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Nonalcoholic fatty liver disease (NAFLD) is the dominant cause of liver disease worldwide.
Nonalcoholic steatohepatitis (NASH), a more aggressive presentation of NAFLD, is
characterized by severe hepatocellular injury, inflammation, and fibrosis. Chronic
inflammation and heightened immune cell activity have emerged as hallmark features of
NASH and key drivers of fibrosis through the activation of hepatic stellate cells (HSCs).
Recent advances in our understanding of the molecular and cellular pathways in NASH
have highlighted extensive crosstalk between HSCs and hepatic immune populations that
strongly influences disease activity. Here, we review these findings, emphasizing the roles
of HSCs in liver immunity and inflammation, key cell-cell interactions, and exciting areas for
future investigation.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease globally and is
projected to overtake hepatitis C as the primary indication for liver transplantation in the US and
Europe, along with alcoholic liver disease (1, 2). NAFLD comprises a spectrum of liver pathology
from simple steatosis with increased hepatocyte lipid content but no inflammation, termed non-
alcoholic fatty liver (NAFL), to non-alcoholic steatohepatitis (NASH) characterized by hepatocyte
death, inflammation, and fibrosis. NASH affects roughly 1 in 5 patients with NAFLD, conferring a
sizable risk of cirrhosis and hepatocellular carcinoma (HCC) (3).

Sustained inflammation is thought to drive the transition from simple steatosis to NASH (4, 5).
An important downstream consequence of hepatic inflammation is the activation of hepatic stellate
cells (HSCs), the principal fibrogenic cell type in the liver (Figure 1). Fibrosis severity mirrors
disease progression and is the only histologic feature that predicts liver-related mortality in NASH
patients (6). Interplay between HSCs and hepatic immune cells, long recognized as a key feature of
the hepatic injury response, has emerged as an especially important determinant of NASH
pathogenesis (5, 7, 8). This review highlights the roles of HSCs in hepatic immunity and their
impact in NASH.
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INFLAMMATION AND IMMUNE CELL
ACTIVATION IN NASH

Inflammation in NAFLD is triggered by a wide range of insults
that precipitate hepatocyte injury and death, and increase
systemic inflammatory signals. The disease drivers in NAFLD
are numerous and interdependent. Among the most significant
are altered hepatocyte metabolism, lipotoxicity, and oxidative
stress, which lead to endoplasmic reticulum stress and
mitochondrial dysfunction. Additional dysregulation of liver
homeostasis results from visceral fat inflammation, peripheral
insulin resistance, and disruptions to enterohepatic bile acid
circulation (3, 9). Hepatocyte-derived extracellular vesicles
(EVs) carrying chemokines, inflammatory mediators, and
fibrogenic micro-RNA (miR-128-3p) are increased in NASH
and implicated in myeloid and HSC activation (10). Collectively,
these changes lead to hepatocellular injury and increased
damage- and pathogen-associated molecular patterns (DAMPs
and PAMPs).

Murine models and human NASH biopsies show hepatocytes
activating multiple pathways of programmed cell death. There is
an increasing appreciation that lytic cell death programs,
including necrosis, necroptosis, and pyroptosis are important
inflammatory drivers in the pathogenesis of NALFD (11). These
pathways involve rapid membrane permeabilization and release
of cytoplasmic contents, triggering a stronger immune response
than apoptosis (12).

Disturbance of the gut-liver axis due to NAFLD-associated
dysbiosis has also emerged as an important extrahepatic source
Frontiers in Endocrinology | www.frontiersin.org 2
of inflammation in both experimental models and human
NAFLD cohorts (13). Although disease-associated microbes
vary widely between studies, the impact of changes to the
composition and function of the microbiome in NASH include
altered bile acid metabolism and loss of integrity of the gut-
vascular barrier, precipitating leakage of LPS and bacteria into
the liver via the portal circulation (14–16).

