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Prostate cancer (PCa) is the most common malignancy in men worldwide, thus
developing effective prevention strategies remain a critical challenge. Insulin-like growth
factor 1 (IGF-1) is produced mainly in the liver by growth hormone signaling and is
necessary for normal physical growth. However, several studies have shown an
association between increased levels of circulating IGF-1 and the risk of developing
solid malignancies, including PCa. Because the IGF-1 receptor is overexpressed in PCa,
IGF-1 can accelerate PCa growth by activating phosphoinositide 3-kinase and mitogen-
activated protein kinase, or increasing sex hormone sensitivity. Short-chain fatty acids
(SCFAs) are beneficial gut microbial metabolites, mainly because of their anti-inflammatory
effects. However, we have demonstrated that gut microbiota-derived SCFAs increase the
production of IGF-1 in the liver and prostate. This promotes the progression of PCa by the
activation of IGF-1 receptor downstream signaling. In addition, the relative abundance of
SCFA-producing bacteria, such as Alistipes, are increased in gut microbiomes of patients
with high-grade PCa. IGF-1 production is therefore affected by the gut microbiome,
dietary habits, and genetic background, and may play a central role in prostate
carcinogenesis. The pro-tumor effects of bacteria and diet-derived metabolites might
be potentially countered through dietary regimens and supplements. The specific diets or
supplements that are effective are unclear. Further research into the “Gut–IGF-1–Prostate
Axis” may help discover optimal diets and nutritional supplements that could be
implemented for prevention of PCa.

Keywords: prostate cancer, IGF-1, short-chain fatty acids, gut microbiome, bacteria
INTRODUCTION

Prostate cancer (PCa) is the most common malignancy in men worldwide and the fifth most
common cause of cancer-related death with as many as 360,000 men dying of PCa annually (1). PCa
morbidity varies somewhat by region and race, and has consistently been increasing in recent years
(2, 3). Although androgen deprivation therapy is very effective for PCa, high-grade PCa becomes
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androgen resistant, which makes subsequent treatment
challenging. Therefore, it is important to find new targets for
the prevention and treatment of high-risk PCa.

The age-adjusted prevalence of latent PCa at autopsy in
Japanese migrants in Hawaii >50 years old was higher than
that of Japanese men living in Japan (25.6% vs. 20.5%),
suggesting that PCa risk is not only altered by genetic factors
but also by various environmental factors, such as diet (4). Many
studies have reported that excessive intake of animal fat,
carbohydrate, and dairy products increases PCa risk. However,
different cohorts have yielded different results, and no consensus
has been reached (5). This is because diet affects PCa
development and progression through multiple mechanisms
(6). The relationship between the diet and PCa is complex and
not fully understood and as a result has hindered PCa prevention
and treatment strategies via dietary interventions.

We recently identified a novel mechanism by which specific
intestinal bacteria promote PCa through insulin-like growth
factor I (IGF-1) signaling (7). Various studies have shown that
diet can disrupt gut microbial composition resulting in dysbiosis
and loss of homeostasis, affecting local intestinal disease as well
as diseases and disorders in distant organs, such as the liver and
brain (8–13). These relationships have been referred to as gut–
liver axis and gut–brain axis, respectively. In cancer biology, the
relationships between gut microbiota and various types of
cancer, such as colorectal, hepatocellular, and breast cancer,
have been well studied. In contrast, little is known about the
influence of the gut microbiota on PCa (14). IGF-1 is implicated
in the pathogenesis of PCa and may be the key player that links
diet to prostate carcinogenesis and progression that is mediated
by gut microbes. This review summarizes the present knowledge
of the functions of IGF-1 in PCa progression, especially its
relationship to diet and gut microbiota.
MECHANISM OF IGF-1 SIGNALING

IGF-1 is a growth factor that plays a crucial role in cell
proliferation and physical growth. IGF-1 signal transduction is
mediated through the IGF-1 receptor (IGF1R) and insulin
receptor (INSR). The structures of IGF1R and INSR are highly
homologous (15). These receptors stimulated by IGF-1 activate
tyrosine kinase activity directed at the b subunit, resulting in
substrate phosphorylation, such as insulin receptor substrate
(IRS) 1, IRS2, and Src homology collagen. The phosphorylated
residues are recognized by the signaling molecules p85 and Grb2,
which stimulate the phosphoinositide 3-kinase (PI3K) and
mitogen-activated protein kinase (MAPK) signaling cascades.
These signaling cascades mediate crucial biological functions of
IGF-1 (15).

