
Frontiers in Endocrinology | www.frontiersi

Edited by:
Alberto Falchetti,

Italian Auxological Institute
(IRCCS), Italy

Reviewed by:
Maria Lucia Fleiuss Farias,

Federal University of Rio de Janeiro,
Brazil

Ping Zeng,
Xuzhou Medical University, China

*Correspondence:
Xiaoji Luo

cy2982@163.com

Specialty section:
This article was submitted to

Bone Research,
a section of the journal

Frontiers in Endocrinology

Received: 20 January 2022
Accepted: 31 May 2022
Published: 08 July 2022

Citation:
Wang L, Zhang C, Liang H, Zhou N,
Huang T, Zhao Z and Luo X (2022)

Polyunsaturated Fatty Acids Level and
Bone Mineral Density: A Two-Sample

Mendelian Randomization Study.
Front. Endocrinol. 13:858851.

doi: 10.3389/fendo.2022.858851

ORIGINAL RESEARCH
published: 08 July 2022

doi: 10.3389/fendo.2022.858851
Polyunsaturated Fatty Acids
Level and Bone Mineral Density:
A Two-Sample Mendelian
Randomization Study
Lin Wang1,2, Chao Zhang1,2, Hao Liang1,2, Nian Zhou1,2, Tianji Huang1,2,
Zenghui Zhao1,2 and Xiaoji Luo1,2*

1 Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
2 Orthopedic Laboratory of Chongqing Medical University, Chongqing, China

Background: This Mendelian randomization (MR) study aimed to explore the causal
relationship between polyunsaturated fatty acids (PUFAs) and bone mineral density
(BMD).

Methods: We conducted a two-sample MR analysis to figure out if there is any causal
effect of PUFAs on BMD through the summary data from the genome-wide association
study (GWAS). Relationships were evaluated through inverse variance weighted (IVW),
MR-Egger, weighted median, and maximum likelihood methods. The MR Pleiotropy
RESidual Sum and Outlier (MR-PRESSO) test was performed to detect the horizontal
pleiotropy.

Results:Our findings revealed that omega-6 fatty acids were negatively related to the TB-
BMD (beta-estimate: −0.0515; 95% confidence interval [CI]: −0.0911 to −0.0119;
standard error [SE]: 0.0201; p-value: 0.0106). The reverse direction MR analysis
showed that TB-BMD was linked to the omega-6 FAs (beta-estimate: −0.0699; 95%
CI: −0.1304 to −0.0095; SE: 0.0308; p-value: 0.0265). No statistically significant
correlations between PUFAs and BMD were observed after adjusting the interactions
between metabolites.

Conclusion: This two-sample MR analyses produced strong and new genomic evidence
that there was a causal relationship between omega-6 FAs and BMD. Further
investigations are still required to elucidate the potential mechanism.

Keywords: polyunsaturated fatty acids - PUFA, bone mineral density—BMD, mendelian randomization,
osteoporosis, omega - 3 fatty acids
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INTRODUCTION

Osteoporosis is defined as a systematic musculoskeletal disease
featured as the loss of bonemass and the degradation of the micro-
architecture of the bone tissue, which is invariably predisposed to
the increased fragility of bones and incidence of fractures (1, 2). As
the global population is aging, it has been considered one of the
most pressing public health concerns. According to the statistics,
over 9 million osteoporosis-related fractures were confirmed
worldwide annually, in which the direct financial losses incurred
were estimated at a 17 billion dollars (3). Therefore, osteoporosis
now imposes a major economic and clinical burden on society, in
addition to inflicting pain and suffering to patients, especially the
elderly (4). Nowadays, clinical diagnosis and assessment of
osteoporosis rely heavily on bone mineral density (BMD)
measurements, which have been proven to be reliable and
effective (5, 6). Notably, both osteoporosis and BMD were
demonstrated to be highly heritable and polygenic (7–9).

Optimal intake of certain nutrients is proven to participate in the
regulation of BMD and is associated with the progress of osteoporosis
(10), such as calcium (11) and retinol (12). Of these nutrients, dietary
fats were thought to be critical to maintain normal musculoskeletal
structure and functions (13–15). As an important component in our
dietary fats, fatty acids (FAs) are mainly categorized as long-chain
fatty acids including polyunsaturated fatty acids (PUFAs),
monounsaturated fatty acids (MUFAs), saturated fatty acids
(SFAs), medium-/short-chain fatty acids (MCFAs/SCFAs), and
their metabolites (14). According to previous research, PUFAs may
have a dual effect on bone metabolism depending on their structure,
origin, relative concentration, and metabolic environment (13). In
light of this, numerous studies had indicated that omega-6 promotes
bone loss, whereas omega-3 favors bone remodeling. Several possible
mechanisms had been proposed and clarified (16–18), which include
calcium metabolism modulation (19), synthesis of prostaglandin
(17), oxidation of fatty acids, genesis of osteoblast (20),
and osteoclastogenesis.

