
Frontiers in Endocrinology | www.frontiersi

Edited by:
Ihtisham Bukhari,

Fifth Affiliated Hospital of Zhengzhou
University, China

Reviewed by:
Jianjun Dong,

Shandong University, China
Mohammed Amir Husain,
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Kynurenic acid (KYNA) is an important bio-active product of tryptophan metabolism. In
addition to its well-known neuroprotective effects on mental health disorders, it has been
proposed as a bio-marker for such metabolic diseases as atherosclerosis and diabetes.
Emerging evidence suggests that KYNA acts as a signaling molecule controlling the
networks involved in the balance of energy store and expenditure through GPR35 and
AMPK signaling pathway. KYNA plays an important role in the pathogenesis and
development of several endocrine and metabolic diseases. Exercise training promotes
KYNA production in skeletal muscles and increases thermogenesis in the long term and
limits weight gain, insulin resistance and inflammation. Additionally, KYNA is also present
in breast milk and may act as an anti-obesity agent in infants. Although we are far from fully
understanding the role of KYNA in our body, administration of KYNA, enzyme inhibitors or
metabolites may serve as a potential therapeutic strategy for treating metabolic diseases.
The present review provides a perspective on the current knowledge regarding the
biological effects of KYNA in metabolic diseases and perinatal nutrition.
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INTRODUCTION

Kynurenic acid (KYNA) is one of the metabolites of tryptophan catabolism formed via the kynurenine
pathway. It is first known for its neuro-protective effect as it is the only known broad-spectrum
endogenous antagonist for ionotropic glutamate receptors. As such, a large number of studies have been
carried out to investigate the role of KYNA in the physio-pathology of central nervous system (CNS)
such as depression, Alzheimer’s diseases and schizophrenia in the past two decades. In addition to such
neuronal contributions, KYNA can also be found with higher concentration in urine, pancreatic mucus,
serum and breast milk than in cerebrospinal fluid (1). It has been subsequently found to be involved in
immune (2) and digestive system (1) in the periphery. Increasing reports have concentrated on the role
of KYNA outside the CNS.

More recently, evidence suggests that physical exercise may also influence this pathway and KYNA
has emerged as a signalingmolecule for energy homeostasis in peripheral tissues. Somemetabolomic and
n.org February 2022 | Volume 13 | Article 8476111
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epidemiological studies have proposed that KYNA can serve as an
early bio-marker for diabetes and some other metabolic diseases (3,
4). Furthermore, in some animal studies, KYNA has been
considered as a significant protector against such metabolic
diseases as obesity and nonalcoholic fatty liver disease (NAFLD)
(5, 6). This essay summarizes recent advances of how KYNA is
involved in the regulation of energy homeostasis of peripheral tissue
and its potential role in the onset and progression of such metabolic
diseases as obesity and diabetes.
THE ENDOGENOUS PRODUCTION OF
KYNA IN PERIPHERAL TISSUES

The endogenous production of KYNA in human brain has been
well studied over the past few decades because of its neuroprotective
effects. However, increasing evidence showed that KYNA can also
be found, even in higher concentration, in many body fluids in
humans such serum (7), saliva (8), bile (9) and breast milk (10). In
humans and rodents, the production of KYNA has been described
in a number of peripheral tissues such as muscle (11), liver (12),
kidney (12), pancreas (9, 13), endothelial cells (14) and immune
cells (15) under physiological conditions. KYNA is producedmainly
through the side branch of tryptophan/kynurenine pathway.
Approximately 95% of tryptophan is metabolized through
kynurenine pathway, and about 0.3% is converted to KYNA (10
µmol/day) (16).

