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FNDC5 is the precursor of the myokine irisin proposed to exhibit favorable metabolic
activity, including anti-obesity and anti-diabetes effects. The diversity of FNDC5 transcripts
has been reported by several studies, but the role and existence of these transcripts are
not well defined. In our previous study, a novel secretable FNDC5 (sFNDC5) isoform
lacking the transmembrane region was found in rat INS-1 cells and multiple rat tissues. In
the current study, we established a high-yield system for the expression and purification of
sFNDC5 in Pichia pastoris, and functional investigations were undertaken using 3T3-L1
cells. We discovered that this new isoform has similar and even stronger biological
functions than irisin, which may be due to its more complete structure without cleavage.
Hence, we believe that sFNDC5, as the first identified readily secretable derivative, can
better induce lipolysis and can potentially prevent obesity and related metabolic diseases.
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INTRODUCTION

Obesity, which is associated with the development of various metabolic diseases, has been
highlighted as a priority public health problem worldwide in recent decades (1, 2). Excess weight
puts people at higher risk for chronic conditions such as diabetes mellitus, hypertension, insulin
resistance, cardiovascular diseases, and even cancers (3). Since an increase in the number and/or size
of adipocytes is the main characteristic of obesity, it is thought that the key to overcoming obesity is
to increase lipid metabolism. Hence, a focus on the study of adipocytes is regarded as the primary
means to solve the long-term dysregulation of energy balance (4).

White adipose tissue (WAT) and brown adipose tissue (BAT) are two typical types of adipose
tissues with opposite functions. The main function of WAT is to store energy, while BAT can
dissipate energy as heat through mitochondrial uncoupled respiration (5, 6). In recent years, beige
adipocytes have been described as a third type of adipose cell, which can be transformed from white
adipocytes and have a thermogenic function (7–10). These inducible beige adipocytes share several
biochemical features with BAT, such as the ability to dissipate energy through the uncoupling
protein 1 (UCP-1)-mediated uncoupling of oxidative phosphorylation to maintain body
temperature (11, 12).
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Irisin, an exercise-driven hormone, was first identified in 2012
and was presumably cleaved from its precursor protein
fibronectin type III domain containing 5 (FNDC5) (13). The
main function of irisin is to induce the “browning” of white
adipocytes by increasing UCP-1 and consequently increasing
whole-body energy expenditure (14). Therefore, irisin has
attracted much attention in the treatment of obesity and
related metabolic diseases (15). In addition to its beneficial
effect on obesity, irisin has also been linked to positive effects
on many other diseases in which exercise is beneficial, including
type 2 diabetes mellitus (T2DM) (16, 17), cardiovascular disease
(CVD) (18), nonalcoholic fatty liver disease (NAFLD) (19),
Alzheimer’s disease (20), and metabolic bone diseases (15).

Increasing evidence has suggested that FNDC5 may have
more than one type of transcript (20–23). Lourenco et al.
reported two peptides that have characteristics of full-length
FNDC5 and are not part of the irisin sequence, unlike the
original report describing irisin as a cleavage product derived
from FNDC5 (23). Indeed, Albrecht et al. also demonstrated the
diversity of FNDC5 transcript variants (22). The existence and
possible physiological functions of these FNDC5 variants in
rodents and humans remain controversial and need to be
further studied. Recently, our team identified a new FNDC5
variant in rat INS-1 cell lines while exploring the overlapping
effects of GLP-1 and FNDC5 in fighting obesity. This novel
FNDC5 variant lacks the transmembrane domain (exon 5),
which makes this protein secretable. Due to this characteristic,
we named this secretable FNDC5 variant sFNDC5. The potential
anti-obesity functions of sFNDC5 have been preliminarily
proven in our previous studies (24). Considering that
sFNDC5’s major distinction from irisin is that it lacks the
transmembrane domain while the majority of irisin sequences
are shared, a range of similar functions, such as browning and
lipolysis, and even its biological functions compared with irisin,
need to be further explored. To explore the function of sFNDC5,
we first developed an in vitro expression system and
purification procedure.