Recently, numerous observational studies had indicated a link
between PUFAs and BMD, although the findings remain
controversial and conflicting. Besides that, observational
studies have inherent limitations to infer causal association,
such as reverse causality and confounding risk factors.

Mendelian randomization (MR) analyses, which use single
nucleotide polymorphisms (SNPs) associated with exposure as
instrumental variables (IVs) to evaluate the potentially causal effect
between risk factors and outcomes, have evident advantages over
conventional observation studies, according to this rationale (21).
It is not affected by traditional confounders (environmental
exposure and behaviors) and meets the plausibility of causal
effect by time order (causes precede effects). A two-sample MR
analysis means that IVs associated with exposure and those
associated with outcome were obtained from different datasets of
population, which could raise the statistical power.

METHODS

To investigate the causal effect of PUFAs on BMD values, we
conducted a two-sample MR study that highly relied upon the
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summary level GWAS data for analysis (22, 23). In a Mendelian
randomization analysis, three core assumptions about
instrumental variables must be fulfilled: (1) IVs must be
strongly related to the exposure, (2) association with the
outcome was solely due to the exposure, and (3) independent
of any other confounding variables (21). First, we extracted SNPs
strongly associated with each PUFAs as instrument values (p<5E
−08). To ease the bias due to linkage disequilibrium (LD), we
performed the clumping method (R2<0.001, window size=10,000
kb). To estimate the degree of LD, the individuals with European
ancestors from the 1000 Genomes Project were used as a
reference sample (24).

Second, the summary level data of SNPs related to exposure
were retrieved in the outcome data.

Third, harmonization of the chosen SNP effect with the risk
factors and outcomes was performed to align the palindromic
SNPs (with A/T or G/C pairs). Possible palindromic SNPs
were excluded.

Following that, we utilized PhenoScanner, a database of
human genotype–phenotype associations, to see if any of the
chosen SNPs were correlated with the potential confounders for
BMD (25, 26). The threshold was set below: genome-wide
significance (p<1E−5) and R2<0.8. Moreover, F-statistics was
used to assess the strength of IVs, and an F-value >10 indicated
strong instruments (27). The strength of each instrument was
measured by calculating the F-statistic using the following
formula: F = R2(N -2)/(1 – R2), where R2 was the proportion
of variance in the phenotype explained by the genetic variants,
and N was the sample size (28).

Genetic Association With PUFAs
The SNP summary data associated with PUFAs were derived
from the Nightingale Health UK Biobank Initiative. The UK
Biobank recruited 502,639 European participants aged 37–70
years in 22 assessment centers across the UK. All study
participants reached the assessment centers by their own
means, and enrollment was not performed at nursing homes
(29). The biomarker profiles of 500,000 blood samples from UK
Biobank were analyzed in Nightingale Health by utilizing nuclear
magnetic resonance (NMR) and proprietary software, which
could provide over 200 metabolic biomarkers in a single blood
test including fatty acids (30). This first release covers biomarker
data from approximately 118,000 EDTA plasma samples from
baseline recruitment and 5,000 samples from repeat assessment
(with 1,500 participants having both baseline and repeat-visit
sample in the first data release). The metabolic biomarker dataset
was open to any research institutions or individuals via the IEU
GWAS database, which was a publicly accessible database of
genetic correlation from GWAS summary datasets (23).

We only focused on some particular datasets of PUFAs, and
three exposure data were selected, namely, omega-3 FAs, omega-
6 FAs, and the ratio of omega-6 FAs to omega-3 FAs.

Genetic Association With BMD
A big GWAS meta-analysis of BMD enrolled 53,236 participants
of European origin from GEnetic Factors for Osteoporosis
Consortium (31). The femoral neck (FN), the lumbar spine
July 2022 | Volume 13 | Article 858851
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(LS) (L1–L4), and the forearm (FA) were all measured for BMD
by dual-energy X-ray absorptiometry (DXA) machines. Each
variant with a minor allele frequency (MAF) >0.5% was checked
for its effect on BMD, adjusting for sex, age, age2, and weight, and
standardized to have a mean of zero and standard deviation of
one to avoid the potential systematic differences caused by
different measuring machines (31). In addition, the summary
level data of total body (TB) BMD was employed from one large
GWAS meta-analyses comprised of 30 studies and 66,628
individuals from America, Europe, and Australia, in which the
majority of the participants came from population-based cohorts
of European ancestry (86%) (32). TB-BMD (g/cm2) was
measured by DXA according to the standard manufacturer
protocols. Moreover, its value was corrected for age, weight,
height, and genomic principal components (derived from GWAS
data), and any additional study-specific covariates (e.g.,
recruiting center) (32). A detailed information related to the
GWAS data is provided and shown in Supplementary Table S1.

