘Metaflammation’, it
might be a clue for understanding the pathogenesis of
‘Metaflammation’ from DOHaD theory, to investigate a
possible ‘Trade-off’ in ‘Metaflammation’ between nutrient
sensing and immune signaling systems in response to the
environmental diversity.

In conclusion, in consideration of the ‘Thrifty Phenotype’ and
‘Mismatch’ hypothesis in the DOHaD theory, a promising
research target is ‘Metaflammation’ from the viewpoint of
selective advantages and its mismatch to an unexpected
modern environment, in addition to the principal concept of
evolutionarily conserved nutrient sensing and immune
signaling systems.
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