IGF-1 production in the healthy liver is mainly positively
regulated by growth hormone (GH) signaling through the GH
receptor pathway (16, 17). IGF-1 is released into circulation.
IGF-1 is produced in other organs by various other cells that
express IGF1R and is activated via autocrine signaling, although
hepatocytes do not express enough IGF1R (18). Therefore, in
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liver-specific IGF-1-deficient mouse models, circulating IGF-1
levels are reduced to <20% of control mice and GH levels are
elevated, but physical growth is normal (19). The bioavailability
of circulating IGF-1 is regulated by the IGF-binding protein
(IGFBP) family that blocks access to its receptor (20). In
particular, IGFBP3 produced by Kupffer cells in the liver is
important in IGF-1 homeostasis (21).
EFFECTS OF IGF-1 ON ORGANS

IGF-1 has tissue-specific roles through IGF1R and INSR.
Muscle-specific IGF1R knockout mice display disrupted muscle
fiber formation and reduced muscle weight early in development
(22). However, muscle weight of differentiated muscles is not
affected in mice with IGF1R knockout (23). IGF-1 has a
significant effect on physical growth, but not on adult
physiology. IGF-1 is also critical in bone growth and
maintenance during postnatal life. IGF-1 can directly affect
chondrocytes and osteoblasts and increase ephrin ligand-
receptor signaling, leading to the differentiation of each cell.
IGF-1 signaling also inhibits the formation of differentiated
osteoclasts, contributing to bone growth (24). In the pancreas,
IGF-1 signaling retains normal b-cell function, which is
necessary to maintain glucose tolerance in vivo (25, 26). In
vitro, IGF-1 stimulates expression of cellular communication
network factor 5 (CCN5) and promotes b-cell proliferation (27).
The phenotype of diabetes by blocking IGF-1 signaling is more
obvious in mouse models lacking both IGF1R and INSR in b-
cells (28). IGF-1 signaling is required for adipocyte development
and function in adipose tissue, which is a major nutrient storage
site. Mice lacking IGF1R and INSR in adipocytes contain almost
no adipose tissue and develop significant diabetes, dyslipidemia,
and fatty liver (29). IGF-1 is involved in myeloid cell function.
IGF-1 activates M2 macrophages. Secretion of IGF-1 by the
macrophages in turn leads to insulin resistance in mice fed a
high-fat diet (30). A very important role of IGF-1 is its effect on
the endocrine system. IGF-1 can directly support thyroid
hormone production, and organ-specific IGF-1 signal loss
reduces thyroid hormone and significantly increases thyroid
stimulating hormone (TSH) levels (31). IGF1R and INSR
knockout inhibit the development of the adrenal cortex and
testes, and reduce testosterone levels. How IGF-1 signaling
affects adrenal and testes function remains unknown (32). The
role of IGF-1 signaling in prostate development and normal
prostate physiology has not been established in vivo, however,
silencing IGF-1 in not only the WPMY-1 prostate stroma cell
line, and but also BPH-1, a prostate epithelium cell line,
decreased cell proliferation and increased apoptosis rate in
vitro (33). In human, IGF1R is located on the long arm of
chromosome 15, and 36 different probable mutations have
been reported (34). Most patients are heterozygous carriers,
and all show pre- and postnatal growth retardation and
dysmorphic features, such as a triangular face. The collective
findings reveal that IGF-1 is an essential hormone for normal
growth and maintain homeostasis.
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CANCERS AND IGF-1 SIGNALING

IGF-1 is involved in several diseases. It is clear that diabetes is
influenced by IGF-1 because of its effect on pancreatic b-cell
function. IGF-1 increases nutrient-stimulated insulin release. The
increased level of insulin increases IGF-1 production by stimulating
GHsignaling (35). Impaired insulin secretion due to type 1 diabetes
lowers serum IGF-1 levels, and improves glycemic control in
patients with type 2 diabetes leads to increased IGF-1 levels (36–
38). Obese individuals have lower serum IGF-1 levels than normal-
weight individuals, although over nourishment is associated with
high insulin and IGF-1 levels (39). Several large studies found that
serum IGF-1 levels are highest in bothmen andwomenwith a body
mass index of 24–27 kg/m2 (40, 41). A possible reason why serum
IGF-1 levels are decreased in obese patients is that increased free
IGF-1 fraction by reduction in IGFBP production enhances
negative feedback on GH secretion by the pituitary gland (42).
Therefore, IGF-1 bioactivity may not be decreased, even in obese
patients. In a study of 27 samples of benign prostatic hyperplasia
(BPH)patients, therewasnosignificant relationshipbetween serum
IGF-1 levels and prostate volume (P = 0.91). However, the gene
expression of IGF-1 in prostate tissue was significantly increased (P
= 0.001) and the expression of IGFBP3 was significantly decreased
(P= 0.003) in patients with larger prostate size (>30mL) (43). Local
IGF-1 was reportedly upregulated in hyperplastic prostate tissues
(33). Patients with acromegaly characterized byGHhypersecretion
display high IGF-1 levels, and acromegaly patients are highly
susceptible to IGF-1 related diseases including diabetes mellitus
and BPH, suggesting IGF-1 regulation of various diseases.
Acromegaly patients <40 years of age were found to have
significantly larger prostate than healthy men (18.2 vs. 28.5 mL, P
< 0.001), and suppression ofGHand IGF-1 using octreotide caused
prostate shrinkage (44).

