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Osteoporosis and osteoarthritis are common diseases in an aging society, are considered
metabolic diseases, and affect the quality of life of older adults. In addition, the gut
microbiome is considered an additional organ to regulate bone metabolism. In the past
decade, people have been studying the relationship between gut microbiota and bone
metabolism. The role and mechanism of the gut microbiota in regulating bone metabolism
is very important to improve the development of osteoporosis and osteoarthritis.
Depletion of the gut microbiota as a method of studying the role of the gut microbiota
was provided strategies to enhance the role of the gut microbiota in regulating
osteoporosis and osteoarthritis. In this review, we discuss how depletion of the gut
microbiota affects osteoporosis and osteoarthritis.
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HIGHLIGHTS

• Intestinal flora can affect joints by regulating inflammation and metabolism, but cartilage
metabolism is still different from the intestinal flora.

• In this case, a variety of recombinant sciences, such as metabolomics and transcriptomics, help to
decipher this complex problem through molecular resolution by combining specific metabolites,
genes, or signaling pathways.

• Single-cell technology should reveal the correlation between different cell subpopulations and the
gut microbiota. In addition to mechanism studies, there is evidence that inflammation and
intestinal diseases may be related to new biomarkers that can predict the progression of OA and
OP and monitor the effectiveness of therapeutic interventions.
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INTRODUCTION

Osteoporosis and osteoarthritis are serious diseases that threaten
human health and are associated with considerable morbidity. In
the past, osteoporosis and osteoarthritis were both considered
skeletal diseases and not closely related to other body systems (1).
Osteoporosis worldwide causes 8.9 million fractures, which
means that every three seconds osteoporosis fracture occurs
(2). Osteoporosis are affect 200 million women in worldwide
which mean that women aged 60 was approximately one-tenth,
women aged 70 was one-fifth, women aged 80 was two-fifths,
and women aged 90 was two-thirds (2). A significant economic
burden is associated with osteoporosis fractures (3). Osteoarthritis
is also a disease that seriously endangers the health of the elderly.,
Osteoarthritis affect 30.8 million adults in the United States and
300million individuals inworldwide (4). Osteoarthritis often leads
to pain, dysfunction, and a decline in quality of life, which brings
a serious financial burden to society. Osteoarthritis is estimated to
cost $303 billion dollars annually in medical costs and lost
earnings (5). Therefore, it is very important to pay attention to
the prevention and treatment of osteoporosis and osteoarthritis.

Currently, there are many studies on the relationship between
intestinal flora and bone metabolism (6). The interactions of the
host microbiota are key factors for health and can ultimately be used
to develop a stable microbial community (7). The gut microbiota
can serve to provide essential vitamins; regulate the host’s intestinal
epithelium, immune system, maintain the nutritional metabolism,
exogenous and drug metabolism of the host, as well as the structural
integrity of the intestinal mucosal barrier; pathogen resistance (8, 9).
The gut microbiota has been associated with several chronic
conditions, such as inflammation (10), obesity (11), and metabolic
disease (12). In addition, depletion of the gut microbiota can affect
both the intestines and central nervous system, indicating the
existence of a microbiota-gut-brain axis (13). Obesity-associated
circulating metabolites are also linked to gut microbes (14).
Microbiota interacts with physiological aging processes, which can
be used to develop microbiota-based health surveillance systems for
older adults (15).

The gut microbiota is affected by different environments.
Initially, the gut microbiota obtains radon from the mother
through the birth canal (16). The gut microbiota gradually
stabilizes after the age of three years old. The composition of the
intestinal flora is a dynamic balance that can be affected by diet.
However, the gut microbiota is subsequently shaped by medical
practices and lifestyle changes (17). Many factors, such as
antibiotics, C-section, washing of the skin, and oral ingestion of
antibacterial agents, can change this dynamic balance (18–20). The
interaction between intestinal microbes and commonly used non-
antibiotic drugs is complex and mutual: the composition of the
intestinal flora will be affected by the drug, and the intestinal flora
will also change the structure and properties of the drug (21).

