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In the last two decades, kisspeptin (Kiss) has been identified as an important player in the
regulation of reproduction and other physiological functions in vertebrates, including
several fish species. To date, two ligands (Kiss1, Kiss2) and three kisspeptin receptors
(Kissr1, Kissr2, Kissr3) have been identified in teleosts, likely due to whole-genome
duplication and loss of genes that occurred early in teleost evolution. Recent results in
zebrafish and medaka mutants have challenged the notion that the kisspeptin system is
essential for reproduction in fish, in marked contrast to the situation in mammals. In this
context, this review focuses on the role of kisspeptins at three levels of the reproductive,
brain-pituitary-gonadal (BPG) axis in fish. In addition, this review compiled information on
factors controlling the Kiss/Kissr system, such as photoperiod, temperature, nutritional
status, sex steroids, neuropeptides, and others. In this article, we summarize the available
information on the molecular diversity and evolution, tissue expression and
neuroanatomical distribution, functional significance, signaling pathways, and gene
regulation of Kiss and Kissr in teleost fishes. Of particular note are recent advances in
understanding flatfish kisspeptin systems, which require further study to reveal their
structural and functional diversity.

Keywords: fish, kisspeptin, kisspeptin receptor, reproduction, signaling pathway, gene regulation
INTRODUCTION

Eighteen years have passed since the first paper on kisspeptin in a teleost species was published. In
that study, the complementary DNA (cDNA) of a kisspeptin receptor (referred to then as GPR54
and now as kissr2) was isolated in the Nile tilapia, Oreochromis niloticus (1). The interest in studying
the kisspeptin system in fish came from its key role in mammalian reproduction (2–4). A clear
example of this is that more than 250 papers have been published to date on kisspeptin and
kisspeptin receptors in teleosts, as shown in the Scopus database.
n.org March 2022 | Volume 13 | Article 8626141
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It is now generally accepted that the kisspeptin system in most
teleost species consists of two ligands, known as Kiss1 and Kiss2,
and two receptors, Kissr2 and Kissr3. However, only one element
of this system (either the ligand and/or the receptor) has been
detected in Pleuronectiformes, such as kissr2 in Atlantic halibut,
Hippoglossus hippoglossus (5); both kiss2 and kissr2 in the
Senegalese sole, Solea senegalensis (6, 7), half-smooth tongue
sole, Cynoglossus semilaevis (8), and Japanese flounder,
Paralichthys olivaceus (9). Of note, the European eel, Anguilla
anguilla, is the only teleost species having two kiss genes (kiss1
and kiss2) and three kissr types (kissr1, kissr2, and kissr3)
reported to date (10).

In recent years, a considerable number of studies have
suggested that the kisspeptin system is the “master system”
controlling the BPG axis in mammals by exerting its action on
gonadotropin-releasing hormone (Gnrh) neurons (3, 11, 12).
However, in fish, several studies have considered the Gnrh
system as the main system and, the kisspeptin system as a
complementary system in controlling fish reproduction (13–
15). First, the anatomical association of kisspeptin and Gnrh
neurons is not obvious, or almost absent in many teleost species
(16–21). Similarly, in zebrafish (Danio rerio) and medaka
(Oryzias latipes) kiss and/or kissr knockouts display normal
reproduction (20, 22, 23). However, it must be considered that,
surprisingly, similar results have been obtained with gnrh
knockouts because, at least in zebrafish, single gnrh3 mutants
and gnrh3 plus 2 kiss gene triple mutants can normally reproduce
(23–26). However, in the same species, laser ablation of Gnrh
cells at the larval stage resulted in the loss of reproduction in
adult fish (27), suggesting that the cellular integrity of Gnrh cells
is essential and the Gnrh system is a key and essential player for
normal reproduction. Then, it was suggested that the unaltered
normal reproductive capacity of mutant fish is compensated by
the action of other neuropeptides known to affect gonadotropin
secretion (15, 24, 25). In this context, it would be interesting to
investigate whether similar mechanisms occur in other teleost
species and to clearly determine which peptide(s) are involved in
these compensatory mechanisms.

The aim of this review is to examine the entire literature on
the kisspeptin system in teleost fishes, with particular emphasis
on diversity and evolution, central and peripheral distribution,
physiological effects on reproduction, intracellular signaling
pathways and regulatory mechanisms.
KISSPEPTIN GENES AND PEPTIDES

Kisspeptins were initially considered to be members of the
RFamide peptide family (10). However, other studies
demonstrated that kisspeptins are far from the RF-amide
family and were proposed to be members of the Kisspeptin/
Galanin/Spexin family (28). Given the low conservation of
kisspeptin ligands among fish species, their characterization
took longer compared to kisspeptin receptors (7). The first
Kiss1 orthologs in fish to be characterized were those of
zebrafish, spotted pufferfish (Tetraodon nigroviridis), Japanese
Frontiers in Endocrinology | www.frontiersin.org 2
pufferfish (Fugu rubripes) and medaka (29, 30). Shortly after,
Kiss2 was characterized in zebrafish and medaka (31).

In humans, Kiss1 prepropeptide consists of 145 amino acids
(aa) in length, with a major cleavage product of 54 aa (originally
named as metastin) and three shorter peptides of 14, 13 and 10
amino acids in length. All these peptides bind to their cognate G
protein-coupled receptor today known as kisspeptin receptor
(32). It was then demonstrated that the 10 aa peptide was
conserved across vertebrates (33), suggesting that it plays an
important role in different taxa (34). However, the situation is
not as conserved in teleosts. For example, the Kiss1 precursor
contains a conserved putative cleavage site six amino acids
upstream of the core sequence, suggesting that the mature
form of Kiss1 is a pentadecapeptide (17, 35, 36). In addition,
the kiss2 gene produces a mature dodecapeptide in several
species (17, 34–36). Moreover, several studies have shown that
Kiss1-15 and Kiss2-12 peptides are more effective than Kiss1/2-
10 for receptor activation in teleosts (34).
KISSPEPTIN RECEPTOR GENES
AND PROTEINS

Kisspeptin receptors are membrane receptors that belong to the
superfamily of G protein-coupled receptors (GPCRs) (37). These
receptors have a highly conserved structure of seven
transmembrane domains (TMDs) that has facilitated their
cloning and characterization in vertebrates, including teleosts.
As mentioned earlier, the first kissr to be characterized in fish was
found in the Nile tilapia (1). Soon after, several kissr2 were
characterized in other fish species, such as cobia (Rachycentron
canadum) (38), grey mullet (Mugil cephalus) (39), fathead
minnow (Pimephales promelas) (40) and two flatfish species,
Senegalese Sole (6) and Atlantic halibut (5). The zebrafish
genome then helped Biran and coworkers (41) to identify for
the first time two kisspeptin receptors in a fish species, then
named kiss1ra and kiss1rb and now known as kissr2 and kissr3,
according to the nomenclature introduced by Pasquier et al. (10).
Since then, two kisspeptin receptors have been discovered in
most teleost fish species studied (15, 42, 43). However, not all
teleost species have two kisspeptin receptors. For example, only
kissr2 has been found in the three-spined stickleback
(Gasterosteus aculeatus), fugu (Takifugu niphobles), and
spotted pufferfish (44). Mechaly and coworkers (5, 6) also
failed to detect kissr3 by PCR in Pleuronectiformes and
suggested that kissr3 may have been lost during evolution of
this order (45).
EVOLUTION OF THE KISSPEPTINERGIC
SYSTEMS IN FISH

The first phylogenetic studies on the kisspeptin system genes
were essentially obtained from cloned and characterized
sequences (1, 5–7, 31, 33, 46). However, advances in next-
generation sequencing (NGS) technologies and genomics have
March 2022 | Volume 13 | Article 862614
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made available dozens of transcriptomes and genomes from a
wide range of teleosts and allowed to re-examine the diversity,
origin, and evolution of kisspeptins and their receptors not only
in fish but also in other vertebrates (10, 44, 47). For example,
sequences related to kisspeptin have been identified from
genome databases in the European eel (44) and pejerrey fish,
Odontesthes bonariensis (36), among others.