In this catabolic pathway, the first step is catalyzed by the
enzymes indol-2,3-dioxygenase (IDO) and tryptophan-2,3-
dioxygenase (TDO) to generate N-formyl-L-kynurenine, an
unstable compound which is rapidly converted to L-kynurenine
(L-KYN) by ubiquitous aryl formamidase (AFMID). TDO is mainly
expressed in the liver and has a Km value of 190 µM for TRP, which
ensures that TDO is active to convert TRP to L-KYN at higher than
physiological concentrations (about 80 µM) (17, 18). Another
limiting enzyme, IDO1, is expressed under the induction of
proinflammatory cytokines (19). IDO1 has a Km value of 20 µM
for tryptophan, which is much lower than TDO (17). IDO2, a newly
discovered enzyme, has some homology to IDO1, but its Km value
for TRP is much higher than that of IDO1 and TDO, and has little
effect on the production of TRP downstreammetabolites (20). After
this step, L-KYN can be either converted to nicotinamide by a series
of reactions or enter into a side branch to produce KYNA. KYNA is
supposed to be a final catabolic product of this side branch of
kynurenine pathway because no further metabolite is reported in
mammals (but can be further catabolized by intestinal flora).

The KYNA branch of the kynurenine pathway is mainly
regulated by the activity of kynurenine aminotransferase (KYAT,
EC 2.6.1.7), whose abbreviation is recently updated from KAT to
KYAT. Four different isozymes of KYAT (KYAT1-4) are
identified in mammalian cells. They are all members of the
pyridoxal-5’-phosphate-dependent enzyme family and require
an a-ketoacid as the amino group acceptors.

KYAT1 catalyzes the transamination of L-KYN to form KYNA
and its Km for L-KYN is around 4.7 mM (21). It should be noted
that KYAT1 possesses broad amino acid specificity and also
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catalyzes the transamination such as glutamine to a-
ketoglutaramate, thus it is also known as glutamine transaminase
K (GTK, EC 2.6.1.15). Leucine, glutamate, methionine also seem to
be the preferred substrates of human KYAT1 (21). But, to date, its
most biologically significant product is KYNA. KYAT1 also
possesses cysteine S-conjugate beta-lyases (CCBL1) activity and
catalyzes the beta-elimination of cysteine S-conjugates to generate
pyruvate and thioacylating fragments. This activity plays an
important role in the bio-activation of cysteine S-conjugates
found in garlic and onion (22) and in the toxification of some
toxins like 5-S-l-cysteinyldopamine. Competitive inhibition test
suggests KYAT1 has two active sites, one for KYAT and the other
for GTK. The active sites of KYAT and CCBL1 may be the same
(23). KYAT1 is both cytosolic and mitochondrial because it exists
two different mRNA variants coding for proteins with and without
mitochondria targeting sequence. In rats, KYAT1 mRNA can be
detected in most of tissues such as small intestine, pancreas, lung,
liver, heart, kidney, brain, muscle, testis, ovary (23, 24). In brain, the
activity of KYAT1 is critical to the formation of KYNA, its activity is
associated with schizophrenia (25). A missense mutation in KYAT1
was identified in spontaneously hypertensive rats. This mutation led
to abnormally low KYNA levels in the area of central nervous
system that controls blood pressure (26). Although the role of
KYAT1 in brain has mostly been discussed, its expression is much
higher in livers and kidneys than in brains (27). Its role in peripheral
tissues did not receive much attention until the discovery of the
immunomodulator and metabolic effect of KYNA.

KYAT2, the second isoform of the KYAT family, also possesses a
broad-spectrum transamination activity with no S-conjugate beta-
lyases activity. It is also known as alpha-aminoadipate
aminotransferase (AADAT). Similar to KYAT1, its Km for L-KYN
is around 4.7 mM (28). KYAT2 can be detected in most tissues, but it
is not detectable in murine skeletal muscle (11). KYAT2 appears to
play a more important role in rat’s brain because KYAT2 is highly
expressed in astrocytes than other KYATs and KYNA is reported to
be predominantly generated by it in the brain (29, 30).

Among the four KYATs, KYAT3 shares similar sequence and
expression pattern to KYAT1 and is also known as glutamine
transaminase L (GTL) and CCBL2 (EC 4.4.1.13). Likewise, KYAT3
is a multifunctional aminotransferase and catalyzes glutamine,
methionine, phenylalanine, tyrosine and cysteine as
transamination subtract, although it displayed no activity toward
leucine (31). Its expression is much higher in kidney, liver and
neuroendocrine tissues than in brain (27, 32).