There are numerous standardized systems for heterologous
protein expression. The most widely used expression hosts are
Escherichia coli, insect cells infected with baculovirus, mammalian
cells, molds, and yeasts (25–27). Bacterial expression systems, such
as the Escherichia coli expression system, are readily available and
have unparalleled fast growth kinetics, inexpensive media, and
high-level expression when producing a recombinant protein, but
this system lacks the ability to create posttranslational
modifications (28). Among the many posttranslational
modifications that occur during protein expression, glycosylation
is often important, and various glycosylation patterns can
significantly affect protein functions, such as stability, folding,
and secretion (29). Importantly, studies have shown that the lack
of glycosylation decreases the secretion of irisin and is also related
to the instability of its precursor protein FNDC5 (30). For
providing posttranslational modifications of recombinant
heterologous proteins, mammalian cell lines possess significant
strengths. However, lower growth rates and expensive nutrient
requirements limit their use in large-scale production (31). The
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yeast expression system, with its capability of performing many
eukaryotic posttranslational modifications, including
glycosylation, phosphorylation, proteolytic processing, and
disulfide bond formation, offers an excellent recombinant
eukaryotic protein expression system (32, 33). Among all yeast
species, the methylotrophic yeast Pichia pastoris, with its
characteristic of simple manipulation and high yield, is a widely
recognized efficient protein production tool (33).

Therefore, in this work, we chose the methylotrophic yeast
Pichia pastoris as an efficient tool for the large-scale production
of high purity recombinant secretable FNDC5 (r-sFNDC5). The
biological activities of r-sFNDC5 in energy expenditure,
browning, and lipolysis were further explored and compared
with those of irisin in adipocytes.
MATERIALS AND METHODS

Expression Plasmid Construction and
Transformation of P. pastoris
The rat r-sFNDC5 cDNA (167 amino acids) was designed and
synthesized and then cloned into the EcoRI/XbaI site of
pPICZaA (Invitrogen, USA). The resulting pPICZaA-sFNDC5
plasmid was transformed into Pichia pastoris X-33 competent
cells following the manufacturer’s instructions (Pichia Easycomp
Transformation Kit, Invitrogen, USA).

Large-Scale Fermentation and Time
Course Expression Study
The transformed P. pastoris r-sFNDC5 competent cells were
selected on YPD (1% yeast extract, 2% peptone, 2% dextrose, and
2% agar) plates containing 100 mg/ml zeocin. After incubation
for 2 to 3 days at 30°C, a single zeocin-resistant colony was
selected for protein expression. The selected colony was cultured
in 5 ml YPD medium (1% yeast extract, 2% peptone, 2%
dextrose, 100 mg/ml zeocin) overnight under shaking (200 rpm
30°C). Then, 5 mL of yeast culture was transferred into a flask
containing 50 mL of YPD medium (1% yeast extract, 2%
peptone, 2% dextrose, 100 mg/ml zeocin) and cultured under
shaking for another 12 to 14 h. Scale-up expression was
performed by transferring 50 ml yeast solution into 500 ml
YPD medium and culturing overnight. After the A280 value
reached 12 to 18, the cells were harvested by centrifugation (8000
rpm for 10 min) and resuspended in 100 ml buffered methanol-
complex medium (BMMY) (1% yeast extract, 2% peptone, 100
mM potassium phosphate (pH 6.0), 1.34% yeast nitrogen broth,
0.4 mg/L biotin and 0.5% methanol). Subsequently, the cells were
incubated at 30°C for 4 days under shaking (200 rpm), and 0.5%
methanol was added to the medium every day. The supernatants
(1 ml) were collected once daily for A280 detection. The
remaining samples were detected by SDS–PAGE analysis.

Purification of r-sFNDC5
The r-sFNDC5 secreted into the medium was purified to
homogeneity by a Ni-NTA resin column exchange method. On
Day 4, yeast cultures were centrifuged (15 min, 8000 rpm), and
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the induced supernatant was dialyzed against 2 L buffer A (500
mMNaCl, 10 mM Tris, pH = 7.5) at 4°C overnight. The resulting
supernatant was collected and loaded onto a Ni-NTA resin
column (#L00250-C, GenScript, China) and washed with wash
buffer (500 mM NaCl, 10 mM Tris, pH = 7.5) to remove
impurities. His-tagged sFNDC5 was eluted with elution buffer
(500 mM NaCl, 10 mM Tris, pH = 7.5, and 250 mM imidazole)
and collected in 1.5 ml tubes (1 ml per tube). The collected
samples were measured at A280 and then analyzed by 12% SDS–
PAGE. The protein concentration was estimated by a BCA
protein assay kit (#P1101, Beyotime).

r-irisin was expressed and purified using the same method as
r-sFNDC5.