In teleosts, several studies have performed phylogenetic
studies on the nucleotide and/or amino acid sequences of
kisspeptins and kisspeptin receptors (10, 44). Since the
appearance of this large dataset, more complete phylogenetic
studies on the evolution of the kisspeptin systems have been
conducted. The situation is similar for flatfishes, and the
currently available genomes and/or transcriptomes from half-
Frontiers in Endocrinology | www.frontiersin.org 3
smooth tongue sole (48), turbot, Scophthalmus maximus (49),
Senegalese sole (50, 51), common sole, Solea solea (50, 51),
Japanese flounder (52), black flounder, Paralichthys
orbignyanus (53), and more recently the available genomes of
11 flatfish species, representing 9 pleuronectiform families (54)
have added data to understand kisspeptin phylogeny in teleosts.
A summary of all the available information is shown
in Figure 1A.

Within this framework, another aim of the review is to
highlight some relevant aspects of the kisspeptinergic system in
flatfishes, as conflicting information on the presence of
kisspeptin genes has been reported in this group. One example
is the absence of kiss1 and kissr3, as suggested by Mechaly et al.
(45) for the Senegalese sole and Atlantic halibut. However, using
A

B

FIGURE 1 | (A) kiss and kissr gene evolution in vertebrates derived from available information. D = gene duplication, L = gene lost, S = gene lost in some species,
N = gene not searched. (Modified from 7). (B) Consensus tree of flatfish relationships proposed by Chapleau (55), figure modified from Chanet et al. (56).
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the current genomic information of both species, we found either
complete or partial kissr3 sequences in Senegalese sole
(Figure 1B). However, we could not find kiss1 sequences in
the black and Japanese flounders. Both genomes have high
sequencing coverage and identified 25,231 protein-coding
genes in black flounder (53) and 21,787 protein-coding genes
in the case of Japanese flounder (52). However, the absence of
kiss1 annotation in flounder genomes does not necessarily mean
that this gene is missing in these species, as “missing” genes can
often occur in unassembled reads or contigs (57).

To make a definitive conclusion about the Kiss1 situation,
PCR analysis must be performed in both cases. However, it must
be kept in mind that this does not guarantee the detection of the
gene, as has already been shown in Senegalese sole and Atlantic
halibut (5–7). To test whether kiss1 and/or kissr3 have been lost
in some pleuronectiform species, a more comprehensive
comparative sequence analysis needs to be performed. With
this in mind, a syntenic analysis of kiss and kissr neighboring
genes in Pleuronectiformes was performed (Figure 2). It is
always possible that mutations and/or translocations may have
occurred to explain the absence of a particular gene in the
genome. For example, a kiss1-like transcript was already found
Frontiers in Endocrinology | www.frontiersin.org 4
in the red seabream, Pagrus major (58). A similar situation has
also been observed in primates, where a Kiss2-like gene was in
human, chimpanzee, and gorilla genome databases (59).
TISSUE EXPRESSION AND
NEUROANATOMICAL DISTRIBUTION OF
THE KISS/KISSR SYSTEMS IN FISH

While studies in mammals have shown that kisspeptin has
pleiotropic effects (60, 61), the situation in teleosts has not
been studied in detail, as most of the studies have focused on
the central regulation of reproduction (15, 42, 45). However,
kisspeptin transcripts and proteins are widely distributed in
various brain areas and tissues of fish, but no clear roles have
been associated with these extra brain kisspeptins. These tissues/
organs, include the pituitary gland, the spinal cord, the intestine,
the gonads, and the liver (62–65). The presence of kisspeptin in
blood has been detected in mammals (66). However, to the best
of our knowledge there are no available data on kisspeptins levels
in fish plasma. This is also the case in flatfishes, where kisspeptin
A

B

D

C

FIGURE 2 | Genomic synteny analysis of kisspeptin (A, B) and its receptor (C, D) genes in different teleost species.
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elements have been detected in various tissues, organs and brain
areas. As mentioned earlier, only kiss2 and kissr2 have been
described in all flatfishes studied to date (45). However, to the
best of our knowledge, no functions have been assigned to Kiss2
in these tissues/organs. With the genomes available today this
situation has changed, as kiss1 and kissr3 sequences have been
found in several pleuronectiform species, but no functional
studies of kiss1-kissr3 tissue expression have been performed to
date. In this context, the advent of RNA sequencing technology
(RNA-seq) will allow us to clarify this situation. However,
future studies are needed to clarify the pleiotropic role of
kisspeptins not only in Pleuronectiforms but also in other
teleost species.

It is important to mention that alternative splice variants are
frequently observed in mammals when analyzing GPCR tissue
distribution (67), and spliced variants of kisspeptin have also
been detected in several teleosts. For example, the presence of
alternative splice variants for kissr2 and/or kissr3 was observed in
Senegalese sole (6, 45), southern bluefin tuna, Thunnus maccoyii
(68), yellowtail kingfish, Seriola lalandi (68), zebrafish (69),
European eel (44) and pejerrey fish (65) through intron
retention. Mechaly et al. (6, 45, 65) indicate that truncated and
likely non-functional proteins are produced in this manner. In
two species, yellowtail kingfish (68) and zebrafish (69) alternative
spliced variants were also generated by deletion of exons. For a
detailed description of the splicing events detected in kisspeptin
receptors in fish see Mechaly et al. (45, 65). In this regards, future
studies are needed to evaluate whether truncated proteins are
generated and whether this represents regulation by
unproductive splicing, as has been described for arginine-
serine-rich (SR) splicing factors in several organisms (70). To
the best of our knowledge, alternative spliced variants have been
detected in a kisspeptin ligand in the specific case of
Pleuronectiformes and identified only in the kiss2 gene of
Senegalese sole (7).
FUNCTIONAL SIGNIFICANCE OF THE
KISS/KISSR SYSTEM IN FISH

In fishes, the functional roles of kisspeptinergic systems in
regulating reproduction is not always clear and is sometimes
contradictory. For example, Kiss1 has been shown to
significantly increase the levels of messengers of luteinizing
hormone b subunit (lhb), growth hormone (gh) and prolactin
(prl) in goldfish (Carassius auratus) pituitary cells (71). However,
in European eel, four different kisspeptin analogues (Kiss1-10,
Kiss1-15, Kiss2-10 and Kiss2-12) are able to specifically inhibit
lhb expression in a dose-dependent manner without affecting
follicle-stimulating hormone b (fshb) mRNA levels when acting
on pituitary cells (72). But, as mentioned earlier, kiss/kissr
mutated fish showed almost normal fertility and gonadal
maturation, suggesting that kisspeptin systems are not strictly
required for reproduction, at least in some teleosts (20, 22) or
compensatory mechanisms may take over the role of kisspeptins
in reproduction (20, 22, 43, 73, 74).
Frontiers in Endocrinology | www.frontiersin.org 5
Moreover, connection of kisspeptin nerve terminals and Gnrh
cells is not really clear in all teleost species. For example, in the
Nile tilapia, a kisspeptin receptor has been shown to be expressed
in Ghrh cells (1), and a small number of Gnrh neurons receive
kisspeptin innervation in zebrafish (16, 21), striped bass
(Morone saxatilis) (17) and the cichlid Astatotilapia burtoni
(75). Conversely, in medaka (19) and European sea bass
(Dicentrarchus labrax) (18), the presence of kisspeptin
receptors on Gnrh neurons could not be detected. However, in
zebrafish, Kiss2 nerve terminals reach the pituitary gland (76)
and Kiss2 cell bodies and fiber-like projections are found in the
proximal pars distalis (PPD) with a distribution like Gnrh3 nerve
terminals (77), supporting the possibility of an intrapituitary
kisspeptinergic regulation of pituitary function. Thus, the
physiological significance and functions of kisspeptin in fish
reproduction remain controversial. Table 1 summarizes the
physiological effects of kisspeptins in teleosts fish.
KISSPEPTINS’ ACTIONS AT BRAIN LEVEL