Statistical Analyses
We performed the two-sample MR analysis with the inverse
variance weighted (IVW) method (23, 33), MR-Egger method
(34, 35), weighted median method (36), and maximum
likelihood (33) method to estimate the effect of PUFAs for
BMD. In algorithm principle, the IVW method might generate
the most precise estimate by integrating the Wald ratios of each
SNP’s causal effect through meta-analysis (23, 33). To avoid the
bias caused by the horizontal pleiotropic effects, we conducted
the MR-Egger method and weighted median method to analyze
and test the potential directional bias caused by pleiotropy.
When no <50% of the weight in the analysis is accounted for
by the effective IVs, the weighted median method could offer a
plausible estimate of the causal relationships (36). The MR-Egger
method, which generated a weighted linear regression between
exposure and outcome coefficients, was conducted to evaluate
the pleiotropy better. Under the premise of meeting the basic
assumption of Instrument Strength Independent of Direct Effect
(InSIDE), the slope of the regression line could represent the
asymptotically unbiased causal estimate. Apart from this, the
horizontal pleiotropy in the average data of the whole genetic
instruments could be quantified and presented by the intercept
of the MR-Egger regression line (34, 35). Under the condition
that the intercept of the regression line is not equal to 0, the
intercept of the MR-Egger method can be applied to detect the
horizontal pleiotropy. p<0.05 was considered to be statistically
significant. Moreover, we also performed multivariable MR
(MVMR) analysis to control potential interactions between
metabolites. The bidirectional Mendelian randomization was
also conducted to explore the reverse causation. All the MR
analyses were conducted in R statistical software (Version 4.1.1)
by utilizing the “TwoSampleMR” package (https://github.com/
MRCIEU/TwoSampleMR) (23).

Sensitivity Analyses
For sensitivity analysis, several statistics approaches were applied.
Cochran Q statistic was tested to assess and quantity heterogeneity
(37). Depending on the degree of heterogeneities (Q>0.05 fixed-
Frontiers in Endocrinology | www.frontiersin.org 3
effect model; Q<0.05 random-effect model), the fixed- or random-
effect model was used for further analysis. For quantitative analysis
of heterogeneities, we also used I2 to evaluate the magnitude. It is
generally accepted that I2>50% indicates significant heterogeneity.
The directional pleiotropy was assessed through the intercept of
the MR-Egger method. As a further step, we also conducted the
MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test to
detect the horizontal pleiotropy and remove the outlier SNPs to
reassess the cause estimate (38, 39). The “leave-one-out” sensitivity
test was applied to figure out the potentially influential single SNP
(Supplementary Figures S1–12).
RESULTS

Causal Effect of PUFA on BMD
After verification, the final data of SNPs enrolled in our analysis
are shown in Supplementary Tables S2–8. We evaluated the
causal effect of PUFA, which includes omega-3 FAs, omega-6
FAs, and the ratio of omega-6 FAs to omega-3 FAs on LS-BMD,
FN-BMD, FA-BMD, and TB-BMD in the two-sample MR
analysis. The scatter plots are displayed in Supplementary
Figures S13–24. The results are displayed in Table 1 and
Figure 1. Based on the IVW analysis, omega-6 fatty acids were
proven to be negatively related to the TB-BMD (beta-estimate:
−0.0515; 95% confidence interval [CI]: −0.0911 to −0.0119;
standard error [SE]: 0.0201; p-value: 0.0106), which indicated
that a 1-SD decrease in omega-6 fatty acids was associated with
the improvement in TB-BMD levels by 0.0515 g/cm2. The result
was further validated by maximum likelihood method (beta-
estimate: −0.0517; 95% CI: −0.0915 to −0.0120; SE: 0.0202; p-
value: 0.0106). Moreover, no significant correlations were found
between omega-6 FAs and site-specific BMD (LS-BMD, FN-
BMD, and FA-BMD) according to the statistical analysis results
of IVW method, MR-Egger regression, weighted median
method, and maximum likelihood analysis.

A higher ratio of omega-6 FAs to omega-3 FAs was proven to
be poorly related to the improved BMD of the lumbar spine (beta-
estimate: 0.0726; 95% CI: −0.0376 to 0.1829; SE: 0.0562; p-value:
0.1966) (Table 1) according to the result of the IVW analysis.
Furthermore, this conclusion from IVW approach was in
accordance with those of the other three statistical models.
Moreover, no significant correlations were found between the
ratio of FAs and FN-BMD or FA-BMD according to the statistical
analysis results of IVW method, MR-Egger regression, weighted
median method, and maximum likelihood analysis.