Gut microbiota can be depleted by antibiotics or can be studied
in germ-free mice. Antibiotic-induced depletion of the gut
microbiota also has an impact on bone metabolism (22), such as
impacting bone growth and preserving the progression of
osteoarthritis (23–25). Germ-free mice can also experience bone
Frontiers in Endocrinology | www.frontiersin.org 2
loss but reduced development of osteoarthritis (26, 27). In this essay,
we review recent studies addressing the role of depletion of gut
microbiota in osteoporosis and osteoarthritis and discuss the
proposed mechanisms.
THE EFFECT OF GUT MICROBIOTA ON
BONE HEALTH

There are many common mechanisms for the effects of gut
microbiota on osteoporosis and osteoarthritis, and in the first
part of this study, we systematically summarize the factors
affecting osteoporosis and osteoarthritis, including factors that
affect nutrient absorption, change hormone levels, and mediate
the immune response.

Nutrient Absorption
There were significant differences in nutrient absorption among
different types of gut microbiota. For example, the probiotics L.
reuteri and Bifidobacterium can promote nutrient absorption which
caused the increase of BMD (28). However, this effect is usually
achieved by altering the PH of the gut and thus affecting the
absorption of nutrients. Intestinal microbes help break down large
particles into smaller, more easily digestible particles, which are
important for human bone health and metabolism (29). Vitamins B
and K are also common synthesis products of the microorganisms
(30, 31). The host’s diet also affects the absorption of nutrients by
changing the composition of the gut microbiota. The intake of
carbohydrates and other substances can provide an energy source
for the gut microbiota and also alter its composition. A calorie-
restricted diet is associated with increased abundance of
Akkermansia spp. and Bifidobacterium spp. and depletion of the
abundance of Prevotella sp which may cause bodyweight loss (32).
Adding inulin to food can effectively regulate the intestinal
ecosystem and increase calcium absorption (33). However, the
absorption of minerals directly affects the level of minerals in
circulation, which in turn has a significant impact on
osteoarthritis and osteoporosis. Therefore, it is important to keep
balanced between nutrient absorption and gut microbiota.

Change Intestinal Mucosal Barrier
The intestinal mucosal barrier is vital for maintaining intestinal
health which was used to resist the invasion of external pathogenic
microorganisms. Besides, the composition of the intestinal flora is
an important factor in regulating the barrier function of the
intestinal mucosa (34). For instance, the results show that the
intestinal flora is the basis for the formation of a proper layer of
mucus and that the mucus of GF mice differs from that of mice that
are fed conventionally (35). The expression pattern of
glycosyltransferase may play an important role in influencing the
intestinal flora of mucus components (36). In addition, the
glycosylation of MUC2 and the glycosylation of transmembrane
mucin may be affected by the host bacterial community (37).
Besides, the dysfunction of the intestinal mucosal barrier may
lead to an increase in serum levels of lipopolysaccharide (LPS),
March 2022 | Volume 13 | Article 847401
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which could in turn increase membrane permeability, resulting in
the loss of bone mass (38). Intestinal barrier and mucosal immune
disorders related to intestinal dysbiosis are the main causes of
systemic inflammation and progressive fibrosis (39). Therefore,
the relationship between the intestinal flora and the intestinal
mucosal barrier is very complicated.

Change Hormone Levels
Host hormones not only shape the structure and function of the
host microbiome, but also can change the production and
regulation of host hormones (such as catecholamines, estrogen,
testosterone, thyroid, and growth hormone) and change the
hormone expression profile (40). In contrast, conventional
antibiotic treatment in mice reduces serum IGF-1 and inhibits
bone formation. Supplement of antibiotic-treated mice with
microbial metabolites such as short-chain fatty acids (SCFA) can
restore IGF-1 and bone mass than not treated with antibiotics (41).
Intestinal microbes and their metabolites regulate bone mass
through the interaction of parathyroid hormone (PTH), the
immune system, and bones (42). Intestinal flora also participates
in alcoholic osteoporosis in young and old rats through immune
regulation (43). Intestinal flora is an important factor in the
occurrence of metabolic diseases (such as obesity) and is
considered to be an endocrine organ that participates in
maintaining the body’s energy balance and bone metabolism (44).