The biological effects of kisspeptin on Gnrh neurons have been
demonstrated in several teleost species at different levels. Kiss1
stimulates the electrical activity of terminal nerve-Gnrh3
neurons in adult medaka (97). Kiss1 also stimulates the
electrical activity of the preoptic area (POA) and hypothalamic
Gnrh3 neurons in adult zebrafish, while Kiss2 inhibits their
neuronal activity (98). In the orange-spotted grouper,
Epinephelus coioides, intraperitoneal (ip) injection of Kiss2
leads to upregulation of hypothalamic expression of gnrh1
(91). Similarly, Kiss2, but not Kiss1, significantly stimulates
gnrh1 expression in striped bass brain slices (82). Stimulatory
effects of Kiss2 on gnrh1 expression in the brain and
hypothalamus are also observed in the black porgy,
Acanthopagrus schlegelii (99), Nile tilapia (92), and Japanese
flounder (100). In hybrid bass, a differential and gonadal stage-
dependent role of kisspeptins on gnrh1 expression in the brain
was observed; both Kiss1 and Kiss2 increase gnrh1 expression in
pre-pubertal fish, while Kiss2 reduces gnrh1 expression in
gonadal recrudescencing fish (17).

Chronic administration of Kiss1 and Kiss2 leads to a decrease in
gnrh1, gnrh2, and/or gnrh3 transcript levels in the brain of female
striped bass (81). An inhibitory effect of Kiss1 and Kiss2 on gnrh1
and gnrh2 expression in the forebrain andmidbrain is also found in
male European sea bass (83). On the other hand, Kiss2 does not
alter gnrh2 and gnrh3 mRNA expression in the hypothalamus of
the half-smooth tongue sole in vitro (89). Likewise, injection with
Kiss1 and/or Kiss2 peptides induce no significant differences in
gnrh mRNA levels in other teleosts, such as zebrafish brain gnrh2
and gnrh3 (31), hybrid bass brain gnrh2 and gnrh3 (17), orange-
spotted grouper hypothalamic gnrh3 (91), yellowtail kingfish brain
and hypothalamic gnrh1 (88), lined seahorse hypothalamic gnrh3
(93), European sea bass hypothalamic gnrh1 and forebrain-
midbrain gnrh3 (83). However, Kiss2 has both stimulatory and
inhibitory effects on gnrh1mRNA levels in the brain of female chub
mackerel (Scomber japonicus), depending on the mode of
March 2022 | Volume 13 | Article 862614
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TABLE 1 | Summary of physiological effects of kisspeptins in fish.

Species (Common names) Kisspeptin
types

Peptide sequences Physiological actions References

Carassius auratus (Goldfish) Kiss1-10 YNLNSFGLRY-NH2 Stimulation of pituitary LH, GH and PRL release and synthesis in
vitro

Yang et al. (71)

Stimulation of pituitary SLa release in vitro Jiang et al. (78)
Increase of plasma LH levels in vivo Li et al. (33)
Stimulation of brain and ovary kiss1 synthesis in vivo Valipour et al. (79)

Kiss2-10 FNYNPFGLRF-NH2 No effect on LH release both in vivo and in vitro Li et al. (33)
Stimulation of pituitary fshb and lhb synthesis in vivo Valipour et al. (80)
Increase of plasma 17b-estradiol levels in vivo Valipour et al. (80)

Danio rerio
(Zebrafish)

Kiss1-10 YNLNSFGLRY-NH2 No effect on brain gnrh2 and gnrh3 synthesis as well as pituitary
fshb, lhb, gh1 and prl synthesis in vivo

Kitahashi et al. (31)

Kiss2-10 FNYNPFGLRF-NH2 Stimulation of pituitary fshb and lhb synthesis in vivo Kitahashi et al. (31)
Stimulation of pituitary fshb, lhb and prl1 synthesis in females in
vitro

Song et al. (77)

Morone saxatilis
×
Morone chrysopshy
(Hybrid bass)

Kiss1-15 QDVSSYNLNSFGLRY-
NH2

Increase of plasma LH levels at gonadal recrudescence in vivo Zmora et al. (17)
Stimulation of brain gnrh1 synthesis at prepuberty in vivo Zmora et al. (17)
Inhibition of brain kissr2 synthesis at recrudescence in vivo Zmora et al. (17)

Kiss2-12 SKFNFNPFGLRF-NH2 Increase of plasma LH levels at prepuberty and gonadal
recrudescence in vivo

Zmora et al. (17)

Stimulation of brain kissr2 and gnrh1 synthesis at prepuberty in
vivo

Zmora et al. (17)

Inhibition of brain kissr2 and gnrh1 synthesis at gonadal
recrudescence in vivo

Zmora et al. (17)

Morone saxatilis
(Striped bass)

Kiss1-15 QDVSSYNLNSFGLRY-
NH2

Inhibition of brain gnrh1 and gnrh2 synthesis in vivo Zmora et al. (81)
Inhibition of pituitary gnrh1r synthesis in vivo Zmora et al. (81)
Stimulation of pituitary fshb synthesis in vivo Zmora et al. (81)
Increase of oocyte diameter in vivo Zmora et al. (81)
Stimulation of pituitary fshb synthesis in vitro Zmora et al. (82)
Inhibition of pituitary lhb synthesis in vitro Zmora et al. (82)
Increase of FSH levels in vitro Zmora et al. (82)

Kiss2-12 SKFNFNPFGLRF-NH2 Inhibition of brain gnrh1, gnrh2 and gnrh3 synthesis in vivo Zmora et al. (81)
Inhibition of pituitary gnrh1r synthesis in vivo Zmora et al. (81)
Decrease of plasma LH and FSH levels in vivo Zmora et al. (81)
Stimulation of brain gnrh1 synthesis in vitro Zmora et al. (82)
Stimulation of pituitary fshb synthesis in vitro Zmora et al. (82)
Increase of FSH and LH levels in vitro Zmora et al. (82)

Dicentrarchus labrax
(European sea bass)

Kiss1-10
Kiss1-15

YNLNSFGLRY- NH2
QDVSSYNLNSFGLRY-
NH2

Increase of plasma LH levels in vivo Felip et al. (46)
Stimulation of kissr2 synthesis in forebrain-midbrain in vivo Espigares et al. (83)
Inhibition of gnrh1 and gnrh2 synthesis in forebrain-midbrain in vivo Espigares et al. (83)
Increase of hypothalamic and pituitary GnRH1 content in vivo Espigares et al. (83)
Increase of plasma LH levels in vivo Espigares et al. (83)

Kiss2-10
Kiss2-12

FNFNPFGLRF-NH2
SKFNFNPFGLRF-NH2

Increase of plasma LH and FSH levels in vivo Felip et al. (46)
Stimulation of kissr2 synthesis in forebrain-midbrain in vivo Espigares et al. (83)
Inhibition of gnrh1 and gnrh2 synthesis in forebrain-midbrain in vivo Espigares et al. (83)
Increase of hypothalamic GnRH1 content in vivo Espigares et al. (83)
Inhibition of pituitary gnrhr-II-1a synthesis in vivo Espigares et al. (83)
Increase of plasma LH, T and 11-KT levels in vivo Espigares et al. (83)
Increase of sperm motility parameters in vivo Espigares et al. (83)
Stimulation of pituitary LH and FSH release in vitro Espigares et al. (84)

Scomber japonicus
(Chub mackerel)

Kiss1-10 QDMSSYNFNSFGLRY-
NH2

Inhibition of pituitary lhb synthesis in sexually immature adult
females in vivo

Selvaraj et al. (85)

Increase of plasma 11-KT levels in sexually immature adult males
and E2 levels in females in vivo

Selvaraj et al. (85)

Induction of spermiation and vitellogenic onset in vivo Selvaraj et al. (85)
Increase of plasma 11-KT and E2 levels in pre-pubertal males in
vivo

Selvaraj et al. (86)

Acceleration of spermatogenesis in pre-pubertal males in vivo Selvaraj et al. (86)
Kiss2-12 SNFNFNPFGLRF-NH2 Inhibition of brain gnrh1 synthesis in sexually immature adult

females in vivo
Ohga et al. (87)

Stimulation of pituitary fshb and lhb synthesis in both sexes in vivo Ohga et al. (87)
Stimulation of brain gnrh1 synthesis in sexually immature adult
females in vivo

Selvaraj et al. (85)

Increase of spermatocytes numbers in pre-pubertal males in vivo Selvaraj et al. (86)

(Continued)
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administration. Subcutaneous and slow release of Kiss2 increases
gnrh1 expression (86), whereas intracerebroventricular (icv)
administration of Kiss2 suppresses gnrh1 expression (87). Taken
together, these data suggest that the mode of actions of Kiss1 and
Kiss2 on Gnrh neurons are different among fish species and
depend not only on gonadal status but also on the way
of administration.