The liver’s rich community of innate and adaptive immune cells
undergoes dramatic remodeling during the pathogenesis of NASH,
with an overall increase in immune cell infiltration. Early
inflammatory signals stimulate recruitment of neutrophils and
accumulation of monocyte-derived macrophages (MoMFs),
adding to the large liver-resident Kupffer cell (KC) population
already present (17). Activated dendritic cells (DCs) increase in
abundance, coordinating the adaptive immune response as
professional antigen presenting cells (APCs) (18). Lymphocytes,
including conventional CD4+ and CD8+ T cells, B cells, and plasma
cells are educated by their interactions with APCs and adopt a range
of polarized phenotypes. Similarly, multiple innate-like T cell
populations are enriched in NASH in human biopsies and
murine models (5).

With sustained disease, these changes to the hepatic immune
composition may result in self-perpetuating, pro-inflammatory
and pro-fibrogenic networks of immune cells and other liver cell
types including hepatocytes, HSCs, and liver sinusoidal
endothelial cells (LSECs). A major ongoing challenge is to
decode how integrated networks of cells, rather than individual
cell types, within the liver propagate disease pathways in NASH.
Single cell RNA sequencing (scRNAseq) has granted an
FIGURE 1 | HSC-Immune Interactions in NASH Progression. Communication between hepatic stellate cells (HSCs) and immune cells amplify profibrogenic inflammatory
signaling in NASH. HSCs respond to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) that are increased in NASH.
Resident Kupffer cells (KCs) and recruited monocyte-derived macrophages (MoMFs) release cytokines that promote HSC activation and survival. Neutrophil myeloperoxidase
(MPO) is directly activating to HSCs which secrete factors to prolong neutrophil survival. HSCs supply vitamin A to the sinusoidal niche where it is converted to retinoic acid
(RA) by liver sinusoidal endothelial cells (LSECs) as an important signal to immune cells including a4b7 integrin positive gut homing CD4+ T cells. Lymphocytes, including B and
CD8+ T cells, release HSC-activating cytokines like TNFa and IL-6. Natural killer T (NKT) cells promote HSC activation through release of osteopontin (Opn) and sonic
hedgehog (Shh). Natural killer (NK) cells display reduced HSC killing due to increased insulin and TGFb signaling.
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unprecedented view of cellular heterogeneity and transcriptional
activity in the liver, and is critical to building a global understanding
of the key cell-cell interactions driving disease (19–22).
HEPATIC STELLATE CELLS

Hepatic stellate cells (HSCs) are a versatile mesenchymal cell
type with wide ranging roles in liver development, hepatocyte
homeostasis, retinoid storage, and the liver’s coordinated
response to injury (23). Stellate cells line the space of Disse, a
niche in between sinusoidal endothelial cells and the basolateral
surface of hepatocytes, establishing a central vantage point
from which they monitor the hepatic environment for
pathogens and hepatocellular damage. Upon liver injury,
HSCs activate and transdifferentiate to generate an expanded
population of myofibroblasts that are inflammatory,
contractile, and produce large quantities of extracellular
matrix (ECM) (24). HSC activation is an adaptive response
that helps the liver respond to frequent exposure to pathogens
and toxins; however, ongoing activation due to sustained liver
injury leads to excess ECM deposition (ie. liver scar or hepatic
fibrosis), the hallmark of chronic liver diseases including
NASH (24).

HSC activation is driven by many signaling molecules and
convergent pathways that conspire to initiate, and then
perpetuate, the transition to a fibrogenic myofibroblast
program. There are several excellent reviews of the numerous
pathways involved in HSC activation including fibrogenic,
proliferative, and inflammatory cytokines, Hedgehog signaling,
metabolic reprogramming, cholesterol signaling, and oxidative
stress (24–26). Among the most potent activating signals are
cytokines and growth factors secreted by hepatic immune cells.
Direct activation of HSC-expressed innate immune receptors,
including the Toll-like receptors (TLRs) and complement
pathway, provide additional direct activating stimuli to HSCs
(8, 24). Although the primary focus thus far in studying HSC-
immune crosstalk has been on its contribution to HSC
activation, these interactions are bidirectional and also include
contributions by HSCs as an important effector cell of the hepatic
immune system. In view of the prominent role played by hepatic
immune cells in NASH, HSC-immune communication is a
growing area of interest (5).
INTRODUCTION TO HEPATIC STELLATE
CELL IMMUNE FUNCTIONS