Glycosylation Assay
To confirm glycosylation of the r-sFNDC5 protein, we treated
the protein with recombinant N-glycanase (#P0704 L, PNGase F,
New England BioLabs) and analyzed it by SDS–PAGE.

Differentiation of 3T3-L1 Preadipocytes
Into Mature Adipocytes
Murine preadipocyte (3T3-L1) cells (Chinese Academy of
Sciences Cell Bank, Shanghai, China) were cultured in basic
medium (DMEM supplemented with 10% bovine calf serum and
1% penicillin streptomycin) at 37°C in a humidified atmosphere
of 5% CO2. To induce differentiation into adipocytes, cells were
cultured in adipogenic differentiation induction medium (basic
medium supplemented with 0.5 mM isobutyl methylxanthine,
0.25 mM dexamethasone and 5 mg/ml insulin). Three days after
induction, the cells were switched to maintenance medium (basic
medium supplemented with 5 mg/ml insulin only) and cultured
for another two days. Then, the medium was changed to basic
medium and cultured for several days until approximately 90%
3T3-L1 cells were adipogenic differentiated. Fully differentiated
adipocytes were treated with r-sFNDC5, r-irisin, or vehicle for
the indicated times. To demonstrate the effect of r-sFNDC5 on
adipogenesis, the cells were treated with or without r-sFNDC5 at
different concentrations throughout the differentiation period.
Adipogenic differentiation was confirmed by Oil Red O staining
(14, 34).

Cell Proliferation Assay
3T3-L1 cells were seeded into a 96-well plate at a density of 1×104

cells/well and treated with various concentrations of r-sFNDC5
(0, 20, 50, and 100 nM) and cultured for different times (8, 24, 48,
and 96 h). Cell viability was detected by using the CCK-8 assay
according to the manufacturer’s instructions.

SDS–PAGE and Western Blotting
Total protein lysates of 3T3 cells were separated by SDS–PAGE
(10-15%). After electrophoresis, proteins were transferred to
PVDF membranes and incubated with primary antibodies at 4°
C overnight. The membranes were incubated with an HRP-
conjugated secondary antibody for another 1 h at room
temperature. The antibodies were diluted to their appropriate
ratio according to the manufacturer’s instructions. The bands
were visualized with enhanced chemiluminescence substrate
Frontiers in Endocrinology | www.frontiersin.org 3
(Millipore). The antibodies used were as follows: FNDC5
(#ab174833, Abcam), UCP-1 (#U6382, Sigma), HSL
(#ab109400, Abcam), perilipin (#ab3526, Abcam), adipoq
(#ab22554, Abcam), and b-actin (#A5316, Sigma).

RNA Isolation and RT–qPCR
Total RNA was isolated by TRIzol reagent (#15596018,
Invitrogen) according to the manufacturer’s instructions. First-
strand cDNAs were synthesized from 2 mg of total RNA using a
High-Capacity cDNA Reverse Transcription Kit (#K1691,
Invitrogen). RT–qPCR in triplicate was carried out with SYBR
Green Master Mix (#A46113, Invitrogen). The 2–△△Ct method
was used to quantify the relative expression of the genes. b-actin
was used as an internal control. The primers are listed in
Supplementary Table S1.

Immunofluorescence (IF) Staining
of UCP-1
Differentiated mature 3T3-L1 adipocytes were treated with or
without r-sFNDC5 for the indicated times. After fixation, the
cells were incubated with UCP-1 antibody (1:200) overnight at
4°C. After washing, FITC-conjugated goat anti-rabbit IgG
secondary antibody was incubated with the cells for another 1
h at RT. 4,6-Diamidino-2-phenylindole (DAPI) was used to
counterstain the nuclei. Images were taken with a confocal
laser microscopy system.

Intracellular ATP Detection
ATP was measured in the cell lysates with an enhanced ATP
assay kit (Beyotime) according to the manufacturer’s protocol.