KYAT4 is the last discovered KYAT. In fact, it is better known as
mitochondrial glutamic-oxaloacetictransaminase 2 (EC 2.6.1.1), an
essential player in the malate-aspartate shuttle in mitochondria and
in the synthesis of glutamate (33). It is highly expressed in most
tissues and organs because malate-aspartate shuttle is a general
feature of cells with functional mitochondria, except for white
adipose tissue (34).

Kynurenine 3-monooxygenase (KMO; EC 1.14.13.9) is an
important regulator of KYNA synthesis as it is a kynurenine-
consuming enzyme competing with KYAT for substrate. KMO is
an NADPH-dependent flavin monooxygenase located in the outer
membrane of mitochondria. It catalyzes the conversion of
February 2022 | Volume 13 | Article 847611
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kynurenine to 3-hydroxykynurenine, a cytotoxic metabolite
involved in the generation of ROS and activation of inflammatory
response. KMO is widely expressed in our body, for it has been
discovered in liver, kidney, pancreas, brain, macrophages, and
monocytes (3, 13, 35, 36), with the highest KMO levels found in
liver and kidney. Moreover, the activity of KMO in liver and kidney
decreases significantly with aging (37).

KMO possesses higher affinity to kynurenine (7-14 mM for
human KMO (38, 39), 15-16 mM for rodent (40) than all four
types of KYATs. KMO inhibition by pharmacological inhibitor
significantly increases KYNA levels (41). Also, in KMO knockout
mice, the level of KYN and KYNA was significantly increased in
the periphery (42). The characteristics of enzymes related to
KYNA metabolism are summarized in Table 1.

Under some physiological or pathological conditions, KYNA
can be produced from indole-3-Pyruvic Acid or from kynurenine
by scavenging free radicals. These pathways represent alternative
routes of KYNA production. Although the contributions of these
alternative routes remain unclear, these could be very important in
such metabolic diseases as obesity and diabetes, because these
diseases share common factors such as oxidative stress
and inflammation. This information has been reviewed by
Ramos-Chávez et al. (47).
THE TRANSPORT OF KYNA

KYNA is able to cross the plasmamembrane through organic anion
transporters 1 and 3 (OAT1/SLC22A6 and OAT3/SLC22A8) (48).
The proximal tubule of the kidney, where OATs are found, is not
simply for renal elimination of KYNA and it also senses tryptophan
metabolites levels and responds to changes in their intracellular
abundance (49). It remains to be further investigated whether there
exists an exocytosis gated KYNA secretion.

While KYNA does not easily cross the blood-brain barrier, KYNA
synthesized by brain cannot be directly exported to the periphery and
vice versa (50). However, since its precursor L-KYN can cross the
blood-brain barrier (51), KYNA can be synthesized by KYAT in situ
using transported L-KYN in central nervous system under certain
conditions (51). Moreover, a recent study showed that in
Caenorhabditis elegans, an ortholog of the human LAT1 transporter,
AAT-1, imports L-KYN into sites of KYNAproduction (52). Another
study showed that five amino acids, including leucine, isoleucine,
methionine, phenylalanine and tyrosine, act as LAT substrates and
Frontiers in Endocrinology | www.frontiersin.org 3
inhibit brain KYNA synthesis by blocking L-KYN transport (53).
Similar to this transportmechanism inbrain, theuptakeofKYNA inT
cells can be mediated by the uptake of L-KYN via L-amino acid
transporter SLC7A5 (54).
LINKS BETWEEN KYNA AND COMMON
METABOLIC DISEASES

Inflammation, the First Link Between
KYNA and Metabolic Diseases
The production of KYNA is directly correlated to inflammation as
KYNA acts as an important immune regulated during inflammation
response. KYNA inhibits TNF-a at transcriptional level and
suppresses the secretion of TNF-a in mononuclear cells and in
CD14+ monocytes (55). Oral administration of KYNA decreases the
activity of the peripheral blood leukocytes in mice (56).