HSCs are deeply integrated into the hepatic immune system.
They contribute directly to the liver’s robust and essential innate
immunity through expression of a large repertoire of innate
immune receptors (8, 27). In doing so they amplify pro-
inflammatory cytokine production, recruit monocytes and
lymphocytes to the liver, and engage directly with other
effector cells of the immune system. This tight intercellular
communication is ultimately reflected in the coordination
Frontiers in Endocrinology | www.frontiersin.org 3
between HSC activation state and hepatic immune tone (7, 8,
27, 28).

Innate Immune Receptors
The liver is the first line of defense against invading pathogens,
bacterial metabolites, and toxins entering the portal circulation
from the gut. To protect against these threats, the liver recruits
innate immune cells and also engages other liver cell populations
including liver sinusoidal endothelial cells (LSECs), Kupffer cells
(KCs), and HSCs (27).

Quiescent HSCs (qHSCs) are primed by expression of
multiple pattern recognition receptors (PRRs), including TLRs
3 and 4 (29). TLR3 stimulation by double stranded RNA in
qHSCs prompts IFNg production (29). Activated HSCs (aHSCs)
express an even larger set of TLRs (TLR2, TLR3, TLR4, TLR7,
and TLR9) (8). The role of TLR4 and its ligand, LPS, is best
characterized. When exposed to low levels of LPS, aHSCs
activate the NF-kB pathway, secrete pro-inflammatory
cytokines including IL-8, upregulate leukocyte adhesion
molecules ICAM-1 and VCAM-1 and suppress the TGFb
pseudoreceptor Bambi (30, 31). Polymorphisms that attenuate
HSC TLR4 activity reduce inflammatory signaling and are
protective against fibrosis (32). TLR9 binds DNA released by
apoptotic hepatocytes, stimulating fibrogenic pathways in aHSCs
and halting their migration at injury sites (33).

Immunoregulatory Functions
Beyond their roles in innate immunity, HSCs interact extensively
with infiltrating immune populations and directly regulate their
behavior. Activated HSCs recruit immune cells by secreting
numerous chemokines including monocyte chemoattractant
protein-1 (MCP-1) (34), IL-8 (35), RANTES and CCR5 (36),
and SDF-1/CXCL-12 (37) and express adhesion molecules,
ICAM-1 and VCAM-1, that promote the infiltration of
leukocytes and macrophages (38, 39). HSCs can acquire some
features of antigen presenting cells (APCs), including expression
of major histocompatibility complexes (MHC) class I and II, and
T cell-activating costimulatory molecules such as CD86 (40–42),
although more recent evidence suggests HSCs have limited APC
capabilities in vivo (43).

Surprisingly, several mechanisms have been identified by
which activated HSCs are capable of promoting a tolerogenic
environment in the liver. In co-culture experiments, HSCs
interfere with T cell priming by dendritic cells (DCs) via a
CD54 (ICAM-1)-dependent signaling pathway and by
inducing STAT3 signaling in DCs (44, 45). HSCs cull the pool
of activated T cells by expressing PD-L1 to induce T cell
apoptosis (46–48) Remarkably, HSCs may oppose B cell
activity via the same mechanism (49). They also amplify
populations of tolerizing immune cells including FoxP3+

regulatory T cells (via retinoic acid and TGFb signaling) (41,
43, 50, 51) and myeloid-derived suppressor cells (52). Supporting
these physiologic roles in promoting hepatic immune tolerance
are studies in which HSCs are deleted, leading to increases in the
numbers of CD4+, CD8+ T cells, DCs, natural killer (NK) cells,
regulatory T cells, and Ly-6C+ macrophages (53). The practical
impact of these proposed tolerogenic roles for aHSC, which
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would appear to conflict with their inflammatory properties,
remains uncertain. In chronic liver disease, the balance of HSC-
immune interaction favors inflammatory, pro-fibrogenic
signaling; however, it is possible that a minority population of
tolerogenic HSCs may be identified in future studies.