Mediate Immune Response
The composition of the intestinal flora affects the development of
the immune system and regulates immune mediators, thereby
affecting the intestinal barrier. Analysis of observed daily changes
in the counts of neutrophils, lymphocytes, and monocytes, as
well as analysis of samples from more than 10,000 longitudinal
microbial communities, revealed a consistent correlation
between gut bacteria and immune cell dynamics (45). T helper
17 lymphocytes, TNF, interleukin 17, and Other important
pathways include NOD1, NOD2, and Toll-like receptor 5,
RANK ligand which are involved in the immune response of
the intestinal flora (46). Firstly, in the first few years of life, the
colonization of microbial communities is essential for the
optimal development of the immune system (47). Lack of
microbiota, intestinal mucosal immune is undeveloped due to
small mesenteric lymph nodes, decreased PP and immune cells,
such as plasma cells that produce IgA, CD4+ T cells, and CD8+ T
cells which leads to a weakened resistance pathogenic bacteria
(48). The composition of the intestinal flora also regulates the
balance between helper effector T cells, which produce the
inflammatory factor interleukin 17 in the intestine (49). The
microbiome metabolites affect immune regulation and
autoimmunity. For instance, gut microbiota in the production
of pro-inflammatory cytokines and subsequent generation of
Th17 cells and also promote the generation of regulatory T cells
which contribute to immune suppression (50). Due to the
anaerobic fermentation of residues in the digestive system, the
possibility of the microbiota to regulate host physiology is the
extremely diverse metabolite pool they produce (51). The
receptor activator of NFkB ligand (RANKL) is consider as the
main cytokine in osteoclast differentiation which is produced by
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mesenchymal cells, osteoblasts, and osteocytes in the bone
marrow. The activated CD4+ T cells are also a source of
RANKL which was affected by gut microbiota (52, 53). The
excessive bacterial proliferation in the small intestine can occur
with lower bone density, possible causes related to high levels of
inflammation of TNF-a and IL-1, and promote osteoclast
activation (54). Therefore, understanding the regulation of the
immune response of the gut microbiota may allow medical
interventions on the microbiota to prevent or treat diseases
related to bone metabolism.
THE POTENTIAL MECHANISM OF
DEPLETION OF GUT MICROBIOTA
IN OSTEOPOROSIS

There aremany potential mechanisms of gut microbiota depletion
in osteoporosis, such as impaired intestinal barrier function,
endocrine function, immune function and gut microbial
excretion byproducts. Changes in bacterial species in the gut
microbiota can influence intestinal barrier function, which can
affect the processes of nutrient absorption. Intestinal microbiota
may affect intestinal pH (55) and affect the synthesis of vitamins B
and K (56), which plays an important role in controlling calcium
absorption (57). The depletion of gut microbiota in diet-induced
obesity mediates changes in the ileum and allows macromolecular
substances to pass quickly through the intestinal wall of the
intestinal epithelium (58). However, damage to intestinal barrier
function can also influence the composition of gut microbiota by
increasing lipopolysaccharide (LPS) (38). Gut hormones also have
many key roles in bone metabolism, which involves the
accumulation of various signaling pathways, including G
protein-coupled receptors, nutrient transporters, and ion
channels (59). Both antibiotic-induced and germ-free models
represent a basic model to understand the relationship between
microbiota and the immune system by regulating T helper 17
lymphocytes, TNF, interleukin 17, and the RANK ligand system
(46, 60). Intestinal microbial consumption affects host endocrine
function through several bacteria-derived metabolites, including
glucagon-like peptide 1 and peptide YY (61). Gut microbial
excretion byproducts, for example, Glucagon-like peptide 1 is an
amino acid hormone and is also secreted by endocrine L cells. It
plays a regulating role in the process of osteoporosis by changing
the balance between the differentiation of mesenchymal stem cells
of the bone into osteocytes and adipocytes (62). PeptideYY is also a
negative regulator of osteoblast bone formation (63) (Table 1
and Figure 1).
EVIDENCE OF DEPLETION OF GUT
MICROBIOTA IN OSTEOPOROSIS