Statistical Analysis
All data are presented as the means ± SEM of at least three
independent experiments. The statistical significance was
analyzed by using GraphPad Prism 7.0 software, and
comparisons between two groups were performed using one-
way ANOVA followed by unpaired Student’s t-test. P < 0.05 was
considered statistically significant.
RESULTS

Sequence Analysis of sFNDC5
As described in our previous paper, sFNDC5 is derived from
FNDC5 pre-mRNA through alternative splicing. Through
alignment of the amino acid sequences of this new sFNDC5
transcript and membrane-bound FNDC5 (mFNDC5), we found
that this variant lacks a transmembrane domain (exon 5) but
shares most of the irisin sequence (Figure 1).

Expression and Purification of r-sFNDC5
in P. pastoris
To achieve high-yield expression of r-sFNDC5 in a yeast
expression system, the pPICZaA-sFNDC5 plasmid was
designed and constructed. The yeast culturing and induction of
protein expression were performed as described in the Materials
and Methods. To determine the optimal time for the expression
March 2022 | Volume 13 | Article 852015
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of r-sFNDC5, methanol-treated supernatant samples were
collected on Day 1, Day 2, Day 3, and Day 4. By measuring
A280, we found that the expression of r-sFNDC5 was time-
dependent (Figure 2A). SDS–PAGE analysis showed purified
Frontiers in Endocrinology | www.frontiersin.org 4
r-sFNDC5 with a molecular weight range from 18 to 27
kDa (Figure 2B).

After 4 days of methanol induction, the culture medium was
centrifuged, and the induced supernatants were collected and
FIGURE 1 | Schematic sequence of rat FNDC5 variants. Schematic representation of the amino acid sequence alignment of sFNDC5 and mFNDC5. FNDC5 amino
acid sequence with corresponding domains colored. Blue, signal peptide; Yellow, irisin; Green, hydrophobic domain; Black, C-terminal domain.
A B

DC

FIGURE 2 | Time-course expression and purification of r-sFNDC5 in P. pastoris. Culture supernatants of r-sFNDC5 (1 ml) were collected from Day 1 to Day 4.
(A) The supernatants were measured at A280 for relative quantification of the protein in the supernatants. (B) The proteins in the supernatants were analyzed by
15% SDS–PAGE and stained with Coomassie blue R250. Lanes 0 to 4 are representative supernatants after induction by methanol. (C) Elution curves of r-sFNDC5
from Ni-NTA resin in elution buffer. The eluents were collected and measured at A280 until the value of A280 was not increased, for a total collection of 8 ml. The
eluent protein concentrations were also estimated by the BCA method and then analyzed by 15% SDS–PAGE. (D) 15% SDS–PAGE stained with Coomassie blue
R250. Lanes 1-8, samples of purified r-sFNDC5 collected in sequence.
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subjected to an Ni-NTA resin column for purification. The
purified r-sFNDC5 was eluted from the column (1 ml per
tube) and measured for A280 absorbance readings, and the
BCA protein assay was used for quantification. The A280
absorbance readings correlated well with the protein
concentration, which may be used as a rapid method to
determine the elution concentration (Figure 2C). The samples
collected during the elution peak were selected for analysis by
12% SDS–PAGE and stained with Coomassie brilliant
blue (Figure 2D).

N-Linked Glycosylation Analysis
of r-sFNDC5
To examine whether the higher bands of r-sFNDC5 were
glycosylated, purified r-sFNDC5 was treated with or without
the enzyme N-glycosidase F (PNGase F) for 1 h and subjected to
SDS–PAGE analysis. The enzyme-treated r-sFNDC5 exhibited a
single band with the expected molecular mass of 18 kDa
(Figure 3), confirming that the 20-27 kDa mass of r-sFNDC5
expressed by P. pastoris was mainly the result of N-glycosylation.