The immune response signaling pathway and metabolic
regulation signaling pathway, especially insulin signaling
pathway, are highly integrated, because organism would need to
redistribute its energy resources during the activation of immune
response (57). Chronic inflammation is activated in overweight
individuals as a consequence of adipose expansion. Recent insights
suggest that it may play an indispensable role in the over-nutrition
induced insulin resistance (58). During the past two decades, it
became clear that nutrient excess and activation of the innate
immune system are highly associated in most organs such as
adipose tissues, liver, gut, muscle, and islets (58). Low-grade
chronic inflammation or metabolically triggered inflammation is
considered as a fundamental characteristic of metabolic diseases
particularly in the context of obesity and type 2 diabetes. Targeting
inflammation has been suggested as an important strategy to
prevent and control these diseases (58).

Numbers of studies suggest that KYNA is produced during
inflammation and it has been shown to mediate various
immunomodulatory effects under inflammatory conditions (2).
Since inflammation is one of the main factors in many metabolic
diseases, it can be foreseen that KYNA may also play an important
regulatory role in the metabolic diseases.

Increased tryptophan/kynurenine metabolite levels are
frequently observed in overweight individuals (3). An increased
serum KYNA level can be found in Zucker fatty rats (59), and in
HFD fed LDL receptor knockout mice (60). Clinically, serum
KYNA has been found positively correlated with BMI in
overweight individuals (3, 61). The elevation of serum KYNA
concentrations is closely associated with the activation of immune
cells as increased IDO1 activity in macrophages and increased
serum KYNA levels have been reported in obese animal models.
The increased KYNA levels may result from an up-regulated
biosynthesis in the omental adipose tissue (but not in
subcutaneous adipose tissue), as the expression levels of IDO1,
KYAT1 and KYAT3 were significantly higher in overweight
individuals than in lean individuals (3). Furthermore, the
activation of KYNA production was not restrained in resident
immune cells of adipose tissue as the increased expression of
IDO1, KYAT2 and KYAT3 can also be found in adipocytes.
TABLE 1 | The characteristics of enzyme related to KYNA metabolism.

Enzyme Km Substrate References

TPH1 8 mM Trp (43)
TPH2 41.3 mM Trp (44)
IDO1 20 mM Trp (45)
TDO2 190 mM Trp (17)
KMO 7-16 mM KYN (38–40)
Kase 493 mM KYN (46)
KYAT1 4700 mM KYN (21)
KYAT2 4700 µM KYN (28)
KYAT3 1500 µM KYN (31)
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhen et al. Kynurenic Acid and Metabolic Disorders
This up-regulation may be due to the increased production of pro-
inflammatory cytokines from resident immune cells since adipocyte
does not express KMO (3). However, in another study, Pyun et al.
found a negative correlation between serum KYNA levels and BMI
(6). These controversial observations may be due to the different
criteria. Another possible explanation to the controversy is that the
KYNA determination method used in these studies are different: the
last one used an ELISA kit to determinate serumKYNA levels, while
the others used the HPLC-MS/MS method. It needs to be further
verified whether these divergent results are due to some
immeasurable confounding factors.

Liver seems to be another important source of serum KYNA
in overweight individuals as TDO and KYATs are highly
expressed in this organ (17, 18). Moreover, overweight is
frequently associated with a low-grade chronic inflammation
with an induction of IDO1 in liver (62). Furthermore, both of the
liver and adipose tissue have a closed crosstalk between resident
immune cells (Kupffer cells or macrophages) and metabolic cells
(adipocytes or hepatocytes). However, to the best of our
knowledge, neither the production of KYNA nor the regulation
of IDO, TDO and KYATs in hepatocytes under metabolic
challenge have been reported.
Physical Exercise, the Second Link
Between KYNA and Metabolic Diseases
Physical exercise has been described as a promising non-
pharmacological treatment for overweight and some other
metabolic diseases (63). In addition to its role in energy
expenditure regulation, skeletal muscle is increasingly
considered as one of the largest endocrine organs in our body.
It secretes a variety of myokines and bioactive metabolites, which
exerts important effects on the regulation of metabolism and
inflammation. KYNA can also be synthesized by skeletal muscle
and its production is closely correlated to the physical exercise in
both human and mouse (11, 64).