On the other hand, the LPXRFa system (the piscine ortholog
of gonadotropin-inhibitory hormone, Gnih) is also a target for
the central effects of kisspeptin in fish. In hypothalamic explants
of half-smooth tongue sole, Kiss2 exerts a stimulatory effect on
lpxra transcript levels, while apparently reducing lpxrfa-rmRNA
Frontiers in Endocrinology | www.frontiersin.org 7
levels (89). To our knowledge, this is the first evidence for the
involvement of kisspeptin in the LPXRFa system in any fish
species investigated so far. In addition, autoregulation of the
kisspeptin system has been observed in several teleosts. For
details, see the section on neuropeptides (see below).
KISSPEPTINS´ ACTIONS ON
THE PITUITARY

The physiological roles of both Kiss1 and Kiss2 do not appear to
follow a common pattern in teleosts. Previous in vitro studies
TABLE 1 | Continued

Species (Common names) Kisspeptin
types

Peptide sequences Physiological actions References

Seriola lalandi
(Yellowtail kingfish)

Kiss1-10 YNLNSFGLRY-NH2 Stimulation of pituitary kissr2 synthesis during the non-breeding
season in vivo

Nocillado et al. (88)

Stimulation of pituitary fshb synthesis during the breeding season
in vivo

Nocillado et al. (88)

Stimulation of pituitary fshb and lhb synthesis during the non-
breeding season in vivo

Nocillado et al. (88)

Stimulation of gonadal development regardless of the season in
vivo

Nocillado et al. (88)

Kiss2-10 FNFNPFGLRF-NH2 Stimulation of gonadal development during the non-breeding
season in vivo

Nocillado et al. (88)

Inhibition of brain kissr2_v1 and kissr2_v5 synthesis in pre-pubertal
males in vivo

Nocillado et al. (68)

Stimulation of kissr2_v4 synthesis in pre-pubertal males in vivo Nocillado et al. (68)
Increase of plasma E2 levels in pre-pubertal females in vivo Nocillado et al. (68)

Anguilla anguilla (European eel) Kiss1-10
Kiss1-15

YNWNSFGLRY-NH2
ENFSSYNWNSFGLRY-
NH2

Inhibition of pituitary lhb and gnrhr-2 synthesis in vitro Pasquier et al. (72)

Kiss2-10
Kiss2-12

FNRNPFGLRF-NH2
SKFNRNPFGLRF-NH2

Inhibition of pituitary lhb and gnrhr-2 synthesis in vitro Pasquier et al. (72)

Cynoglossus semilaevis (Half-
smooth tongue sole)

Kiss2-10 FNFNPFGLRF-NH2 Stimulation of hypothalamic kiss2 and lpxrfa synthesis in vitro Wang et al. (89)
Inhibition of hypothalamic kissr2 and lpxrfa-r synthesis in vitro Wang et al. (89)
Stimulation of pituitary fshb and gtha synthesis in vitro Wang et al. (90)

Epinephelus coioides (Orange-
spotted grouper)

Kiss2-10 FNFNPFGLRF-NH2 Stimulation of hypothalamic gnrh1 synthesis in vivo Shi et al. (91)
Stimulation of pituitary fshb synthesis in vivo Shi et al. (91)

Oreochromis niloticus (Nile tilapia) Kiss2-10 FNYNPLSLRF-NH2 Stimulation of brain gnrh1, fshb and lhb synthesis in vivo Park et al. (92)
Increase of plasma 11-KT levels in males and E2 levels in females
in vivo

Park et al. (92)

Acceleration of spermatogenesis in vivo Park et al. (92)
Hippocampus erectus (Lined
seahorse)

Kiss2-10 FNVNPFGLRF-NH2 Stimulation of pituitary fshb and lhb synthesis in vivo Zhang et al. (93)
Increase of plasma testosterone levels in vivo Zhang et al. (93)

Solea senegalensis (Senegalese
sole)

Kiss2-10 FNFNPFGLRF-NH2 Increase of plasma FSH and LH levels in vivo Oliveira et al. (94)
Increase of plasma testosterone levels in vivo Oliveira et al. (94)

Heteropneustes fossilis
(Tinging catfish)

Kiss1-10 YNWNSFGLRY-NH2 Stimulation of hypothalamic, pituitary and ovarian gnrh1 and gnrh2
in vivo

Chaube et al. (95)

Stimulation of pituitary fshb and lhb synthesis in vivo Chaube et al. (95)
Increase of plasma and ovarian E2, progesterone and 17,20b-
dihydoxy-4-pregnen-3-one levels

Chaube et al. (95)

Kiss2-10 FNFNPFGLRF-NH2 Stimulation of hypothalamic, pituitary and ovarian gnrh1 and gnrh2
in vivo

Chaube et al. (95)

Stimulation of pituitary fshb and lhb synthesis in vivo Chaube et al. (95)
Increase of plasma and ovarian E2, progesterone and 17,20b-
dihydoxy-4-pregnen-3-one levels

Chaube et al. (95)

Micropterus salmoides (Largemouth
bass)

Kiss2-10 FNFNPFGLRF-NH2 Stimulation of brain gnrh3 and kissr2 synthesis in vivo Li et al. (96)
Stimulation of pituitary fshb and lhb synthesis in vivo Li et al. (96)
Stimulation of ovarian er2 and testicular ar synthesis in vivo Li et al. (96)
Increase of plasma 17b-estradiol and testosterone levels in vivo Li et al. (96)
Acceleration of vitellogenesis and spermatogenesis in vivo Li et al. (96)
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indicate a direct stimulatory effect of kisspeptin on
gonadotropins in different species. For example, Kiss1
significantly triggers Lh release from primary pituitary cell
cultures of goldfish (71, 101), and Kiss2 has a stimulatory
effect on both Lh and Fsh release in pituitary cells of European
sea bass (84). In striped bass, both Kiss1 and Kiss2 stimulate Fsh
release in vitro, whereas only Kiss2 is able to exert a stimulatory
effect on Lh release (82). Moreover, ip injection of Kiss1, but not
Kiss2, significantly increases serum Lh levels in goldfish (33). An
increase in plasma Lh and Fsh levels is observed in European sea
bass after injection of both Kiss1 and Kiss2 (46, 83). However,
Kiss2 is more effective than Kiss1 in triggering gonadotropin
secretion in this species (46). Similarly, intramuscular injection
of Kiss2 stimulates secretion of Fsh and Lh in Senegalese sole of
both sexes (94). Moreover, a differential and gonadal stage-
dependent roles of kisspeptin on Lh release was observed in
hybrid bass: Kiss1 increases plasma LH levels during gonadal
recrudescence in vivo, whereas Kiss2 stimulates the release of LH
during at pre-puberty and gonadal recrudescence (17).