Analogously, omega-3 fatty acids also demonstrated no
positive correlation to LS-BMD (beta-estimate: −0.0671; 95%
CI: −0.1650 to 0.0307; SE: 0.0499; p-value: 0.1789), FN-BMD
(beta-estimate: 0.0041; 95% CI: −0.0802 to 0.0885; SE: 0.0430; p-
value: 0.9237), FA-BMD (beta-estimate: −0.0722; 95% CI:
−0.2408 to 0.0963; SE: 0.0860; p-value: 0.4011), and TB-BMD
(beta-estimate: −0.0438; 95% CI: −0.0958 to 0.0082; SE: 0.0265;
p-value: 0.0989) (Table 1). These conclusions above were also
further validated by the MR-Egger analysis, weighted median
analysis, and maximum likelihood analysis.
July 2022 | Volume 13 | Article 858851
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TABLE 1 | MR estimates of the causal effects of PUFAs on BMD using various analysis methods.

MR-Egger

Estimate SE 95%CI MR p-
value

Intercept Intercept
P-value

0.0370 0.0984 −0.1558,0.2299 0.7105 −0.0057 0.2334
−0.0379 0.0849 −0.2044,0.1285 0.6600 0.0023 0.5722
−0.0500 0.1655 −0.3746,0.2744 0.7651 −0.0012 0.8769
−0.0817 0.0541 −0.1878,0.0243 0.1403 0.0023 0.4040

−0.0753 0.0835 −0.2390,0.0884 0.3752 0.0033 0.4814
−0.0116 0.0602 −0.1296,0.1064 0.8482 0.0008 0.8101
0.0476 0.1229 −0.1933,0.2885 0.7015 0.0011 0.8722
−0.0660 0.0376 −0.1398,0.0077 0.0864 0.0010 0.6503

0.0566 0.1156 −0.1701,0.2833 0.6312 0.0009 0.8759
0.0933 0.0994 −0.1014,0.2882 0.3616 −0.0030 0.5446

　 0.2241 0.1925 −0.1532,0.6015 0.2595 −0.0144 0.1532
0.0895 0.0633 −0.0345,0.2136 0.1699 −0.0039 −0.2676

Maximum likelihood

Estimate SE 95%CI

−0.0675 0.0502 −0.1659,0.0309

0.0041 0.0432 −0.0805,0.0888

−0.0726 0.0864 −0.2420,0.0966

−0.0444 0.0267 −0.0968,0.0079

−0.0246 0.0373 −0.0978,0.0486

0.0008 0.0320 −0.0619,0.0635

0.0651 0.0652 −0.0626,0.1928

−0.0517 0.0202 −0.0915,
−0.0120

0.0736 0.0565 −0.0372,0.1844

0.0399 0.0484 −0.0550,0.1350

　 −0.0245 0.0970 −0.2146,0.1656

0.0288 0.0321 −0.0341,0.0917

MD, total body BMD; SNPs, single nucleotide polymorphisms; IVW, inverse variance

W
ang

et
al.

R
elationship

B
etw

een
P
U
FA

s
and

B
M
D

Frontiers
in

Endocrinology
|
w
w
w
.frontiersin.org

July
2022

|
Volum

e
13

|
A
rticle

858851
4

Exposures Outcomes Number of
SNPs

IVW

Estimate SE 95%CI MR p-
value

Q-
value

Heterogeneity
p-value

I²

Omega3 LS-BMD 22 −0.0671 0.0499 −0.1650,0.0307 0.1789 20.5023 0.4896 5%
FN-BMD 22 0.0041 0.0430 −0.0802,0.0885 0.9237 15.1264 0.8165 5%
FA-BMD 24 −0.0722 0.0860 −0.2408,0.0963 0.4011 18.2438 0.7441 4.76%
TB-BMD 36 −0.0438 0.0265 −0.0958,0.0082 0.0989 45.0938 0.1180 2.94%

Omega6 LS-BMD 29 −0.0247 0.0371 −0.0975,0.0481 0.5058 38.9516 0.0817 3.70%
FN-BMD 29 0.0008 0.0319 −0.0618,0.0633 0.9812 12.8553 0.9935 3.70%
FA-BMD 30 0.0646 0.0650 −0.0628,0.1919 0.3205 22.8406 0.7838 3.57%
TB-BMD 45 −0.0515 0.0201 −0.0911,

−0.0119
0.0106 41.8432 0.5644 2.33%

Ratio of Omega6 to
Omega3

LS-BMD 18 0.0726 0.0562 −0.0376,0.1829 0.1966 14.2175 0.6516 6.25%
FN-BMD 18 0.0395 0.0482 −0.0550,0.1342 0.4124 13.4092 0.7083 6.25%
FA-BMD 20 −0.0243 0.0965 −0.2134,0.1648 0.8010 17.1364 0.5806 5.56%
TB-BMD 26 0.0283 0.0318 −0.0341,0.0909 0.3734 27.3838 0.3369 4.17%