All the four KYATs are expressed in skeletal muscle, but
KYAT isoforms display fiber-type specific expression. KYAT1,
KYAT3 and KYAT4 are more abundant in oxidative type I than
glycolytic type II fiber (65). Accordingly, an increased serum
KYNA level has been found in individuals after endurance
exercise (64). Within the first hour after aerobic exercise, there
is an increase in plasmatic KYNA and this effect lasts for 2 hours
after exercise. In contrast, high-intensity eccentric exercise did
not lead to increased plasmatic KYNA concentration (64).
Regarding the effect of long-term exercise on KYNA, a recent
study of 4-week physical exercises on human found that physical
exercises promote an increase in the amount of KYNA in sweat
on day 14. The KYNA level returned to baseline on day 28 (66).
Additionally, inhibition of KYATs reduces myotube oxidative
capacity and exercise performance in mice (67).

Physical exercise induces peroxisome-proliferator activated
receptor g coactivator 1a (PGC-1a) expression in skeletal muscle
(11). PGC1-1a coordinates the expression of several genes involved
in the adaptive energy metabolism and fatigue-resistance such as
mitochondrial biogenesis and fatty acid oxidation. Recently, the
canonical and longest transcript variant of PGC-1a, PGC-1a1, is
Frontiers in Endocrinology | www.frontiersin.org 4
reported to up-regulate KYAT2 and KYAT4 expression (11). Such
mechanism in skeletal muscle during physical exercise may be
primarily aimed at enhancing the malate-aspartate shuttle as both
KYATs are important enzymes in themalate-aspartate shuttle (67).
Consequently, thismechanismshifts the kynureninemetabolism to
KYNA production.

This exercise-induced KYNAproduction is originally described
as the crosstalk between skeletal muscle and the brain to elucidate
the effectiveness of exercise in reducing depressive symptoms. A
recent study by Agudelo et al. demonstrated that KYNA increases
energy utilization by activating G-protein-coupled receptor 35
(GPR35), which stimulates lipid metabolism, thermogenic, and
anti-inflammatory gene expression in adipose tissue (68). Also,
GPR35 agonistswas reported to suppress high fat diet-induced fatty
liver development (5). These data uncovered that skeletal muscle
derived from KYNA may be a potential regulator of energy
homeostasis and a coordinator of exercise-induced adaptations in
other organs including liver, adipose tissue and brain.

However, it should be noted that physical exercise induces
strong and transit increases in KYNA levels while inflammation
leads to mild and sustained increases in KYNA levels.
Perinatal Nutrition, The Third Link
Between KYNA and Metabolic Diseases
Epidemiological and experimental data have suggested that
perinatal nutrition has a significant role in the development of
lifelong metabolic disorders (69). KYNA may also act as a link
between perinatal offspring and mother. KYNA can pass through
the placenta into the fetus (70). However, placental and fetal KYNA
were not affected by placental infusion of L-KYN in mice (70). Also,
under physiological conditions, KYNA was higher in the liver and
brain of mouse’s fetuses than in the placenta, and KYNA in the fetus
was not affected during oral maternal administration of KYNA. It
can be hypothesized that maternal KYNA cannot affect fetus
through placenta (70, 71).

Although maternal KYNA cannot directly affect the fetus,
some studies found the KYNA content in breast milk gradually
increases in different lactation periods (10). Epidemiological
studies showed a slower body weight gain in naturally fed
newborns compared to artificially fed ones (72). Although the
formula milk powder for infants in different periods are different,
studies have found that KYNA content in formula milk powder
is much lower than that in breast milk (10). Rats postnatally
exposed to KYNA supplementation were observed to have a
significant reduction of body weight gain, but no changes in total
body surface and bone mineral density. The rat offspring
supplemented with KYNA presents a lower mass gain during
the first 21 days of life, which indicates that KYNA may act as an
anti-obese agent (10).