r-sFNDC5 Stimulates Browning and
Lipolysis in Differentiated Mature
3T3-L1 Cells
To verify the protein activity and functions of our purified r-
sFNDC5, we first evaluated the influence of r-sFNDC5 on cell
viability. 3T3-L1 cells were treated with different concentrations
Frontiers in Endocrinology | www.frontiersin.org 5
of r-sFNDC5 for the indicated times, and cell viability was
assessed using the CCK-8 assay. The results showed no effect
on cell viability at these concentrations of r-sFNDC5 treatment,
which indicated no toxicity of this protein (Figure 4A).
Therefore, we used concentrations of 20 and 50 nM in
subsequent studies. We found that r-sFNDC5 induced a rapid
upregulation of browning (UCP-1, PRDM16, Cidea) and
lipolysis-related genes (ATGL, HSL) in differentiated mature
3T3-L1 adipocytes after treatment for 8 h (Figures 4B, C).
Consistent with changes in their transcription levels, UCP-1
and ATGL protein levels were also significantly enhanced
(Figures 4D, E). Immunofluorescence staining of UCP-1
further confirmed a significantly higher level of expression
after 24 h of treatment with r-sFNDC5 (Figure 4F, middle
panel), and its level dramatically increased after 4 days of
r-sFNDC5 treatment (Figure 4F, bottom panel).

To further characterize the impact of r-sFNDC5 on cellular
energy metabolism, we subsequently measured intracellular
ATP. The results showed that intracellular ATP levels were
decreased with r-sFNDC5 treatment (Figure 4G). The reason
is that sFNDC5 induces fast substrate oxidation with a low rate of
ATP production due to increased UCP1 expression (35).

r-sFNDC5 Inhibits Adipogenic
Differentiation of 3T3-L1 Cells
In addition to exploring the function of r-sFNDC5 on
differentiated mature adipocytes, the effect of r-sFNDC5 on
lipid accumulation during adipogenic differentiation was
further studied. The 3T3-L1 cells were treated with different
concentrations (20 nM and 50 nM) of r-sFNDC5 throughout the
differentiation period. As shown in Figure 5A, adipocyte
accumulation was reduced in the presence of r-sFNDC5 after
10 days of differentiation. Moreover, the expression of Perilipin
and Adipoq was also reduced at both the gene and protein levels
(Figures 5B, C). The former coats the surface of intracellular
lipid droplets, and the latter is a key gene related to lipid
metabolism and adipogenesis. Collectively, our results
demonstrated that r-sFNDC5 exerts an inhibitory effect on
preadipocyte adipogenic differentiation.

Functional Comparison of r-sFNDC5
and r-Irisin in Differentiated Mature
3T3-L1 Adipocytes
Next, we sought to compare the biological function of r-sFNDC5
with r-irisin, as the browning and lipolysis functions of
r-sFNDC5 had been verified above. We treated differentiated
mature 3T3-L1 adipocytes with 20 nM r-sFNDC5 and r-irisin for
8 h and found that both proteins induced the expression of genes
related to browning (UCP1, Cidea, PRDM16), mitochondrial
biogenesis (PGC1a, TFAM), and lipid metabolism (ATGL, HSL,
CPT-1, FABP4) (Figures 6A–C). However, r-sFNDC5 had a
much stronger effect than r-irisin. Western blot results showed
that the levels of HSL and UCP1 were also increased more
significantly after r-sFNDC5 treatment (Figure 6D). Overall,
these results suggested that r-sFNDC5 exhibited superior
biological activity to r-irisin.
FIGURE 3 | N-linked glycosylation of the r-sFNDC5. Purified r-sFNDC5
protein was incubated with or without PNGase F at 37°C for 1 h, and
glycosylation was confirmed by Coomassie blue staining.
March 2022 | Volume 13 | Article 852015
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DISCUSSION