Exposures Outcomes Number of
SNPs

Weighted median

Estimate SE 95%CI MR p-value

Omega3 LS-BMD 22 −0.0539 0.0743 −0.1996,0.0917 0.4680

FN-BMD 22 0.0367 0.0622 −0.0851,0.1587 0.5544

FA-BMD 24 0.1477 0.1248 −0.0970,0.3924 0.2369

TB-BMD 36 −0.0727 0.0414 −0.1540,0.0085 0.0795

Omega6 LS-BMD 29 −0.0639 0.0552 −0.1721,0.0444 0.2475

FN-BMD 29 0.0156 0.0445 −0.0716,0.1027 0.7261

FA-BMD 30 0.1069 0.0946 −0.0785,0.2922 0.2584

TB-BMD 45 −0.0229 0.0293 −0.0804,0.0345 0.4338

Ratio of Omega6 to
Omega3

LS-BMD 18 0.1160 0.0836 −0.0479,0.2799 0.1654

FN-BMD 18 0.0692 0.0694 −0.0668,0.2054 0.3184

FA-BMD 20 −0.0520 0.1420 −0.3305,0.2263 0.7138

TB-BMD 26 0.0260 0.0436 −0.0595,0.1115 0.5510

MR, Mendelian randomization; BMD, bone mineral density; FN-BMD, femoral neck BMD; LS-BMD, lumbar spine BMD; FA-BMD, forearm BMD; TB-
weighted; SE, standard error; CI, confidence interval.
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Heterogeneity and Sensitivity Analyses
We analyzed heterogeneity through IVW analysis and applied
the MR-Egger regression to analyze the pleiotropy. No
heterogeneity for the causal effect of PUFAs on BMD was
found in our statistical analysis (e.g., as for the causal effect of
omega-3 FAs on LS-BMD: Q=20.5023; heterogeneity p-
value=0.4896) (Table 1). According to the intercept values
from the MR-Egger regression, no directional pleiotropy was
detected for the causal effect of PUFAs on BMD (e.g., omega-6
FAs to LS-BMD: intercept=0.0033, intercept p-value=0.4814; for
FN-BMD: intercept=0.0008, intercept p-value=0.8101; for FA-
BMD: intercept=0.0011, intercept p-value=0.8722) (Table 1).
The MR-PRESSO global test further validated that both outlier
and horizontal pleiotropy were not observed in our MR analyses
(e.g., omega-6 FAs: p-value=0.083 to LS-BMD; p-value=0.992 to
FN-BMD; p-value=0.783 to FA-BMD) (Table 2).

Among the instrumental variables, MR-PRESSO did not
identify any outlier for the causal effect between PUFAs
and BMD.

MVMR and Bidirectional MR
As shown in the result of MVMR (Table 3), no statistically
significant correlations between PUFAs and BMD were observed
after adjusting the interactions between metabolites.

As shown in Tables 4, 5, TB-BMD was proven to be
negatively related to the omega-6 fatty acids based on the MR-
Frontiers in Endocrinology | www.frontiersin.org 5
Egger method (beta-estimate: −0.0699; 95% CI: −0.1304 to
−0.0095; SE: 0.0308; p-value: 0.0265). No other reverse
causations were observed between BMD and PUFAs.
DISCUSSION

The PUFAs contain two main acid types: omega-3 and omega-6
FAs. Omega-3 PUFAs are a group of fatty acids mainly
synthesized in the body and maintained through diet, which
predominantly include eicosapentaenoic acid (EPA), alpha-
linolenic acid (ALA), and docosahexaenoic acid (DHA).
Correspondingly, omega-6 fatty acids that are mainly found in
various vegetable oils always come from linoleic acid
(LA).Recently, several observational studies reported
conflicting and discrepant conclusions on the association
between PUFAs and BMD. Therein, omega-3 FAs were
validated to positively affect bone remodeling via many
different processes, including inhibiting osteoclast and
promoting osteoblast activities. On the contrary, omega-6 FAs
were always thought to be proinflammatory and pernicious to
the maintenance of bone health. Accumulating animal
experiments have revealed that supplementation of omega-3
FAs could enhance bone density and improve bone quality by
various mechanisms. Acting as the specific ligand of peroxisome
proliferator-activated receptor g (PPAR g), PUFAs could bind to
FIGURE 1 | MR estimates of the associations between PUFAs and BMD. The x-axis is the effects of PUFAs on BMD values. The vertical dashed line is the reference
at effect = 0. The y-axis presents different BMD types, which are highlighted in different colors. Different MR methods are displayed with different line types. MR,
Mendelian randomization; BMD, bone mineral density; FN-BMD, femoral neck BMD; LS-BMD, lumbar spine BMD; FA-BMD, forearm BMD; TB-BMD, total body
BMD; SNPs, single nucleotide polymorphisms; IVW, inverse variance weighted; SE, standard error; CI, confidence interval.
July 2022 | Volume 13 | Article 858851
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the PPAR g and induce the differentiation of adipocytes and fatty
acids metabolism, which in turn affect the metabolism of the
bone tissue (13). In addition, PUFAs could also modulate the
formation of inflammatory cytokines to regulate the balance
between formation and resorption of the bone via acting on the
biosynthetic pathway of prostaglandin E2 (PGE2). Previous
studies revealed that PUFAs could regulate the expression or
the enzyme activity of cyclooxygenase (COX)-2, which is a rate-
limiting enzyme in the synthesis of PGE2. The dual effect of
PUFAs is that omega-3 FAs favor the downregulation of COX-2,
which leads to the decrease in the production of PGE2 and,
furthermore, enhance the formation of the bone. As for omega-6
FAs, it produced the entire opposite effect. PUFAs could also
affect the bone marrow microcirculation to reduce the metabolic
capacity of the bone. The effect of promoting uptaking of calcium
from diet has also been reported. Inconsistent with the
conclusion drawn from animal models, the observations from
clinical trials still remain controversial.