Another potential mechanism is that perinatal KYNA may be
protective against overweight by modulating the gut microbiota.
Formula feeding appears to promote the microbiota associated
with overweight (73), while KYNA stimulates the growth of
certain probiotics (74). It still needs to be further explored
whether the presence of KYNA in breast milk acts as a
modulator of gut microbiota.
February 2022 | Volume 13 | Article 847611

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhen et al. Kynurenic Acid and Metabolic Disorders
POTENTIAL MECHANISM OF KYNA
INVOLVED IN COMMON METABOLIC
DISEASES

Glutamate Receptors
KYNA is well-known for its role as an endogenous N-methyl-D-
aspartate receptor (NMDAR) antagonist in the brain. In the
periphery, the expression of functional NMDA receptor is
reported in the pancreatic b-cell. Activation of NMDA receptor
reduces the glucose-stimulated insulin secretion. Likewise, NMDA
receptor knockout in mouse islets increases glucose-stimulated
insulin secretion. NMDA activation in b-cells also promotes cell
death under stress. In microphages, activation of NMDA receptor
induces ABCA1 degradation which promotes cholesterol
accumulation and foam cell formation (75). In liver, NMDA
receptor is present on the surface of Kupffer cells, and its
activation has been reported to limit inflammasome activation (76).

KYNA acts as a low affinity competitive antagonist of AMPA (a-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors.
It directly acts on the glutamate binding domain. Meanwhile, low
concentrations (0.03–30mM) of KYNA potentiate AMPA receptor
responses (77). Therefore, KYNA has a dual action on AMPA
receptor responses.

KYNA also directly interacts with the glutamate-binding
domain of kainate receptors. Its antagonistic effect on this type
of receptor is the least potent (IC50 500µM) among the 3 types of
glutamate receptors (78).

However, serum KYNA level hardly reaches to micromolar
levels. It is unclear whether KYNA in serum or in the periphery is
sufficient to antagonize these glutamate receptors.
Other High Affinity Receptors
The G-protein-coupled receptor 35 (GPR35) is an orphan receptor
that was identified in 1998 (79). It was originally described as a
receptor for zaprinast, a phosphodiesterase (PDE) inhibitor.
Recently, the KYNA was identified as an endogenous ligand for
GPR35 with an EC50 of 39µM in human and 7.9µM in rat (80).
Although the plasmatic concentration of KYNA is often in the
nanomolar range in humans, it can become micromolar under
inflammatory conditions.

GPR35 is associated with Gi/G0 and G13 proteins (81). Thus,
activation of GPR35 reduces the activity of adenylate cyclase (Gi/
G0) and/or increases that of the RhoA pathway (G13). GPR35 is
expressed in central nervous system and in many peripheral tissues.
In humans, significant expression of GPR35 has been detected in
the colon, pancreas, small intestine, spleen and immune cells
(monocytes, neutrophils, T cells and dendritic cells). The level of
its expression is lower in the stomach, skeletal muscle, adipose
tissue, pancreatic islets, kidney, liver, and thymus (82). Activation of
GPR35 by KYNA has anti-inflammatory effect (83) by inducing
autophagy-dependent degradation of NLRP3 inmacrophage (84). It
also plays anti-nociceptive (85) and anti-asthmatic (86) roles.
Furthermore, KYNA enhances Pgc-1a1 and UCP1 expression
GPR35 signaling in adipocytes, which suggests KYNA is a
signaling molecule which directly controls energy homeostasis (68).
Frontiers in Endocrinology | www.frontiersin.org 5
More recently, KYNA has been discovered to significantly
increase AMP-activated protein kinase (AMPK) phosphorylation
and to ameliorate palmitate-induced inflammation and insulin
resistance. It potentially alleviates inflammation and insulin
resistance in skeletal muscle and adipose tissues through GPR35/
AMPK and SIRT6-mediated pathways (87). It may also ameliorate
hepatic steatosis via the AMPK/autophagy‐ and AMPK/ORP150‐
mediated suppression of endoplasmic reticulum stress (6).