With the discovery of irisin, researchers have reported that irisin
plays a pivotal role in fat browning and the regulation of energy
expenditure and has the potential to be used as a promising
therapeutic agent in the treatment of metabolic and endocrine
disorders. However, there is still considerable heterogeneity in
reports on the molecular weights of different forms of irisin and
its precursor FNDC5 in humans and mice (20, 22, 36). Many
studies have detected FNDC5 in a molecular weight range from
22 to 30 kDa in untreated muscle of different species (37–41).
Moreover, one study detected irisin with a molecular weight up
to 75 kDa in hippocampal cells of mice using a commercial anti-
FNDC5 antibody. Through analysis by MS, they speculated that
FNDC5 in the brain appears to exist as an uncut transmembrane
protein, as 2 peptides that are characteristic of full-length FNDC5
were found in all western blotting bands (20). The lack of reliable
antibodies for the detection of irisin is a major reason for the
Frontiers in Endocrinology | www.frontiersin.org 6
discrepancies (42). Other explanations for the inconsistent MW
results may be due to site-directed mutation, irisin dimer, and
glycosylated irisin. As the proteolytic enzyme that cleaves irisin
from FNDC5 has yet to be identified and the fndc5 gene is known
to produce diverse transcripts, there may exist other soluble
uncut FNDC5 isoforms in addition to proteolysis. Indeed,
Albrecht et al. reported that there is a greater transcript
diversity of human FNDC5 than currently annotated (22).
They reported that some aberrant transcripts were changed
only in the C-terminal region and did not affect the irisin
sequence, and some lacked the signal peptide and had
truncated irisin (21). However, all of this is speculation, and
the existence and possible physiological functions of various
FNDC5 transcripts in rodents and humans have been a matter
of controversy.

In our previous study, a new FNDC5 transcript from rat INS-1
cell lines was identified by RT–qPCR analysis. According to the
contrast in the schematic sequence between irisin and sFNDC5,
A B

D

E

F

G

C

FIGURE 4 | r-sFNDC5 induced the browning and lipolysis of 3T3-L1 adipocytes. The biological activity of purified r-sFNDC5 was assessed in differentiated 3T3-L1
adipocytes. (A) 3T3-L1 preadipocytes were treated with various concentrations of r-sFNDC5 for the indicated times, and cell viability was assessed using a CCK-8
assay. The data are expressed as OD values at 450 nm. After fully differentiating, mature 3T3-L1 adipocytes were treated with r-sFNDC5 (20 nM and 50 nM) for 8 h.
Then, the relative mRNA levels of browning genes (B) and lipolysis genes (C) were measured by RT–qPCR, and (D, E) western blotting was performed for UCP-1
and HSL. b-actin expression was used as a control. (F) Representative 3T3-L1 adipocytes immunostained for UCP-1 (green) and nuclei (blue) after r-sFNDC5
(50 nM) treatment for 24 h or 4 days. White arrows indicate UCP-1-positive cells. Images were taken using a confocal fluorescence microscope. (G) ATP levels
measured in lysates of 3T3-L1 adipocytes treated with 20-100 nM r-sFNDC5 for 4 days. ATP concentrations were normalized to protein content and control. Each
experiment was repeated three times. Values are the mean ± SEM. *P < 0.05, **P < 0.01 and ***P < 0.001 vs. control.
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A

B C

FIGURE 5 | r-sFNDC5 suppresses the differentiation of 3T3-L1–derived adipocytes. Human visceral preadipocytes were induced to adipogenic differentiation with or
without irisin (50 nM) for 18 days. r-sFNDC5 (20 nM or 50 nM) was added to 3T3-L1 cells with adipogenesis induction medium. (A) Cells were stained with Oil Red
O to visualize lipid droplets. (B, C) Relative mRNA and protein levels of the perilipin and adiponectin genes were measured by RT–qPCR and western blotting.
b-actin expression was used as a control. Each experiment was repeated three times. Values are the mean ± SEM. *P < 0.05 and **P < 0.01 vs. control.
A B