In addition, injection of Kiss2 triggers an increase in pituitary
fshb and lhb mRNA expression in zebrafish (31) and chub
mackerel (87). Treatment of orange-spotted grouper with Kiss2
results in an increase in fshb mRNA abundance in vivo (91).
Moreover, half-smooth tongue sole Kiss2 apparently induces an
increase in gtha and fshb mRNA levels, without affecting lhb
mRNA transcripts in vitro (90). In zebrafish, Kiss2 significantly
stimulates fshb and lhb expression in the female pituitary gland
in vitro (77).

However, other teleost studies have reported some inhibitory
effects of kisspeptins on gonadotropins. For example, chronic
treatment with Kiss2 results in a decrease in plasma Lh and Fsh
levels in vivo in striped bass (81). Both heterologous and
homologous kisspeptin peptides inhibit lhb mRNA levels in
vitro, without affecting fshb expression in European eel (72,
102). An inhibitory effect of Kiss1 on lhb expression is also
observed in striped bass (82) and female chub mackerel (85).
However, no effect of Kiss1 treatment on the relative abundances
of lhb and fshb is observed in zebrafish (31) and chub mackerel
(86, 87). Kiss2 also dose not alter lhb and fshb mRNA levels in
yellowtail kingfish (88), chub mackerel (85), striped bass (81) and
European sea bass (84).

In addition to the effects on gonadotropins, kisspeptins have
also been shown to be involved in regulating the synthesis and/or
release of other pituitary hormones in fish. Kiss1 in goldfish
directly stimulates the secretion of Prl and Gh as well as gene
expression in vitro (71). Similarly, Kiss1 enhances the release of
somatolactin-a (Sla) in goldfish pituitary cells (78). Kiss2 in
zebrafish significantly stimulates the expression of prl1 in the
female pituitary in vitro without affecting the mRNA levels of
prl2, pro-opiomelanocortin-a (pomca) and pomcb (77). At the
pituitary level, injection of Kiss1, but not Kiss2, significantly
increases pituitary levels of Gnrh1 in European sea bass (83). In
addition, an inhibitory effect of kisspeptin on gnrhr expression is
observed in European eel (72), European sea bass (83) and
striped bass (81). As mentioned earlier, it is also important to
emphasize that unidentified Kiss2 cells and projections are found
Frontiers in Endocrinology | www.frontiersin.org 8
in the PPD, as well as the distribution of Gnrh3 fibers (77),
suggesting the possibility of a paracrine/autocrine intrapituitary
kisspeptinergic system.
KISSPEPTINS´ ACTIONS ON THE GONADS

To date, there are a few reports on the effects or functions of
kisspeptins at the gonadal level in teleosts. An initial study in
yellowtail kingfish showed that chronic treatment with Kiss1 and
Kiss2 could stimulate gonadal development in prepubertal males
(103). Further studies in the same species showed that Kiss1 is
more effective in stimulating gonadal development during the
breeding season, while the effects of Kiss2 is more pronounced
during the nonbreeding season (88). Kiss1 is also able to
accelerate puberty onset in juvenile male white bass (Morone
chrysops) (104). Plasma levels of 11-ketotestosterone (11-KT)
and 17b-estradiol are increased, and spermatogenesis and the
onset of vitellogenesis are observed in sexually immature adult
chub mackerel over 6–7 weeks following subcutaneous
implantation of Kiss1, but not Kiss2 (85). Furthermore,
subcu taneous in je c t ion o f Ki s s1 a l so acce l e ra t e s
spermatogenesis in prepubertal male chub mackerel (86).

On the other hand, only Kiss2 stimulates plasma levels of
testosterone (T) and 11-KT in male European sea bass, causing
an increase in cumulative milt, sperm density and sperm motility
parameters (83). Similarly, plasma levels of 11-KT in males and
E2 in females are significantly increased in immature Nile tilapia
treated with Kiss2, and Kiss2 apparently accelerates the process
of spermatogenesis (92). Recently, Kiss2 was shown to stimulate
T secretion in both sexes of Senegalese sole (94). All these data
suggest an effect on the gonads, probably mediated by
gonadotropins, but a direct effect of kisspeptins on the gonads
have been less considered.

It is now known that there is intra-gonadal expression of
kisspeptins and kisspeptin receptors in fish gonads, suggesting a
local action on fish gonads (36, 42, 62, 63, 105–110). In this
context, the intra-gonadal roles of kisspeptin in fish are poorly
understood. For example, Kiss1 was recently detected in the
gonads of Asian catfish (Clarias batrachus) and it was suggested
that it could locally regulate gonadal steroidogenesis (111, 112).
In addition, Chaube et al. (95) found that kisspeptins in female
stinging catfish, Heteropneustes fossilis, act not only at the brain
or pituitary level but also on the ovary to stimulate ovarian
maturation and ovulation, demonstrating the potential of these
peptides for aquaculture.

Taken together, these results suggest that kisspeptins may
regulate the reproductive axis by acting not only at the brain and
pituitary level but also at the gonadal level in teleost species.
OTHER PHYSIOLOGICAL ROLES

Less explored and beyond the control of reproduction,
kisspeptins are involved in other physiological processes in
fish. For example, mammalian kisspeptin increases the
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expression of pituitary gh, sl, melatonin receptor (mt), and
hepatic insulin growth factor-1 (igf-1), along with higher levels
of plasma Gh, Igf-1, and melatonin in the cinnamon clownfish
(Amphiprion melanopus), suggesting a role in controlling growth
in this species (113). On the other hand, intracranial
administration of Kiss1 suppresses the fear response elicited by
an alarm substance (AS) in zebrafish, representing a unique role
for the Kiss1 system in the brain of teleosts (114). Further studies
in the same species showed that Kiss1 reduces the AS-triggered
fear response via serotonin receptors (115).

However, whether and how kisspeptins are involved in the
control of food intake and energy balance in fish remains
unknown and represents a promising area for future research,
as nutritional status has a profound effect on kiss/kissr gene
expression in some teleosts (7, 65, 116).
SIGNALING PATHWAYS ACTIVATED BY
THE KISS/KISSR SYSTEMS IN FISH

Despite the importance of studying the involvement of
kisspeptins in the regulation of reproduction in fish, the
detailed intracellular signaling pathways mediating the effects
of the Kiss/Kissr systems have not been fully elucidated (2, 10,
117). In these studies, mainly heterologous mammalian cell lines
transfected with fish cognate receptors were used together with
cAMP-responsive element-dependent luciferase (CRE-luc) or
serum responsive element-dependent luciferase (SRE-luc)
reporter assays to investigate the possible involvement of the
protein kinase A (PKA) or protein kinase C (PKC) pathways,
respectively (118, 119).

Analysis of zebrafish Kissr3 signal transduction in COS-7
cells reveals a clear stimulation of CRE-luc activity and SRE-luc
activity by Kiss1, suggesting that zebrafish Kissr3 signal can be
transduced via both PKA and PKC pathways, whereas Kissr2
transduces its activity through the PKC pathway (41). Similarly,
in zebrafish, both Kiss1 and Kiss2 induce a concentration-
dependent increase in SRE-luc activity in CV-1 cells, CHO-K1
cells, and HEK293 cells expressing their cognate receptors (35,
69). In chub mackerel and medaka, however, Kissr3 activity is
transduced via the PKC pathway, whereas Kissr2 signaling is
transduced via both the PKA and PKC pathways (19, 120).
Similar results are also observed for Kissr3 signaling in Pacific
bluefin tuna, Thunnus orientalis and Japanese Spanish mackerel,
Scomberomorus niphonius (121).