IGF-1 has been associated with the development and
progression of some cancer types due to its function in activating
theMAPKandPI3Ksignalingpathways (15).Apositive association
was observed between serum IGF-1 level and overall cancer risk in
men in theUnitedKingdom(hazard ratio [HR]=1.03per5-nmol/L
increment in IGF-1) and specific cancer risk, such as prostate,
melanoma, kidney, and thyroid (HR = 1.09, 1.08, 1.10, and 1.22,
respectively) (45). In these cancer types, basic studies have also
shown an association with IGF-1 signaling (46–48). Although
melanoma cells do not produce IGF-1, activation of the MAPK
andPI3K signalingpathwaybyparacrine stimulationof IGF-1 from
stromal fibroblasts enhanced survival, migration, and growth of
melanoma cells only from biologically early tumors (46). A cell line
derived from metastatic clear cell renal cell carcinoma highly
expresses IGFBP3 and IGF-1 compared to normal proximal
tubule cell, and the autocrine actions of IGF-1 and IGFBP3
promote and inhibit cell proliferation, respectively (47). IGF-1
secreted by M2-like tumor−associated macrophages promote the
invasion and stemness of C643 cells, an anaplastic thyroid
carcinoma cell line, by activating PI3K signaling (48).
Furthermore, IGF-1 is involved in bone metastasis biology, such
as in homing, dormancy, colonization, and expansion (49). In an in
vivo study, the presence of high IGF-1 levels in the primary tumor
environment tended to induce cancer cells to metastasize to bone,
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and cancer cell lines that highly expressed IGF1R were prone to
display enlarged bone mass (50, 51). IGF1R is highly expressed in
PCa cells. Therefore, PCa may be susceptible to IGF-1 signaling
(52). The relationship between IGF-1 and PCa is detailed in the
next section.
ROLE OF IGF-1 SIGNALING IN
PROSTATE CANCER BIOLOGY

IGF-1promotes the proliferationof 22RV1andDU145PCa cell lines
in vitro (7). In these cell lines, protein kinase B (AKT) in the PI3K
pathway and extracellular signal-regulated kinase (ERK) in the
MAPK pathway were phosphorylated in an IGF-1 dose dependent
manner, suggesting that IGF-1 directly influences PCa proliferation
(7). In vivo, IGF-1 expressionwas reportedly reduced in xenografts of
Los Angeles PCa-4 (LAPC-4) in mice fed a low-fat diet, and tumor
volume was suppressed (53). IGF-1 decreased miR-143 expression
and increased IGF1R expression in PC-3 andDU145 cells, andmade
these cell lines more resistant to docetaxel treatment, suggesting that
IGF-1 levels are also involved in resistance to treatment in PCa (54).
IGF-1 is also implicated in castration-resistant PCa and has been
shown to activate androgen receptor (AR) signaling in prostate
cancer cells via the IGF-1R-forkhead box protein O1 (FOXO1)
signaling axis (Figure 1) (55–57).

Elevated blood IGF-1 levels increase the future risk of PCa in
healthy men (45). Acromegaly patients with systemically high GH
and IGF-1 levels also have significantly higher incidence of PCa and
risk of PCa-related mortality (HR = 1.33 and 1.44, respectively),
suggesting that IGF-1 has a positive effect on PCa development and
progression, even in humans (58). Several studies reported that
blood IGF-1 levels in elderly men with suspected PCa on screening
tests are not associated with cancer positivity (59, 60). Serum IGF-1
levels in94menwho requiredprostate biopsy showednosignificant
difference between positive andnegative cancer (26.4 vs. 23.7 nmol/
L; P = 0.08) (59). This discrepancy suggests that prostate epithelial
cells may be at an increased risk of cancer development or
progression only after prolonged exposure to high concentrations
of IGF-1. Suppression of IGF-1 signaling is a potential therapeutic
approach, because the IGF1R inhibitor in combination with
castration inhibited PCa growth in rodent models of bone
metastasis and subcutaneous xenografts (61, 62). However, in a
phase 2 study, limsitinib, the most extensively evaluated IGF1R
inhibitor, failed to significantly improve levels of prostate-specific
antigen after 12 weeks of treatment and did not improve overall
survival in men with metastatic castrate-resistant PCa (63). In the
future, as a more potent treatment strategy, a combination of novel
IGF1R inhibitors and existing prostate cancer therapies is expected
to be effective.
SCFAs AS MAJOR METABOLITES
OF INTESTINAL BACTERIA