DC

FIGURE 6 | The function comparison of r-sFNDC5 and r-irisin in the 3T3-L1 adipocytes. After fully differentiated, 3T3-L1 adipocytes were treated with r-sFNDC5 (20
nM) or r-irisin (20 nM) for 8 h. (A) Relative mRNA levels of browning genes, (B) mitochondrial biogenesis, and (C) lipid metabolism were measured by RT–qPCR. (D)
The contents of UCP-1 and HSL were measured using western blotting. b-actin expression was used as a control. The asterisk (*) above the bar denotes statistically
significant differences in mRNA levels calculated relative to the control, while the hash (#) denotes statistically significant differences calculated between the irisin and
sFNDC5 groups. Each experiment was repeated three times. Values are the mean ± SEM. *P < 0.05 vs. control, #P < 0.05 vs. irisin.
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this new variant shares most of the irisin sequence (24). To clarify
the precise biological function of this transcript, we first obtained
the sFNDC5 protein with a P. pastoris yeast expression system and
purified it with a Ni-NTA column, which is a useful experimental
tool for heterogeneous protein production (43). Therefore, in this
paper, we introduced this protein expression and purification
procedure in detail. We successfully used this expression system
to produce a high yield of r-sFNDC5, providing the ability to
explore its biological function in subsequent studies. R-sFNDC5 is
a glycoprotein, as SDS–PAGE analysis showed a molecular weight
range from 18 to 27 kDa. Unfortunately, we could not distinguish
sFNDC5 from other FNDC5 derivatives due to a lack of specific
antibodies. Treatment of r-sFNDC5 with PNGase F caused a
decrease in the molecular mass to approximately 18 kDa,
confirming that r-sFNDC5 is a glycosylated protein. The main
band in Figure 3 supports the existence of deglycosylated sFNDC5
at a size of 15-16 kDa. There is still a shallow band at 20 kDa,
probably because PNGase F is an enzyme that removes N-linked
oligosaccharides but not other oligosaccharides; this band is
therefore the result of incomplete deglycosylation (44).
In addition, we found that the concentration of r-sFNDC5 in
each elution collection tube was positively correlated with the
relative change in the measured A280 absorbance readings. This
not only provides a rough estimate of eluted protein concentration
based on the absorbance of A280 but also ensures that the protein
is completely eluted. This method is simple and can be
done quickly.

Despite numerous studies on FNDC5 variants (21, 45), the
biological function of these forms is still poorly understood.
Studies have confirmed that irisin can promote white adipose
tissue browning (13, 46), stimulate lipolysis (47–49), and thus
play a critical role in regulating energy homeostasis (50).
Therefore, we examined the biological activity of r-sFNDC5 on
browning and lipid metabolism in 3T3-L1 adipocytes. From the
results, we found that r-sFNDC5 activated the expression of
browning (UCP-1, PREM16, Cidea)- and lipolysis (HSL and
ATGL)-related genes and proteins. UCP1 is a protein that is
essential for brown fat cells and is localized to the mitochondrial
inner membrane, where it uncouples cellular respiration
and mitochondrial ATP synthesis to dissipate heat instead
of generating ATP (35). Indeed, depletion of intracellular
ATP levels was also found in r-sFNDC5-treated cells, which
further indicated that r-sFNDC5 treatment induced high
expression levels of UCP-1. In our study, we also explored the
effect of r-sFNDC5 on preadipocyte adipogenic differentiation.
As expected, lipid droplets dramatically increased during
3T3-L1 preadipocyte adipogenic differentiation, accompanied
by upregulated expression of adipose-related genes, whereas
the levels showed a downward trend after r-sFNDC5
treatment, suggesting that r-sFNDC5 inhibits preadipocyte
adipogenic differentiation.

Irisin and sFNDC5 are both FNDC5 derivatives, and thus it is
necessary to compare the effects of these two forms of derivatives
on metabolism-related functions. As our previous study proved
that irisin at 20 nM effectively upregulated UCP-1 expression, we
Frontiers in Endocrinology | www.frontiersin.org 8
compared its biological function with r-sFNDC5 at this
concentration (14). As expected, r-irisin increased browning,
lipolysis, and mitochondrial biogenesis genes at both the
transcriptional and protein levels. However, r-sFNDC5 had a
much stronger effect than irisin in this respect. Due to the lack of
a transmembrane region, sFNDC5 can be readily secretable
without cleavage, which may affect its biological functions.

In summary, we have described a highly efficient production
and purification system for the preparation of r-sFNDC5. Its
biological activities were further confirmed not only in mature
adipocytes but also in preadipocytes undergoing adipogenic
differentiation. Additionally, r-sFNDC5 was proven superior to
r-irisin in terms of functions related to lipid metabolism.
Clarifying whether sFNDC5 plays a significant and beneficial
role in other tissues, the existence and functions of this secreted
FNDC5 protein in humans and mice, and the specific
mechanism of sFNDC5 underlying metabolism-related effects
requires further research. The present findings provide
preliminary experimental evidence for the potential use of this
secreted FNDC5 derivative (sFNDC5) for the treatment of
obesity and obesity-related metabolic disorders.
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