HSC – Immune Cell Interactions
From their perch along fenestrated LSECs in the perisinusoidal
space, HSCs communicate directly with both resident liver cell
populations as well as infiltrating immune cells. Recent single cell
RNA sequencing data from the liver have reinforced the HSC’s
role as a key signaling hub with many immune cell
communications. Algorithms that analyze ligand-receptor pairs
to predict cell-cell signaling have demonstrated that HSCs have
among the greatest number and most diverse interactions of any
hepatic cell type including with KCs, MoMF and to a lesser
extent T, B, and NKT cells (19, 54). The number of predicted
HSC-cell interactions is greatly increased upon HSC activation,
highlighting the importance of these contacts during disease
progression (54).

HSC-immune crosstalk is most clearly illustrated by
interactions with macrophages. Upon liver injury, signaling
between HSCs and macrophages coordinates the activation of
both populations. Macrophages are the main cellular source of
potent pro-fibrogenic signals including TGFb, PDGF, TNF, and
IL-1b, and also secrete matrix metalloproteinases (MMPs) that
activate latent TGFb stored in the ECM (24, 55). ScRNAseq of
human cirrhotic livers has identified a subset of TREM2+CD9+

macrophages enriched in heavily scarred regions of the liver that
secrete cytokines and growth factors, including epidermal
growth factor (EGF) and platelet-derived growth factor BB
(PDGF-BB) to create a pro-fibrogenic niche for aHSCs (56).
HSCs, in a reciprocal fashion, can amplify the fibrogenic activity
of macrophages. In a co-culture system aHSCs induced a pro-
inflammatory profile in macrophages through a p38-dependent
signaling pathway (57). Even so, parallel lines of communication
between HSCs and macrophages appear to limit the extent of
liver damage. HSCs release signals such as CX3CL1 that restrain
pro-fibrogenic signaling by macrophages even during ongoing
injury (58, 59). Moreover, infusion of bone marrow-derived
macrophages in mice reduces fibrogenesis via increased
matrix-degrading MMPs and anti-inflammatory IL-10 (60).
These effects are likely due to the presence of “restorative
macrophages” characterized by low expression of Ly-6C (in
mice), elevated matrix remodeling enzymes and phagocytosis
of apoptotic bodies (61, 62). The delicate balance between HSCs
and macrophages has recently been distilled into a model of
paracrine signaling between the two cell types that produces a
stable two-cell circuit which largely predicts their behaviors
under healthy and disease conditions (63, 64).

Interactions between HSCs and other immune populations
are less extensively catalogued but important. HSC activation in
experimental fibrosis models is reduced in immunodeficient
(SCID) mice and rescued by adoptive transfer of lymphocytes,
especially CD8+ T cells (65). Similarly, B cells and HSCs form a
pro-fibrogenic network in mice subjected to CCl4 liver injury.
Retinoic acid (RA) signaling by HSCs promotes B cell survival
Frontiers in Endocrinology | www.frontiersin.org 4
and activation while, in turn, B cells secrete inflammatory
cytokines (66). Retinoic acid signaling has emerged as an
important immunomodulatory mediator, particularly in
promoting Th17 cell differentiation. RA receptor (RAR)
synthetic agonists and all-trans retinoic acid (ATRA) have also
shown direct anti-fibrotic effects on HSCs (67, 68).

In other contexts, immune cells may reign in HSC fibrogenic
responses. Neutrophils, signaling to macrophages, facilitate the
switch from disease progression to resolution – a phase when
liver injury has ceased and there is a global shift away from
inflammatory signaling and toward repair, including fibrosis
regression (69). Similarly, interferon-g (IFNg), produced by
many immune cells including NK, NKT and T cells, has direct
anti-fibrogenic activity on HSCs (70–72).
HSCS AND IMMUNITY IN NASH

The ascendance of NASH as a worldwide health concern has
spurred investigations into the immunologic pathways
responsible for disease progression. These efforts have been
aided by the development of murine models that capture many
of the key histologic and transcriptomic features of human
NASH, and by the application of single cell RNA sequencing
to the liver (24, 73). The sections below highlight recent advances
and summarize the pathways by which HSCs communicate with
the immune system in NASH.