KYNA is also identified as an endogenous ligand for Aryl
hydrocarbon receptor (AhR). AhR was originally described as a
xenobiotic receptor, also known as the dioxin receptor. It is
activated by exogenous ligands, such as flavonoids, natural plant
polyphenols, indoles and dioxins. AhR plays multiple roles in
xenobiotic metabolism, the regulation of inflammation,
development, and the homeostasis of several organs (88). DiNatale
and colleagues (89) showed that KYNA is a potent endogenous
agonist of AHR with an EC25 around 100nM. Activation of AHR by
KYNA may lead to IL6 expression in tumor cells.

Moreover, studieshave shown thatKYNAcanalso act atnicotinic
receptors as a potent noncompetitive antagonist, particularly at the
a7 subunit of thenicotinic receptor (90).KYNAinhibitsCHRNA7 in
a non-competitive manner at physiological concentrations.
CHRNA7 was found to be expressed in glutamatergic axon
terminals. Activation of CHRNA7 enhances glutamate release.
Thus, KYNA may also be involved in the repression of glutamate
release at the presynaptic level. This represents another mechanism
by which KYNA exerts its anti-glutamatergic effect (90). The
characteristics of KYNA receptors are summarized in Table 2.

Scavenger of Free Radicals
In addition to its receptor-dependent effects, KYNA at high
concentrations (100-300 µM) also acts as a potent endogenous
antioxidant, as it is a scavenger of free radicals such as hydroxyl
radicals (OH▪), superoxide anion (O2

-) and peroxynitrite (ONOO-)
(92). Since oxidative stress is also critical for the pathogenesis of
metabolic diseases (93), the antioxidative properties of KYNA
represent an important mechanism in preventing the onset of
metabolic diseases.

Interestingly, another study showed that KYNA is not a guaranteed
protector against oxidative stress. It exhibits a strong pro-oxidative effect
combined with d-aminolaevulinic acid (ALA), an endogenous
precursor of heme and source of hydroxyl radical, and elevates
deoxyribose deterioration by 9 times compared to ALA alone (94).

Mitochondrial Homeostasis
The mitochondrial localization of KYAT suggests a direct release
of KYNA into the mitochondria. KYNA plays a key role in the
TABLE 2 | The characteristic of KYNA receptor.

Receptor KYNA Affinity References

NMDA antagonist IC50 7.9-20µM (70, 91)
Kainate antagonist IC50 500µM (78)
CHRNA7 antagonist IC50 7µM (90)
GPR35 agonist EC50 8-40µM (80)
AHR agonist EC25 100nM (89)
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redox balance in the mitochondria. The expression and function
of KYATs has been shown to be diminished in rat model with
mitochondrial dysfunction (95, 96).

Firstly, the formation of KYNAdiverts the pathway from de novo
synthesis of NAD+/NADH, which regulates themitochondrial TCA
cycle, oxidative state and mitochondrial dynamics, suggesting the
involvement of KYNA in the mitochondria energy metabolism
regulation. MPTP and 3-nitropropionic acid (3-NA) have
inhibitory effects on mitochondrial respiratory chain complexes
and on KYAT1 and KYAT2, thus compromise the ATP and
KYNA production in the mitochondria (96). Experimentally,
FK506, a neuroimmunophilin drug, not only enhanced the
formation of KYNA, but abolished the inhibition of KYNA
synthesis caused by MPTP and 3-NA. This result suggested that
the restoration of respiratory chain functionmay activate the KYNA
synthesis pathway (97). In the case of monogenic form of Leigh
Syndrome, the loss-of-function mutation in LRPPRC causes
mitochondrial RNA metabolism disorder. The metabolic signature
demonstrated a decrease in kynurenine, the precursor ofKYNA(98).
In patients with Schizophrenia, the prescription of N-acetylcysteine
has shown inhibitory effect on KYAT, decreasing the deleterious
effect of elevated KYNA on glutamate and dopamine signaling (99).
Furthermore, the plasmatic KYNA is positively correlated with fatty
acid oxidation and mitochondrial proliferation in the liver of
rat (100).