In recent years, studies investigating the interactions between gut
microbiota and its host has focused on recognizing an essential
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factor that influences homeostasis. One of the mechanisms by
which intestinal bacteria affect humans is through bacterial
structural components and their metabolites. Short-chain fatty
acids (SCFAs) are major bacterial metabolites that play an
important role in physiology. SCFAs include fatty acids with
six or fewer carbon atoms. Of these, acetate (C2), propionate
(C3), and butyrate (C4) are mainly produced by fermentation of
dietary fiber by intestinal bacteria (64). Bacterial-derived SCFAs
affect not only locally the gut but also distant organs in various
ways. The anti-inflammatory effect is one of the major
characteristics of SCFAs. Bacterial-derived butyrate promotes
the differentiation of colonic regulatory T cells, suppresses
inappropriate mucosal immunity, and improves local colitis
and distant arthritis (65, 66). Propionic acids that reach the
liver via the portal circulation increase glycogen synthesis and
storage, improve insulin sensitivity, and repress lipogenesis in
hepatocytes, resulting in the maintenance of energy homeostasis
(67, 68). In the central nervous system (CNS), bacterial-derived
SCFAs contribute to normal maturation of microglia via the free
fatty acid receptor 2 (FFAR2) as a SCFA receptor (69). SCFAs
also have some effects on several brain functions involved in
circadian rhythm and appetite control (70).

SCFAs are also involved in the development and progression
of cancer (71). In colorectal cancer, SCFAs, especially butyrate,
function as anti-inflammatory metabolites and histone
deacetylate (HDAC) inhibitors, resulting in the suppression of
cancer progression (72). HDAC is a very important enzyme that
Frontiers in Endocrinology | www.frontiersin.org 4
modulates the expression of genes involved in signaling
pathways, such as MAPK and Wnt (72). Therefore,
accumulation of butyrate in some types of cancer cells that
abundantly express a variety of HDACs, could inhibit their
proliferation and promote apoptosis. In PCa, HDAC1, 2, and 3
are highly expressed (73). In vitro, sodium butyrate can directly
decrease androgen receptor gene expression in LNCaP and C4-2
PCa cells, and can decrease the viability of these cells at
concentrations >2.5 mM (74). However, it was demonstrated
that high concentrations of butyrate were needed to inhibit
colorectal cancer growth as an HDAC inhibitor, while <5 mM
butyrate promoted cancer growth (75). SCFAs metabolized by
intestinal bacteria are absorbed into the portal circulation and
reach the liver, where most of the SCFAs are consumed (76).
Therefore, only a small amount of bacteria-derived SCFAs can
reach the prostate via systemic circulation. In vivo, bacteria-
derived butyrate is not likely to work as an HDAC inhibitor in
PCa due to this low concentration.
IGF-1 MEDIATED EFFECT OF SCFAs ON
PROSTATE CANCER PROLIFERATION

In young mice, gut microbiota-derived SCFAs are likely to
induce IGF-1 production, suggesting that SCFAs modulate the
bone and physical growth (77). The authors also described that
germ-free mice and mice orally administered antibiotics showed
FIGURE 1 | Molecular mechanism of IGF-1 signaling and downstream effects in prostate cancer cells.
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lower cecal SCFA concentrations and IGF-1 production,
resulting in decreased bone growth (77). SCFAs play a positive
role in bone formation via an IGF-1-mediated mechanism.
Unfortunately, the pathway by which SCFAs result in the
elevation of IGF-1 is still not well understood.