Innate Immunity
Innate immune activation is an important fibrogenic stimulus in
NASH (3). While it is beyond the scope of this work to provide a
comprehensive review of innate immunity in NASH [see (9, 74)],
the prominent contributions of inflammasome activation and
changes to the microbiome are highlighted here (Figure 1).

Inflammasomes are multiprotein innate immune receptors
present in the cytoplasm of hepatocytes and nonparenchymal
liver cells. Upon stimulation by hepatocellular injury or
pathogens, inflammasomes activate caspase-1 triggering release
of inflammatory cytokines IL-1b and IL-18 and programmed cell
death (9). The NLRP3 inflammasome has emerged as a key
mediator of the transition from steatosis to NASH. In addition to
the propagation of hepatic inflammation, the NLRP3
inflammasome can activate HSCs directly. Selective expression
of a constitutively active transgenic NLRP3 in mouse HSCs is
sufficient to induce fibrosis (75). Additionally, activated NLRP3
particles released by hepatocytes undergoing pyroptosis are
endocytosed by HSCs, triggering activation and increased IL-
1b production (76). Blockade of NLRP3 signaling with a small
molecule inhibitor reduces disease severity in the MCD – Foz/
Foz murine NASH model, although the relative contributions of
targeting other inflammasome-expressing populations, including
myeloid cells, have not been determined (77).

NAFLD-related changes to the composition of the gut
microbiome and impaired intestinal barrier function flood the
liver with PAMPs including the potent TLR4 ligand, LPS (78).
These changes are positively correlated with NASH severity and
June 2022 | Volume 13 | Article 867940

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Carter and Friedman HSC-Immune Interactions in NASH
fibrosis in patient cohorts and experimental NASH models (16,
79–82). Restoration of gut barrier integrity in a high fat diet
(HFD) mouse model of NASH dampens innate immune
signaling and reduces HSC activation (16).

Macrophages
Macrophages in the healthy liver are made up of KCs and
circulating MoMFs. KCs maintain normal liver homeostasis as
an important phagocytic cell type and essential component of the
sinusoidal niche, but are stimulated by injury signals in NAFLD,
prompting them to adopt an activated expression profile and
recruit large numbers of inflammatory Ly-6Chi MoMFs. This
inflammatory switch is one of the definitive steps in the
transition from NAFLD to NASH and the progression of
fibrosis (4). Sustained disease drives a shift towards
“alternatively activated M2-type” macrophages, characterized
by heightened fibrogenic signaling (83).

Macrophages respond to a unique cocktail of injury signals in
NASH, including signs of hepatocyte injury, cholesterol and lipid
metabolites, and LPS from the “leaky gut” caused by NAFLD-
associated dysbiosis (84). Circulating mitochondrial DNA is a
powerful inflammatory signal in NASH that activates the
antiviral response molecule, STimulator of Interferon Genes
(STING), in macrophages (85, 86). In response to these
stimuli, macrophages secrete cytokines, chemokines, and other
soluble signals that contribute to fibrosis by: (A) driving HSC
activation through release of TGFb, PDGF, TNF, FGF2, MCP1,
CCL3, CCL5 and reactive oxygen species (ROS), and; (B)
promoting aHSC survival by activating the NFkB pathway
with IL-1 and TNF (24). Not surprisingly, depleting hepatic
macrophages in mouse models with agents such as clodronate
liposomes, or blocking their recruitment pharmacologically, as
with the CCR2/CCR5 antagonist Cenicriviroc, attenuate fibrosis
and blunt other histologic markers of disease (87–91). PPARd
agonism can modulate MoMF gene expression to improve lipid
handling and decrease pro-fibrogenic signaling to HSCs,
synergizing with pan-PPAR agonism as a potential NASH
therapy (92).