Several studies have found that depletion of gut microbiota by
antibiotic treatment affects growth in early life in mice.
Antibiotics induced depletion of gut microbiota in postpubertal
skeletal development by an osteoimmune response, which alters
March 2022 | Volume 13 | Article 847401
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the gut bacterial composition and skeletal morphology. In
addition, depletion of gut microbiota can contribute to a state
of dysbiosis-mediated hyper immunity caused by inhibited the
presentation of class II antigens of the major histocompatibility
complex (64). Tavakoli et al. examined whether the gut
microbiome contributes to bone loss in stearoyl-coenzyme
desaturase mice and found that depletion of the gut microbiota
significantly improved decreased bone mass. This occurred by
Frontiers in Endocrinology | www.frontiersin.org 4
increasing osteoblasts and osteoblast-related gene expression and
impairing the intestinal barrier due to inflammation (65). Low-
dose penicillin-induced depletion of gut microbiota in
preadolescent mice, leading to alterations of metabolites and
abnormal intestinal immunity (66). Therapeutic-dose pulsed
antibiotic treatment-induced depletion of gut microbiota can
accelerate body mass and bone growth (67). Cho et al. create a
model of obesity in dogs by injecting subtherapeutic antibiotics
TABLE 1 | Gut microbiota depletion studies on osteoporosis.

Subject Study design Outcome Citation

antibiotic induced-gut microbiota depletion and osteoporosis
SCD mice Compared conventionalized mice with

and without antibiotic treatment
Antibiotic significantly improved decreased bone mass and impaired intestinal barrier (65)

C57BL/6 mice Compared conventionalized mice with
and without antibiotic treatment

Increased BMD at 3 weeks but not at 7 weeks and Increased body fat but no change in
weight with antibiotic treatment

(66)

C57BL/6 mice Compared conventionalized mice with
and without antibiotic treatment

Early-life antibiota treatment accelerates total mass and bone growth (67)

C57BL/6 mice Compared conventionalized mice with
and without antibiotic treatment

Bone mineral density is increased in early-life growth with antibiota treatment (68)

TLR5KO and WT
(C57Bl/6) mice

Compared conventionalized mice with
and without antibiotic treatment

antibiota treatment in the gut microbiota for extended periods during growth may lead to
impaired whole-bone mechanical properties

(69)

Gree-free induced-gut microbiota depletion and osteoporosis
BALB/c mice Compared GF and conventionalized

mice
germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota
increases both bone formation and resorption

(41)

BALB/c mice Compared GF and conventionalized
mice

presence of microbiota led to Increased BMD, BVF, femur length and Increased body
weight, body length

(78)

C57BL/6 mice Compared GF and mice undergoing
low-dose penicillin (LDP) treatment

Increased BMD, BMC in female mice and decreased BMC in male mice (68)

C57BL/6 mice Compared GF and conventionalized
mice

Presence of microbiota led to decreased BMD (27)

GF Swiss Webster and
GF C57BL/6 mice

Compared GF and conventionalized
mice

successful colonization of GF mice with gut microbiota of either mouse or human origin,
bone mass did not change significantly in any of the groups tested.

(79)
March 2022 | Volume 13 | Articl
FIGURE 1 | Potential mechanism of depletion of gut microbiota in osteoporosis and osteoarthritis. Osteoporosis and osteoarthritis are like the front and back sides
of a coin, and depletion of gut microbiota has a significant impact on both osteoporosis and osteoarthritis, so it is important to analysis the effect of depletion of gut
microbiota on osteoporosis and osteoarthritis.
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and found that depletion of gut microbiota can change
carbohydrate metabolism into short-chain fatty acid
metabolism, providing evidence of metabolic homeostasis (68).
Female bending strength was less induced by depletion of gut
microbiota, and B and T cell populations were also depleted,
suggesting an association between alterations in the immune cell
population and bone tissue material properties (69). The effect of
microbiota perturbation with antibiotics is often affected by sex,
age, and the dose of antibiotic drugs (70–73).