On the other hand, in striped bass, both Kissr2 and Kissr3 are
signaling through the PKC pathway rather than the PKA
pathway (82). Interestingly, in goldfish and European sea bass
Kissr2 and Kissr3 signals can be transduced via both the PKA
and PKC pathways (33, 122). To date, only the Kissr2 type has
been identified in orange-spotted grouper, half-smooth tongue
sole, yellowtail kingfish and Southern bluefin tuna, and
differential activation of the signal transduction pathways has
been demonstrated. In the case of orange-spotted grouper, Kiss2
activates the PKC pathway, but not the PKA pathway (91).
However, in the other three species, Kissr2 signaling is shown to
Frontiers in Endocrinology | www.frontiersin.org 9
be transduced via both the PKC and PKA pathways (68, 123). In
addition, blockade of the PKC and PKA pathways by specific
inhibitors significantly reduces the stimulatory effects induced by
half-smooth tongue sole Kiss2, further confirming the
participation of these two signaling pathways in the action of
Kissr2 (123).

It is worth noting that the coexistence of two Kiss/Kissr
systems in a single fish species indicates differential ligand
selectivity for the two cognate receptors. In general, Kissr2 and
Kissr3 exhibit higher affinity for Kiss2 and Kiss1, respectively, as
observed in zebrafish (69), chub mackerel (120), medaka (19), and
European sea bass (122). However, in goldfish, Kissr3 is more
efficiently activated by Kiss2, whereas Kissr2 is preferentially
activated by Kiss1 (33). In striped bass, Kissr3 is activated
almost equally by Kiss1 and Kiss2, and Kissr2 is activated more
efficiently by Kiss2 than by Kiss1 (82). It is noteworthy that the
longer ligand forms show a stronger efficacy in activating the
receptors than the core decapeptide (35, 82, 120–122).

In addition, the possible involvement of intracellular Ca2+ was
also evaluated among post-receptor signaling events evoked by
kisspeptin, showing that all European eel kisspeptin forms are
able to increase intracellular Ca2+ in CHO-K1 cells stably
transfected with the rat Kissr1 (72). It should be noted that the
European eel is the only teleost species that possesses three
different kisspeptin receptors (Kissr1, Kissr2, and Kissr3) that
have been studied to date. However, there is no information on
the signaling pathways triggered by homologous Kiss peptides
across each Kissr type of eel (10, 72). On the other hand, other
studies were performed using primary cultured pituitary cells to
investigate the molecular mechanisms of the effects of the Kiss/
Kissr system on target cells. Consistent with the results obtained
with the heterologous systems mentioned above, goldfish Kiss1
may act directly at the pituitary level to increase SLa release via
the PKA and PKC pathways and subsequent activation of Ca2+-
dependent cascades (78). Goldfish Kiss1 also directly stimulates
the secretion of Lh and Gh from primary cultures of pituitary
cells in a Ca2+-dependent manner (101). Moreover, Kiss2 is
shown to increase phosphorylation levels of ERK and Akt in
female pituitary explants in zebrafish (77).

Currently, there is limited information on the interaction
between kisspeptins and other neuroendocrine factors in cell
signaling (124). In zebrafish, none of the three LPXRFa peptides
(LPXRFa-1, LPXRFa-2, and LPXRFa-3) alters SRE-luc activity in
COS-7 cells transfected with any of the three cognate LPXRFa
receptors (LPXRFa-R1, LPXRFa-R2, and LPXRFa-R3), however,
both LPXRFa-2 and LPXRFa-3 exert an inhibitory effect on Kiss2
activation of Kissr2, which involves the PKC pathway (125).
Moreover, LPXRFa-2, but not LPXRFa-3, also inhibits Kiss1
activation of Kissr3, which involves the PKC pathway (125).
Similarly, half-smooth tongue sole LPXRFa-1 and LPXRFa-2 can
also antagonize the action of Kissr2 by inhibiting the PKC
pathway (90). Because half-smooth tongue sole LPXRFa-R is
coupled to Gai protein (126), whereas its Kissr2 is coupled to
Gas protein (123), thus LPXRFa-2 also exerts an inhibitory effect
on Kissr2 signaling involving the PKA pathway (123). Of note,
Kissr3, LPXRFa-R2, and LPXRFa-R3 all transduce their activity
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through the PKA pathway in zebrafish (41, 125), but no
comparative studies have been conducted. Given that
activation of Kissr1 in mammals is coupled to multiple signals
(10, 12, 127), further studies are needed to investigate previously
unknown intracellular mechanisms by which kisspeptin exerts its
physiological functions in teleosts, as well as possible interactions
of kisspeptins with other factors (Figure 3).
REGULATION OF THE KISS/KISSR
SYSTEMS IN FISH

Photoperiod (Melatonin)
In mammals, kisspeptin is recognized as a mediator of
photoperiodic control of reproduction, and the effects of
photoperiod are mainly by melatonin produced in the pineal
gland during the night (128, 129). Nevertheless, studies on the
effects of photoperiod on the kisspeptin system are still scarce
and in some way contradictories in teleosts. For example, an
initial study in Nile tilapia showed that continuous illumination
reduces brain kissr2 expression levels, suggesting a possible link
between environmental stimuli and the kisspeptin system (130).
In contrast, continuous light increases hypothalamic kissr2
expression levels in Atlantic salmon (64). On the other hand,
there is no clear relationship between kiss2/kissr2 expression and
photoperiod in Atlantic cod (131).
Frontiers in Endocrinology | www.frontiersin.org 10
In medaka, a long-day (LD) breeder, the number of kiss1
neurons located in the Nucleus ventral tuberis (NVT) in the LD
condition is larger than that in the short-day (SD) condition,
whereas the kiss2 neurons located in the Nucleus recessus lateralis
(NRL) are not altered (29, 132). On the contrary, kiss2, but not
kiss1, transcript levels in the brain of striped bass/white bass
hybrid, a SD spawner, increase in the SD regime compared to the
LD regime (133). In zebrafish, a LD breeder, constant darkness
increases brain melatonin concentrations, and melatonin
stimulates kiss1 and kiss2 gene expression in the brain (134,
135). Similarly, melatonin elicits a significant increase in kiss1,
kiss2 and kissr2 mRNA abundance in the hypothalamus of male
European sea bass (136), while an inhibitory effect of melatonin
on kiss1 and kiss2mRNA levels is observed in the dorsal brain of
male European sea bass (136) and in the whole brain of female
sapphire devil, Chrysiptera cyanea (137). Furthermore,
continuous light results in the loss of forebrain-midbrain kiss1/
kissr3 seasonal rhythms in male European sea bass, which
apparently prevents further normal testicular development
(138). Taken together, these results indicate that the effects of
photoperiod mediated by melatonin can regulate the kiss/kissr
systems. This appeared to be species- and tissue-specific, and the
mechanisms of action remain to be studied in detail in fish.

Temperature
Temperature, especially in ectothermic vertebrates is one of the
most important environmental factors regulating reproduction.
FIGURE 3 | Signaling pathway of Kissr and possible interaction with Gnih in teleosts. The solid lines represent confirmed effects, whereas the dashed lines indicate
very limited evidence or possible pathways and interactions that merit further investigation. Kiss, kisspeptin; Kissr, Kiss receptor; Gnih, gonadotropin-inhibitory
hormone; Gnihr, Gnih receptor; Gaq, Gas and Gai, heterotrimeric G proteins; PLC, phospholipase C; IP3, inositol 1,4,5-trisphosphate; DAG, diacylglycerol; PKC,
protein kinase C; ERK, extracellular signal-regulated kinase; AC, adenylyl cyclase; PKA, protein kinase A; Lh, luteinizing hormone; Fsh, follicle-stimulating hormone.
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However, the mechanism by which temperature affects
reproduction remains unclear in teleosts. Preliminary evidence
has indicated that kisspeptin systems may be involved in
mediating the effects of temperature on reproduction. For
example, in sexually mature male zebrafish temperature
differentially modulated gene expression of the two kisspeptin
systems (139). A low temperature of 15°C, but not a high
temperature of 35°C, significantly increases kiss1 mRNA levels
in the whole brain, as well as kissr3 mRNA levels in the habenula
and the brain region containing nucleus of the medial longitudinal
fascicle, the oculomotor nucleus, and the interpeduncular nucleus.
However, kiss2mRNA levels in the whole brain and kissr2mRNA
levels in the caudal zone of the periventricular hypothalamus and
the posterior tuberal nucleus is significantly decreased when
exposed to both low and high temperatures. Interestingly, kissr2
mRNA levels in the nucleus of the medial longitudinal fascicle, the
oculomotor nucleus, and interpeduncular nucleus show an
increase when animals were exposed to low temperatures
compared with the normal rearing temperature for this species,
27°C. These results suggest that the kiss1/kissr3 system is activated
by low temperatures, whereas the kiss2/kissr2 system is inhibited
by both low and high temperatures, suggesting that these two
kisspeptin systems may be involved in different aspects of
zebrafish physiology (139).