To the best of our knowledge, this is the first time that the
causal association between PUFAs and BMD through a two-
sample MR analysis is investigated. Our analysis involved 53,236
individuals of European decent for the association with site-
specific BMD, 66,628 individuals for TB-BMD, and 114,999
individuals for PUFAs. Our analytical studies demonstrated
Frontiers in Endocrinology | www.frontiersin.org 6
that omega-6 fatty acids were proven to be negatively related
to the TB-BMD. Moreover, reverse causation was also observed
between them. However, after adjusting the interactions between
metabolites, no cause and effect association was shown based on
the MVMR result. This may suggest that the associations
between PUFAs and BMD are likely contributed by other
confounding risk factors or the interactions between FAs. To
ensure the consistency and reliability of the analysis, our research
employed multiple statistical process to check the heterogeneity
and control the pleiotropy. We also selected the IVs (F-
statistics>10) from the large GWAS data to better represent
PUFAs and BMD. In general, our two-sample MR study
possessed adequate precision and stability to support
the conclusion.

As far as we know, the previous observational studies were
always limited to the effect of some specific types of PUFAs on
bone health or some particular subtypes of the population, such
as post-menopausal women and older people. Furthermore, the
intake of dietary fatty acids was usually retrospectively estimated
using some questionnaires (40, 41). Thus, the inherent
methodological limitation of evaluating the supplementation of
fatty acids is unavoidable (42). Due to this, it is not surprising
that the previous studies are controversial while still puzzling.
Most of the observational studies found that BMD was positively
TABLE 3 | MVMR result after adjusting the interactions between FAs.

Outcome Exposures NumberofSNPs Effect SE MVMR P Value

LS-BMD Omega-3 fatty acids 44 −4.612 5.0848 0.3643
Omega-6 fatty acids 47 1.6421 1.8519 0.3752
Ratio of omega6/omega3 28 −4.0504 4.5302 0.3712

FN-BMD Omega-3 fatty acids 44 2.3857 3.5399 0.5003
Omega-6 fatty acids 47 −0.8907 1.2893 0.4896
Ratio of omega6/omega3 28 2.1271 3.1539 0.5000

FA-BMD Omega-3 fatty acids 44 −6.9028 6.9061 0.3175
Omega-6 fatty acids 48 2.5533 2.5146 0.3099
Ratio of omega6/omega3 28 −6.0379 6.1529 0.3264

TB-BMD Omega-3 fatty acids 49 1.1004 3.3400 0.7418
Omega-6 fatty acids 57 −0.4604 1.2164 0.7050
Ratio of omega6/omega3 31 0.9961 2.9757 0.7378
July 2022 | Volume 13
MR, Mendelian randomization; BMD, bone mineral density; FN-BMD, femoral neck BMD; LS-BMD, lumbar spine BMD; FA-BMD, forearm BMD; TB-BMD, total body BMD; SNPs, single
nucleotide polymorphisms; IVW, inverse variance weighted; SE, standard error; CI, confidence interval.
TABLE 2 | MR-PRESSO estimates of the causal effects of PUFAs on BMD.

Exposures Outcomes Number Effect MR p-value MR-PRESSO
of

SNPs Global test p-value

Omega3 LS-BMD 22 −0.079 0.118 0.499
FN-BMD 22 −0.0002 0.995 0.828
FA-BMD 24 −0.075 0.309 0.791
TB-BMD 36 −0.042 0.146 0.174

Omega6 LS-BMD 29 −0.025 0.577 0.083
FN-BMD 29 0.001 0.972 0.992
FA-BMD 30 0.065 0.272 0.783
TB-BMD 45 −0.0515 0.012 0.541

Ratio of Omega6 to Omega3 LS-BMD 18 0.05 0.414 0.293
FN-BMD 18 0.029 0.507 0.643
FA-BMD 20 −0.032 0.716 0.638
TB-BMD 26 0.032 0.352 0.317
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TABLE 4 | MR estimates of the causal effects of PUFAs on BMD using various analysis methods.