Germ-free (GF)animals are another way to study depletion of
the gut microbiota, and they can also be used to examine the effect
of specificmicrobes on osteoporosis and osteoarthritis (74, 75). Irie
et al. investigated germ-free mice to evaluate age-related immune
and inflammatory systems and found that depletion of gut
microbiota led to alveolar bone loss in GF mice (76).
Colonization of GF mice with SPF increases bone formation,
which provides IGF-1 to simulate the development of skeletal
bone (41). Li et al. found that the inflammatory response is caused
by a lack of steroids that regulate the intestinal microbiota, leading
to loss of trabecular bone. The results show that the gut luminal
microbiota increases gut permeability and triggers inflammatory
pathways (77). Schwarzer et al. used Nod1−/− or Nod2−/− mice
with germ-free mice to reduce bone mass (78). Quach et al.
investigated the influence of different microbial communities on
differentmice and the success rate of fecal transplantation in sterile
mice. This result shows that bone mass, bone parameters,
osteoclast precursors, and T cell populations did not change
significantly (79). Compared with conventional rats, GF mice
increased bone mass and decreased the number of osteoclasts on
the surface of each bone. This indicates that the bone immune
status and the bone resorptionmechanismmediated by osteoclasts
have changed (27). In addition, the gut microbiota prevents
excessive mineralization by enhancing osteoblast and osteoclast
activity through transcription factors, such as Gata-binding
protein 3 (80) (Table 1).
THE POTENTIAL MECHANISM OF
DEPLETION OF GUT MICROBIOTA
IN OSTEOARTHRITIS

More and more evidence shows that some factors related to OA,
such as aging, gender, diet, and obesity, can re-adjust the gut
microbiota while promoting systemic inflammation. This
suggests that microorganisms may participate in OA, although
limited and disturbing. Convincing research confirms that this
hypothesis will interfere with intestinal flora.

The possible mechanisms of depletion of gut microbiota in
osteoarthritis include chronic inflammatory factors, lipid
metabolites, and innate immunity. Since elevated LPS levels are
associated with obesity and metabolic syndrome, and obesity and
metabolic syndrome are closely related to the risk of osteoarthritis,
it is easy to assume that at least one microbial community is
associated with osteoarthritis, inflammation, low levels, and
metabolic endotoxicity Related. Macrophage activation and joint
damage (81). The increase in lipopolysaccharide (LPS) and LPS
Frontiers in Endocrinology | www.frontiersin.org 5
binding protein (LBP) is related to the severity of knee osteophytes
and the frequency of macrophage activation in the synovium (82).
In addition, an interesting study by Christopher et al. found that
the characteristics of microbial DNA in human and mouse
cartilage and its changes are related to the occurrence and
development of human osteoarthritis (82). Because of this factor
between the intestinal flora and osteoarthritis, there is an urgent
need to develop effective disease-modifying therapies to relieve
symptoms and slow the progression of osteoarthritis. In this case,
it can be assumed that the regulation of intestinal flora by external
means may affect the progression of osteoarthritis.

Fecal microbiota transplantation (FMT) is a surgical procedure
used to treat diseases related to the gut microbiota, including the
delivery of stool from a healthy donor to the recipient’s distal
gastrointestinal tract (83). The new results show that FMT has
broad application prospects in OA management. Huang et al.
investigate a study to collect stool samples from healthy
individuals in the OA group without metabolic syndrome and
from healthy individuals in the OA group with metabolic
syndrome and then transplant the collected samples to
meniscus/ligament rupture osteoarthritis (MLI) Of sterile mice.
Interestingly, transplantation of OA in knee joints with metabolic
syndrome and MLI may lead to worsening of osteoarthritis. These
results indicate that the weak microbiome in the mouse model
may exacerbate the histopathological severity of osteoarthritis due
to joint damage. This study illustrates the application of FMT in
the study of the pathogenesis of osteoarthritis, and also provides
hope for manipulating the intestinal flora to treat osteoarthritis.
However, due to the limited sample size, more convincing research
is needed (84).
EVIDENCE OF DEPLETION OF GUT
MICROBIOTA IN OSTEOARTHRITIS

Depletion of gut microbiota OA caused by antibiotics has also
been investigated, and this depletion can alleviate the progression
of osteoarthritis (25). Depletion of the gut microbiota can also
slow osteoarthritis outcomes by reducing the state of
inflammation and lowering the expression of Wnt signaling
modulatory proteins (85). In addition, due to the instability of
the medial meniscus, depletion of the intestinal microflora in GF
mice may reduce the incidence of osteoarthritis (26), which can
regulate inflammation associated with the innate immune
system (86).