Similarly, an inhibitory effect on the expression of kiss2 and
kissr2 genes is also observed in the diencephalon/midbrain of
mature male grass puffer, that spawns on the beach in semilunar
cycles during spring tide in early summer, when exposed to both
low and high temperatures (140). Notably, although brain
melatonin concentrations are significantly increased at high
temperatures, high temperatures do not affect kiss2 mRNA
levels in the hypothalamus of adult male zebrafish (135). On
the other hand, high temperature results in an increase in kiss2
transcripts in the head of pejerrey larvae at week 4 after hatching.
It is important to note that pejerrey is a fish with strong
temperature-dependent sex determination, and high
temperatures can result in 100% male offspring. These data
suggest that kiss2 may play an important role in the process of
sex differentiation in this species (36).

Nutritional Status
In mammals, the reproductive axis is known that be regulated by
energy balance, and the kisspeptin system appears to play a key
role in linking energy balance and reproduction (141). Fasting has
been shown to decrease hypothalamic kiss1 and kissr1 mRNA
levels in mouse and rhesus monkey, Macaca mulatta (142, 143).
Moreover, fasting in rat results in a concomitant decrease in
hypothalamic kiss1 and an increase in kissr1 mRNA levels (144).

In teleosts, kisspeptin systems also appear to be associated with
nutritional status. For example, in Senegalese sole, 15 days of
starvation results in a significant increase in kiss2 and kissr2
mRNA levels in the hypothalamus, but no changes are observed
for these two genes in the stomach (7). Similarly, two alternative
variants for kissr3 (kissr3_v1 and kissr3_v2) and kissr2 (kissr2_v1
and kissr2_v2) are identified in pejerrey, and fasting also increases
hypothalamic kiss2 and kissr2_v1mRNA levels, whereas kissr2_v2
shows no expression in the hypothalamus (65). However, food
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deprivation has no significant effect on the expression levels of
kissr2_v1 and kissr2_v2 in the testis and habenula of pejerrey
compared to the control group (65).

Also, a longer period of food restriction (14 months) results in
an increase in mRNA levels of kiss1, kiss2, kissr2 and kissr3 in the
hypothalamus of European sea bass (116). Overall, it appears that
the neuroendocrine mechanisms mediating the effect of negative
energy balance on reproduction may differ between mammals and
teleosts. It is noteworthy that kisspeptin reduces appetite in several
mammalian species (145–148). However, whether and how
kisspeptins are involved in the regulation of food intake and
energy balance in teleosts requires further investigation.

Sex Steroids
Sex steroids, estrogens and androgens, are important for the
differential expression of the elements of the kisspeptin systems.
For example, in female medaka, the number of kiss1 neurons in
the NVT, but not in the nucleus preopticus periventricularis
(NPPv), is significantly reduced after ovariectomy (OVX)
compared with the sham-operated group, and basal levels are
restored after E2 treatment (29). In addition, double-labeling in
situ hybridization showed that estrogen receptor alfa (Era) is
expressed together with kiss1 in NVT neurons, suggesting that
these neurons are involved in the positive feedback regulation of
the BPG axis in this species (132). However, the number of NRL
kiss2 neurons is not altered after OVX, and no ERa transcripts
are detected in or in close association to the NRL kiss2 neurons
(132). In contrast, in goldfish, the number of kiss2 neurons in the
POA is downregulated after OVX and is restored by E2
administration, and kiss2 neurons in the POA express all three
ER types (149).

In OVX orange-spotted grouper, the expression of kiss2 but
not kiss1 is significantly increased in the brain, and E2 substitution
could reverse this effect (150). Bioinformatics analysis of the
promoter of kisspeptins and kisspeptin receptors in yellowtail
kingfish and zebrafish reveals high abundance of several
regulatory elements such as AP-1, Sp1, ER, AR and PR (151),
suggesting possible regulation of Kiss genes and their receptors by
steroids, especially E2. It was also demonstrated that E2 is able to
positively feedback on the expression of kiss1 and kiss2 in goldfish
through different ERa pathways (152), and similar results are
observed in orange-spotted grouper (150). On the other hand, E2
treatment causes a significant increase in mRNA expression of
kiss1, kiss2, and kissr2 in zebrafish brain, but kissr3 transcript levels
are not altered (16). In addition, a positive effect of E2 on the
expression of kiss2 but not kiss1 is observed in the brain of the
sapphire devil, Chrysiptera cyanea (153) and in the hypothalamus
of the Dabry’s sturgeon, Acipenser dabryanus (154).

Kisspeptin receptors are also regulated by gonadal steroids in
fish. E2 also increases expression of the kissr2 and kissr3 genes in
the sapphire devil brain (155) and European sea bass pituitary
cells (84). Hypothalamic kissr3 but not kissr2 transcripts are
upregulated in Dabry’s sturgeon after E2 injection (154), whereas
neither kiss2 nor kissr2 mRNA levels are altered by E2 in the
hypothalamus of half-smooth tongue sole (156). Interestingly, no
significant changes in hypothalamic kiss1, kiss2 and their
receptors mRNA levels are observed in European sea bass by
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E2 treatment after OVX, as determined by qRT-PCR. However,
the number of kiss1 and kiss2 expressing cells is reduced in some
brain regions, and E2 replacement prevents this effect, as revealed
by in situ hybridization (157).

Androgens have also been shown to mediate feedback on the
regulation of kisspeptin neurons. Transcript levels of kiss1, kiss2,
and kissr2 in the brain are reduced by T treatment of OVX female
striped bass during mid-vitellogenesis (158). Similarly, T
administration reduces mRNA levels of kiss1, kiss2, and kissr2 in
the brain of gonadectomized (GDX) at mid-gonadal development
of male striped bass. In contrast, pubertal males responds to T
replacement by up-regulation of kiss1 and kiss2, whereas no
changes are observed in juvenile and recrudescent males,
suggesting a differential and gonadal stage-dependent role of T in
regulating mRNA levels of kiss1 and kiss2 (133). On the other hand,
a negative feedback effects of T on hypothalamic kiss2 expression is
observed in GDX European sea bass males, without affecting kiss1,
kissr2 and kissr3 mRNA levels (157). However, T has no effect on
the expression of the elements of kisspeptin system in the
hypothalamus of half-smooth tongue sole (156) and midbrain of
goldfish (159). A stimulatory effect of T on mRNA levels of kissr2
and kissr3 is detected in primary cultured pituitary cells of
European sea bass (84). Taken together, these results suggest that
the regulation of genes encoding kisspeptins and their receptor by
gonadal steroids in teleosts depends on the species, tissue, gene,
reproductive stage, and route of administration and that needs to
be investigated in each individual species.