Secondly, KYNA has shown scavenging property of OH▪, O2
-,

ONOO- (92, 101). In a preparation of oocytes, KYNA significantly
reduced ROS and lipid peroxidation induced by FeSO4. For 3-
Methylglutaric acid (3MGA) which accumulates in the brains of
children coursing with metabolic acidurias, experiments showed
that 3MGA induced an increase in ROS production and lipid
peroxidation and a decrease in mitochondrial function. Addition
of KYNA showed antagonist effects (102).

Thirdly, as has been discussed in 4.1, KYNA has potent
antagonist effects over NMDAR (103), which may reduce de
Frontiers in Endocrinology | www.frontiersin.org 6
notorious effect of excitotoxicity on mitochondria, via decreasing
excessive intracellular Ca2+ as example (104).

Finally, KYNA was shown to directly impair respiratory
parameters of heart mitochondria. Moreover, the effect is selective
for complex I (105, 106). However, this respiratory chain-
modulating property was only observed in heart mitochondria,
and is absent for brain and liver mitochondria, suggesting profound
differences between tissular mitochondria content and helping to
explain the tissue-specific effect of KYNA. It should be pointed out
that these in vivo experiments were carried out with high
concentration of KYNA (125-1000 mM) which is rarely achieved
under physiological conditions (92).
CONCLUSION

Increasing evidence indicates that KYNA can act as a signaling
molecule to regulate energy expenditure in a network integrating
nutrition, physical exercise, inflammation and metabolic diseases
besides its neuro-protector role in the central nervous system
(Table 3). Targeting KYNA signaling network or its metabolic
pathway harbors high potentials to expand the range of strategy to
prevent and treat metabolic diseases.
AUTHOR CONTRIBUTIONS

ZS designed and reviewed the article. DZ wrote the draft. XDZ
revised the content. JL collected references. All authors
contributed to the article and approved the submitted version.
FUNDING

This research was funded by the Henan Provincial Post-
doctorate Research Fund and ENN Research Fund.
TABLE 3 | The roles of KYNA in metabolic diseases.

Organ/cell KYNA production Effects Associated
metabolic
disease

Liver High expression levels of TDO/IDO/KYATs were detected
in liver (12)

Activation of GPR35 inhibits the development of NAFLD (5) NAFLD
Inhibition of Kuffer cells NMDA receptor by KYNA limits inflammasome
activation (76)

Metabolic
inflammation

Activation of AMPK/autophagy‐ and AMPK/ORP150 pathway by KYNA
ameliorate endoplasmic reticulum stress and hepatic steatosis (6)

Hepatic steatosis

Adipose
tissue/
adipocyte

Expression of IDO1/KYAT1/KYAT3 were detected in
adipocytes (3)

Activation of GPR35 by KYNA promotes the expression of PGC1-a and
UCP1 (67)

Insulin resistance

Activation of GPR35/AMPK and SIRT6 pathways by KYNA reduces
inflammation and insulin resistance in adipocytes (87)

Metabolic
inflammation

Muscle Endurance essences enhance KYATs expression and
promote KYNA production (64, 65, 67)

Activation of GPR35/AMPK and SIRT6 pathways by KYNA reduces
inflammation and insulin resistance in skeletal muscle (87)

Insulin resistance
Metabolic
inflammation

Immune cell KYAT1/KYAT2 expressions were detected in in both
unstimulated and stimulated macrophage (107)

Antagonize NMDA receptor by KYNA inhibits ABCA1 degradation (75) Cholesterol
accumulation

Activation of GPR35 by KYNA induces autophagy-dependent
degradation of NLRP3 in macrophage (84)

Metabolic
inflammation

Pancreas KYNA were detected in pancreas fluid, expression of
TDO/KYATs were detected in pancreatic islets (9, 13)

High concentration of KYNA enhances glucose stimulated insulin
secretion (13)

Type 2 diabetes

Mammary
gland

KYNA content in breast milk gradually increases in
different lactation periods (10)

KYNA may act as an anti-obese agent for children (10) Obesity
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