A previous study found that obesity-associated OA can also
be affected by the depletion of gut microbiota (87). In addition,
lipopolysaccharide also plays an important role in the pro-
inflammatory response of the lack of intestinal flora caused by
gram-negative bacteria (88). Ulici et al. found that depletion of
gut microbiota induced by germ-free mice could also reduce the
development of osteoarthritis, which may have been caused by
the lower level of lipopolysaccharide (26). Lipid metabolites also
play an important role in destroying intestinal flora (44). Serum
and synovial fluid lipodystrophy are also important predictors in
the development of osteoarthritis (89) (Table 2).
March 2022 | Volume 13 | Article 847401
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Although depletion of gut microbiota is increasingly valued in
the study of osteoarthritis and osteoporosis, it is not yet available
as a means of treatment. many studies found that potential
benefits of probiotic supplementation such as L. paracasei, L.
casei 393-fermented milk, L. helveticus-fermented milk, L. casei
and L. acidophilus and Enterococcus faecium on bone health in
both healthy and pathological states which regulate of luminal
pH; secretion of antimicrobial peptides; enhancement of barrier
function by increasing mucus production and modulation of the
host immune system (90).
CONCLUSION

Osteoporosis and osteoarthritis are major public health problems
and the main cause of global pain, disability, fracture risk, and
socio-economic costs. Therefore, determining the pathogenesis
of osteoporosis and osteoarthritis is essential for the
development of new therapeutic interventions to prevent and
alleviate the disease.

As an important way to regulate bone metabolism, the gut
microbiota has attracted increasing attention. Depletion of the gut
microbiota as a method to study its function still lacks in-depth
research. In this review, we summarized the evidence supporting
the gut-joint axis hypothesis and the interaction of gut microbiota
with osteoarthritis or surgical factors and suggested the prospects
for use of gut microbiota in the treatment of osteoarthritis and
surgery Therefore, it is important to further analyze the role of gut
microbiota depletion in osteoporosis and osteoporosis.

The detailed mechanism of the gut-joint axis is unclear.
Intestinal flora can affect joints by regulating inflammation and
metabolism, but cartilage metabolism is still different from the
intestinal flora. In this case, a variety of recombinant sciences,
such as metabolomics and transcriptomics, help to decipher this
complex problem through molecular resolution by combining
specific metabolites, genes, or signaling pathways. In addition,
single-cell technology should reveal the correlation between
different cell subpopulations and the gut microbiota. In
addition to mechanism studies, there is evidence that
inflammation and intestinal diseases may be related to new
biomarkers that can predict the progression of OA and OP
and monitor the effectiveness of therapeutic interventions.
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89. Larrañaga-Vera A, Lamuedra A, Pérez-Baos S, Prieto-Potin I, Peña L,
Herrero-Beaumont G, et al. Increased Synovial Lipodystrophy Induced by
High Fat Diet Aggravates Synovitis in Experimental Osteoarthritis. Arthritis
Res Ther (2017) 19(1):264. doi: 10.1186/s13075-017-1473-z

90. Collins FL, Rios-Arce ND, Schepper JD, Parameswaran N, McCabe LR.
The Potential of Probiotics as a Therapy for Osteoporosis. Microbiol
Spectr (2017) 5(4):10.1128/microbiolspec.BAD-0015-2016. doi: 10.1128/
microbiolspec.BAD-0015-2016
Frontiers in Endocrinology | www.frontiersin.org 9
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Guan, Luo, Liu, Guan, Zhang, Li and Tao. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
March 2022 | Volume 13 | Article 847401

https://doi.org/10.1172/jci.insight.95997
https://doi.org/10.1136/gutjnl-2011-301689
https://doi.org/10.1136/gutjnl-2011-301689
https://doi.org/10.1186/s13075-017-1473-z
https://doi.org/10.1128/microbiolspec.BAD-0015-2016
https://doi.org/10.1128/microbiolspec.BAD-0015-2016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles

	The Role of Depletion of Gut Microbiota in Osteoporosis and Osteoarthritis: A Narrative Review
	Highlights
	Introduction
	The Effect of Gut Microbiota on Bone Health
	Nutrient Absorption
	Change Intestinal Mucosal Barrier
	Change Hormone Levels
	Mediate Immune Response

	The Potential Mechanism of Depletion of Gut Microbiota in Osteoporosis
	Evidence of Depletion of Gut Microbiota in Osteoporosis
	The Potential Mechanism of Depletion of Gut Microbiota in Osteoarthritis
	Evidence of Depletion of Gut Microbiota in Osteoarthritis
	Conclusion
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