Neuropeptides Related to Reproduction
In teleosts, negative and positive feedbacks were described for
kisspeptins on their own expression. For example, Kiss1
administration decreases the amount of kiss1 mRNA in the
habenula of zebrafish (160) and induces a higher expression of
kissr2 in the brain of fathead minnow (40). Similarly, Kiss2
stimulates kissr2 mRNA levels in primary cultured brain cells of
Japanese flounder (100). Both kiss2 and kissr2 transcript levels
are significantly increased in the hypothalamus of black porgy,
Acanthopagrus schlegelii, after injection with Kiss2 (99). In
addition, exogenous administration of Kiss2 increases gene
expression of reproduction-related genes (gnrh3, kissr2, fshb,
lhb, ar, and er2), sex hormone levels (E2 and T), and
accelerates the onset of puberty in largemouth bass,
Micropterus salmoides (96). On the other hand, Kiss2 increases
hypothalamic kiss2 expression in half-smooth tongue sole, and
decreases kissr2 mRNA levels (89). In addition, a negative effect
of Kiss2 is found on the mRNA abundance of kissr2_v1 and
kissr2_v5 in the brain of male yellowtail kingfish, while the
mRNA levels of kissr2_v4 are significantly increased (68).

Injection of Kiss2 does not alter kissr2 mRNA levels in the
hypothalamus of lined seahorse, Hippocampus erectus (93).
Neither Kiss1 nor Kiss2 alters the transcript levels of kissr2 and
kissr3 mRNAs in the hypothalamus of European sea bass, and
kissr3 mRNA levels in the forebrain-midbrain are not altered by
these two peptides (83). However, kissr2 gene expression is
increased in the forebrain-midbrain after exposure to Kiss1
and Kiss2 (83). Interestingly, a differential and gonadal stage-
dependent roles of Kiss1 and Kiss2 in regulating kissr2
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expression in hybrid bass brain is observed (17). Transcript
levels of kissr2 are increased only by Kiss2 in prepuberty,
whereas a significant decrease in mRNA levels is observed after
treatment with Kiss1 and Kiss2 in recrudescence (17).

LPXRFa may also induce differential effects on the expression of
kisspeptins and their receptor in teleosts. Intracerebroventricular
(icv) injection of LPXRFa-2 suppresses kiss1, kiss2, and kissr3
transcripts in the brain of male European sea bass, without
affecting kissr2 expression (161). However, intramuscular (im)
injection of LPXRFa-2 significantly increases kissr3 expression
and has no effect on the expression of the other genes (162). On
the other hand, no changes in the expression of these four
kisspeptin genes (kiss1, kiss2, kissr2, and kissr3) are observed after
administration of LPXRFa-1 in the same studies (161, 162). In half-
smooth tongue sole, neither LPXRFa-1 nor LPXRFa-2 alters
hypothalamic kiss2 mRNA levels in vitro (163). Similarly, im
injection of LPXRFa-2 and LPXRFa-3 does not alter kiss2 gene
expression in the brain of Senegalese sole (164), and none of the
three LPXRFa peptides alters hypothalamic kiss1 and kiss2 mRNA
levels in orange-spotted grouper (165).

In mammals, kisspeptin is considered an upstream regulator
of Gnrh secretion, and although the situation is clearly different
in teleosts, Gnrh may exert feedback on gene expression of
kisspeptin systems. A mammalian GnRH analog, [D-Ala6,
Pro9Net]-mGnRHa, has a stimulatory effect on the expression
of kiss2 in European sea bass pituitary cell cultures but has no
effect on the mRNA levels of kissr2 and kissr3 (84). Furthermore,
no significant differences in hypothalamic abundance of kiss2
and kissr2 mRNAs are observed after exposure to the
aforementioned GnRHa in half-smooth tongue sole (89).
Similarly, treatment with GnRHa has no effects on the
expression levels of kissr2 in the brain, pituitary gland, and
gonads in male yellowtail kingfish (88). Overall, these results
suggest a complex control of the kisspeptin system, and each
neuropeptide exerts a differential effect on kisspeptin gene
regulation, which could depend on the species, sex, tissues,
reproductive stages of the animals, peptides used, dose, route
of administration, and elapsed time after treatment.

Other Factors
Thyroid hormones (T3 and T4) play an important role in the
control of growth, morphogenesis, metabolism, and
reproduction in several species, including fish (166, 167).
Moreover, T3 ip administration significantly increases
hypothalamic kiss2 gene in sexually mature male Nile tilapia,
whereas this gene is suppressed under a hypothyroid condition
induced by methimazole treatment (168).

Endocrine disrupting chemicals (EDCs) can also affect
reproductive regulation, in part by affecting kisspeptins system,
which is a clear example of neuroendocrine disruption (169). For
example, bisphenol-A shows a greatly increased expression of
kiss1, kiss2, and kissr2 in the brains of pubertal Catla (Catla catla)
without affecting mRNA levels of kissr3 (170). In addition,
bisphenol-F leads to an increase in the expression of kiss1 and
kissr3 in the brain of zebrafish but has no effect on the mRNA
levels of kiss2 and kissr2 (171). In adult male goldfish exposed to
vinclozolin, a pesticide that acts as an antiandrogen and impairs
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reproduction in mammals, kiss1 but not kiss2 mRNA levels are
increased in the midbrain (159). Similarly, the antiandrogen
flutamide also induces kiss1 and kiss2 gene expression in the
midbrain of goldfish (159). All these data suggest that these
EDCs act on steroid receptors and/or steroid balance.

On the other hand, semicarbazide (SMC), an industrially
produced synthetic hydrazine compound, significantly
downregulates mRNA expression of kiss2 and kissr2 in the brain
of female Japanese flounder (172). An inhibitory effect of SMC on
kissr2 expression in the brain is also observed in male Japanese
flounder (173). Moreover, mRNA levels of kissr2 and kissr3 are
significantly reduced in the brain of adult female Japanese medaka
after chronic exposure to Roundup, a glyphosate-based herbicide.
However, neither kiss1 nor kiss2 transcripts are altered (174).
Moreover, these EDCs may act on the kisspeptins system by
mimicking the effects of gonadal steroids, as plasma E2 and T
levels can be altered by EDCs (93, 173).

Interestingly, other less studied factors, such as social status
may also regulate mRNA levels of kissr in the entire brain of
mouthbrooding cichlids, with higher mRNA levels of kissr2
observed in high-status territorial males compared to non-
territorial males (75).
CONCLUSIONS AND
FUTURE DIRECTIONS

In fish, kisspeptins may exert their functions by acting at multiple
levels of the brain-pituitary-gonadal axis. Two recent reviews
focusing on fish and vertebrates highlighted the different
pathways by which kisspeptins may be involved in reproduction,
discussed the levels and nature of action, and interaction with Gnrh
and other neuropeptides (15, 43). In this review, attention was
focused on the whole reproductive brain-pituitary-gonadal axis.
Unlike mammals, kiss/kissr null zebrafish and medaka can
reproduce normally, suggesting that kisspeptin is either not
essential for reproduction or that there are compensation
mechanisms exerted by other neuropeptides. Teleost are known
for their neuroplasticity and multifactorial control of reproduction,
with new reproductive neuropeptides emerging (175–177).

With respect to Kiss/Kissr diversity and evolution, we focused
particularly on Pleuronectiformes because this order is a good
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model from an evolutionary perspective and multiple genomes are
currently available. Moreover, in Pleuronectiformes, previous
studies have mentioned that the kisspeptin-1 system seems to
have been lost during evolution (8, 15, 45), but recent synteny and
phylogenetic analysis has shown that this is not so clear for all
species in this group. In addition, four rounds of genome
duplication are known to have occurred in salmonids (178), but
no additional kiss or kissr have been found to date. Therefore, it
will be interesting to search for orthologous pseudogenes in
salmonid genomes.

Most studies on kisspeptin in fish have focused on
reproduction, while the role of the kisspeptin system in
peripheral tissues is still unclear and there are important
questions to be addressed. For example, kisspeptin suppresses
food intake in some mammalian species, such as mice, rats, and
desert jerboas (145–148). Whether and how kisspeptin regulates
appetite and energy balance in teleosts is not yet clear and
requires further investigation. Further studies are also needed
to elucidate the roles of the kisspeptin systems in development,
metabolism, and behavior, as well as to explore the intracellular
signaling pathways involved in kisspeptin actions and possible
interactions with other neuroendocrinological factors in teleosts.
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