We have reported that SCFAs metabolized by intestinal
bacteria contribute to PCa growth by increasing systemic and
prostate local IGF-1 productions, and revealed the “gut–prostate
axis” involving bacterial metabolites (7). Prostate-specific
phosphatase and tensin homolog (PTEN)-knockout mice [Pb-
Cre+; Ptenfl/fl] were used as a PCa model. In these mice, a
western-style high-fat diet (HFD) containing mainly lard
accelerated PCa growth (78). This diet-induced PCa growth
was inhibited by oral administration of metformin or
celecoxib, as well as by an antibiotic mixture (ampicillin,
vancomycin, neomycin, and metronidazole) (7, 78, 79).
Antibiotics cause substantial changes in the composition of the
gut microbiota of HFD-fed mice. Fecal SCFAs in the mice were
reportedly reduced by 75%, resulting in decreased production of
IGF-1 in the liver and prostate. In addition, phosphorylation of
IGF-1R, ERK, and AKT was reduced in PCa cells of mice fed a
HFD who received antibiotic, suggesting that decreased IGF-1
might suppress the activity of MAPK and PI3K signaling
cascades. Oral supplementation of SCFAs to mice fed a HFD
who received antibiotic resulted in increased serum IGF-1 levels
and promoted prostate cancer growth. These results suggest that
SCFAs derived from intestinal bacteria promote PCa growth
through IGF-1 signaling, although butyrate in SCFAs may
inhibit cancer cell proliferation as an HDAC inhibitor.

The examination of mice treated with antibiotics has revealed
the absence of members of the family Rikenellaceae, order
Clostridiales in the gut microbiota. Examination of the gut
microbiota of men with a high-risk of PCa has revealed the
increased abundance of genus Alistipes belonging to
Rikenellaceae and the genus Lachnospira compared to men at
low risk of PCa and those who are PCa-free (80). These bacterial
taxa are associated with SCFA content in the stool and are SCFA-
Frontiers in Endocrinology | www.frontiersin.org 5
producing bacteria (81–86). These results suggest that SCFAs
and their producing bacteria in the gut may be risk factors for
PCa in humans and mice. Consumption of milk and other dairy
products increase the dietary intake of SCFAs, thus resulting in
the increase of serum IGF-1 levels and that is because these are
the among the few foods that contain butyrate (87, 88). Many
epidemiological studies have indicated that consumption of milk
and dairy products increases the risk of PCa (5). This increased
risk may be due to the butyrate contained in these foods (88).
While dairy products are essential for nutrition and may a
preventive effect in various diseases, including colorectal cancer
(89), the roles are complex and most likely context-dependent.
For example, low-fat milk containing no SCFAs does not
increase the risk of PCa, unlike whole milk (90). Additional
studies have reinforced this notion. In the NIH-AACR Diet and
Health Study, during 7 years of follow-up, the highest quintile of
dairy food intake had a significantly lower risk of colorectal
cancer (relative risk [RR] = 0.85, P = 0.01) and a higher risk of
prostate cancer (RR = 1.06, P = 0.01) compared to the lowest
quintile (91). We hypothesize that the regulation of IGF-1
signaling contributing to prostate cancer risk in a real-world
setting is increased by intestinal factors.

There are still some questions that need to be clarified
regarding the gut–prostate axis involving SCFAs and IGF-1
signaling. It has been also reported that butyrate and
propionate may have inhibitory effects on prostate cancer (74,
92). In our animal study, we found that a mixture of SCFAs
(acetate, propionate, and butyrate) promoted prostate cancer
growth (7), but we have not been able to determine which types
of SCFAs are responsible for this promotive effect and at what
concentration. Perhaps these may act cooperatively.
Furthermore, although several G protein-coupled receptors,
such as GPR41 and GPR43, are known as SCFA receptors,
neither the receptor nor the signaling pathway(s) involved in
the regulation of IGF-1 by SCFAs have been established (93, 94).
Finally, the impact of interventions on the gut–prostate axis in
human using fecal microbiota transplantation (FMT) or pro/
FIGURE 2 | Overview of gut–IGF-1–prostate axis mediated by gut microbiota-derived SCFAs.
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prebiotics has not been studied. There are however several basic
studies that have reported that FMT derived from prostate
cancer individuals altered prostate cancer progression in
mouse (95, 96), and we think that this axis may be a
promising therapeutic target.
CONCLUSION

IGF-1 is an essential hormone for physical growth and has
various effects in several diseases, especially prostate cancer,
where it functions as an exacerbating factor. In vivo, local and
systemic IGF-1 production might be regulated by SCFAs, which
is in turn influenced by gut factors, such as gut microbiota and
diet. The data thus far indicate that the gut–IGF-1–prostate axis
is connected by SCFAs (Figure 2). This axis could provide a new
direction for effective PCa treatment and prevention strategies.
However, there are factors that remain unclear such as detailed
Frontiers in Endocrinology | www.frontiersin.org 6
mechanisms of IGF-1 regulation by SCFAs and the continuous
control of SCFA levels in humans. Further study of the gut–IGF-
1–prostate axis is needed to provide additional answers.
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