MR-Egger

Heterogeneity p-value I² Estimate SE 95%CI MR p-value Intercept

0.1776 5.56% −0.0802 0.0635 −0.2048,0.0444 0.2232 0.0062

0.0439 5.88% −0.0892 0.0723 −0.2310,0.0526 0.2344 0.0071

0.7365 5.56% 0.0667 0.0576 −0.0463,0.1797 0.2624 −0.0046

0.0321 6.67% −0.1761 0.1192 −0.4099,0.0576 0.1603 0.0108

0.0301 7.69% 0.2845 0.1355 0.0188,0.5501 0.0559 −0.0161

0.3349 6.67% 0.1857 0.0937 0.0020,0.3694 0.0661 −0.0105

0.0481 1.52% −0.0638 0.0356 −0.1337,0.0060 0.0779 0.0034

0.0162 1.52% −0.0699 0.0308 −0.1304,−0.0095 0.0265 0.0041

0.3284 1.52% 0.0634 0.0324 −0.0002,0.1270 0.0551 −0.0031

Maximum likelihood

R p-value Estimate SE 95%CI

0.2303 0.0046 0.0153 −0.0254,0.0347

0.3343 0.0086 0.0161 −0.0228,0.0402

0.8712 0.0042 0.0153 −0.0258,0.0343

0.1928 −0.0088 0.0179 −0.0441,0.0264

0.3594 0.0355 0.0189 −0.0016,0.0727

0.1831 0.0231 0.0180 −0.0122,0.0584

0.5524 −0.0018 0.0113 −0.0241,0.0204

0.7456 −0.0007 0.0108 −0.0219,0.0203

0.5001 0.0071 0.0114 −0.0152,0.0294

forearm BMD; TB-BMD, total body BMD; SNPs, single nucleotide polymorphisms; IVW, inverse variance
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Exposures Outcomes Number of SNPs IVW

Estimate SE 95%CI MR p-value Q-value

LS-BMD Omega-3 fatty acids 20 0.0045 0.0151 −0.0251,0.0342 0.7623 24.4995

Omega-6 fatty acids 19 0.0084 0.0201 −0.0311,0.0479 0.6764 29.3822

Ratio of omega6/omega3 20 0.0041 0.0152 −0.0256,0.0341 0.7836 14.7783

FN-BMD Omega-3 fatty acids 17 −0.0080 0.0234 −0.0544,0.0373 0.7148 27.9430

Omega-6 fatty acids 15 0.0343 0.0251 −0.0150,0.0837 0.1726 25.4820

Ratio of omega6/omega3 17 0.0224 0.0178 −0.0125,0.0573 0.2082 17.8123

TB-BMD Omega-3 fatty acids 68 −0.0018 0.0128 −0.0269,0.0233 0.8874 87.3676

Omega-6 fatty acids 68 −0.0007 0.0126 −0.0255,0.0240 0.9515 94.0726

Ratio of omega6/omega3 68 0.0069 0.0112 −0.0151,0.0291 0.5372 71.5785

Exposures Outcomes Number of SNPs Weighted median

Estimate SE 95%CI M

LS-BMD Omega-3 fatty acids 20 0.0271 0.0225 −0.0171,0.0713

Omega-6 fatty acids 19 0.0231 0.0239 −0.0238,0.0701

Ratio of omega6/omega3 20 0.0035 0.0217 −0.0391,0.0461

FN-BMD Omega-3 fatty acids 17 −0.0341 0.0262 −0.0856,0.0172

Omega-6 fatty acids 15 0.0261 0.0284 −0.0297,0.0819

Ratio of omega6/omega3 17 0.0338 0.0254 −0.0159,0.0837

TB-BMD Omega-3 fatty acids 68 0.0106 0.0178 −0.0243,0.0455

Omega-6 fatty acids 68 −0.0055 0.0172 −0.0393,0.0281

Ratio of omega6/omega3 68 0.0115 0.0171 −0.0221,0.0452

MR, Mendelian randomization; BMD, bone mineral density; FN-BMD, femoral neck BMD; LS-BMD, lumbar spine BMD; FA-BMD
weighted; SE, standard error; CI, confidence interval.
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correlated with the supplementation of omega-3 PUFA or fish
oil. According to the Women’s Health Initiative Study, positive
associations between hip fractures and omega-3 FAs were shown;
however, inverse associations were observed between omega-6
FAs, MUFAs, and PUFAs (43). Similarly, in a study of 76,000
women and 45,000 men enrolled, the fracture risk was negatively
correlated with the consumption of omega-6 FAs and PUFAs
(40). In contrast, a few researchers reported no statistically
significant relationship between consumption of PUFAs and
BMD or the incidence of fracture (44, 45). Other studies
observed completely different findings in which a higher intake
of PUFAs may deteriorate bone loss (43). In a recent meta-
analysis that enrolled 28 RCTs (7,288 participants), the
experimenter reported that the increased supplementation of
omega-3 FAs may exert a low magnitude to the increase in BMD
of the lumbar spine by 2.6% and femoral neck by 4.1%; however,
the grade of evidence was insufficient (46). Another interesting
finding that emerged from the analysis is that the increasing
intake of total PUFAs may have little to no effect on BMD (46).
Recently, in a single-center study of postmenopausal Spanish
women, a high level of plasma omega-3 FAs was an independent
risk factor of bone health (47).

The vast discrepancy of various studies may be attributed to
multiple complex confounders such as sex and gender, etc. One
notable confounder is that the consumption of cod liver oil rich
in vitamins A and D was likely to exert influence to some degree
on bone health (48, 49). Some researchers attempt to explain this
phenomenon with more objective and more profound
mechanisms, such as circulating fatty acids. Based on the
Framingham Osteoporosis Study, which included 765
participants, a negative trend was observed between
arachidonic acid (AA) and risk of hip fracture (50). Another
cross-sectional study indicated that greater red blood cell omega-
3 FAs were beneficial to decrease the risk of hip fracture (51).
One important finding is that the influence of fatty acids on BMD
may vary dynamically over time, beyond possible sex
differences (42).

In accumulating animal experiments, the mechanism of
PUFAs affecting bone health could be better elaborated. Deep
down to the microlevel, the benefits of fish oil is closely linked to
the presence of allelic variants in some genes such as PPAR g,
according to a comparative study on mice with polymorphisms
in the PPAR g gene (6T) (52). On the contrary, no effect of
Frontiers in Endocrinology | www.frontiersin.org 8
consumption of PUFAs on bone structure or metabolism was
found in healthy mice. In another study conducted in
ovariectomized rats, the level of PUFAs and ratio of omega-6/
omega-3 PUFAs could be the essential important factors for
maintaining BMD and bone turnover markers (53). The dietary
ratio of 5:1 significantly elevated the amount of DHA in the bone
tissues of the femur. This conclusion was also supported by some
observational population study; in an investigated population
with a higher intake ratio of omega-3 FAs to omega-6 FAs, such
as the Japanese population, a lower ratio of osteoporosis was
reported (54). In addition, different dietary sources of omega-3
FAs exhibited significant disparities in biochemistry and
metabolism. Rozner et al. found that flaxseed oil was effective
in ameliorating the micro-architecture, and fish oil could
improve BMD, in which the core mechanism may be the
alteration of peripheral clock in bone cells (55).

Some study limitations should be noted, although the
rationale of MR analyses made it superior to conventional
observational studies in excluding the existence of
confounders. First, we only focused on the causal associations
between a specific type of PUFA and BMD and did not take into
consideration some other nutrients that might interact with
PUFAs and cause bias. The potential limitation might
contribute to the implausible casual relationship between
PUFAs and BMD to some extent. Therefore, we conducted
MR-Egger and MR-PRESSO methods to exclude the potential
pleiotropy. Furthermore, the PhenoScanner tool was adopted to
screen and remove the SNPs associated with confounders.
Hence, the conclusion of this study should be creditable.
Second, the samples were not further substratified according to
gender and age, which were believed to be important risk factors
of BMD based on previous studies. However, the effect on our
analyses could be small due to the strength of the large sample
size. Lastly, the exact mechanism underlying the causality
between them was not explored in-depth. Therefore, a
mechanistic research should be carried out in the future.
CONCLUSION

This two-sample MR analysis produced strong and new genomic
evidence that there was causal relationship between omega-6 FAs
and BMD. However, a further validation by MVMR and
TABLE 5 | MR-PRESSO estimates of the causal effects of BMD on PUFAs.

Exposures Outcomes Number Effect MR p-value MR-PRESSO
of

SNPs Global test p-value

LS-BMD Omega-3 fatty acids 20 −0.001 0.933 0.207
Omega-6 fatty acids 19 0.003 0.845 0.034(no outlier)
Ratio of omega6/omega3 20 0.008 0.487 0.817

FN-BMD Omega-3 fatty acids 17 −0.008 0.719 0.035(no outlier)
Omega-6 fatty acids 15 0.034 0.194 0.049(no outlier)
Ratio of omega6/omega3 17 0.022 0.250 0.389

TB-BMD Omega-3 fatty acids 68 −0.006 0.619 0.075
Omega-6 fatty acids 68 −0.001 0.882 0.013(no outlier)
Ratio of omega6/omega3 68 0.011 0.326 0.391
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bidirectional MR suggested that the association between them
may be caused by the interactions of metabolites and reverse
causality. Further investigations are still required to elucidate the
potential mechanism.
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