Recent studies have revealed how the hepatic macrophage
population changes in response to NASH, with implications for
their interactions with HSCs. A TREM2+ macrophage subtype
that is strongly linked to markers of tissue injury and fibrosis is
enriched in NASH livers (19). The role of TREM2+ macrophages
in NASH is unsettled, and recent evidence suggests they may
contribute to an adaptive response to metabolic injury in NASH
and promote fibrosis regression (93, 94).

The pool of resident KCs undergoes maladaptive changes in
NASH. This was highlighted by two recent studies that used
mouse models of NASH to explore changes to hepatic
macrophages during disease progression (20, 95). Using a
combination of KC-specific markers, parabiosis studies, and
bone marrow transplant experiments, they demonstrated that
liver resident TIM4+ KCs die and are replaced by a KC-like
population derived from Ly-6Chi MoMFs that are more
inflammatory than their predecessors. Intriguingly, HSCs,
along with LSECs and hepatocytes, provide niche cues that
recruit MoMFs and instruct their differentiation to the KCs fate
Frontiers in Endocrinology | www.frontiersin.org 5
(96). This finding raises the prospect that HSCs contribute to
the acquisition of a more inflammatory and pro-fibrogenic KC
population in NASH. Those MoMFs not fated to become KCs
remain in the liver as CLEC4F- SPP1+ TREM2+ CD9+ “Lipid-
Associated Macrophages” (LAMs) with more activated
transcriptional profiles. This population was found to
associate closely with aHSCs and likely overlaps with the
scar-associated TREM2+ CD9+ macrophages described by
Ramachandran et al. in scRNAseq of human cirrhosis (20,
56). Finally, studies of NASH histology have identified rings of
macrophages forming “Crown-like Structures” (hCLS) around
dying hepatocytes that were initially thought to represent a
more inflammatory macrophage subset (97, 98). Interestingly,
reduced hCLS formation in Ccr2 KO mice fed a HFD was
associated with similar weight gain and steatosis, but increased
fibrosis, suggesting a protective role for macrophages in this
context (99).

Extensive cell-cell communications between HSCs and
macrophages in NASH is an area of exciting new investigation.
Analysis of receptor ligand pairs using scRNAseq from the
AMLN murine NASH model identified a set of HSC-specific
secreted factors termed “stellakines” and established HSCs as a
signaling hub that interacts extensively with LSECs,
macrophages, and to a lesser extent, DCs, T cells, and B cells.
The immune-targeting “stellakines”, which are upregulated in
NASH, included CCL2, CCL11, CXCL10, CXCL12, CXCL16,
CTGF, and Gas6 (19).

Further evidence for HSC-macrophage crosstalk emerged in a
characterization of the MerTK receptor. MerTK is a surface
receptor predominantly expressed by macrophages that binds
several ligands including the “stellakine” Gas6. When activated it
induces TGFb production. ADAM17 cleaves MerTK to control
macrophage inflammatory responses in steatotic livers, but this
compensation fails in NASH – possibly due to reduced
availability of HSC-supplied vitamin A (which is depleted
when HSCs activate) that is necessary to stimulate
ADAM17 (100).

While early studies of macrophage depletion in the CCl4
mouse model of liver fibrosis characterized a Ly-6Clo restorative
macrophage subset, additional studies are needed to clarify how
macrophages specifically contribute to disease resolution in
NASH (61). Emerging evidence points to Specialized
Proresolving Mediators (SPMs) including maresins and
resolvins as important players. At least some of these lipid
metabolites are produced by macrophages (101) and also
signal to macrophages to reduce inflammatory and fibrogenic
gene expression (102). Other pathways to limit macrophage-
HSC fibrogenic signaling are likely awaiting discovery. For
example, investigators used a novel metabolomic and stable
isotope tracing approach to uncover a hepatocyte-macrophage
acetoacetate exchange that blocks fibrogenic signaling to HSCs in
a HFD mouse model, although the detailed HSC-macrophage
signaling pathways remain uncertain (103).

Neutrophils
As first responders in innate immunity, neutrophils amplify early
inflammatory insults in NAFLD. Accordingly, depleting or
June 2022 | Volume 13 | Article 867940
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impairing neutrophils is protective in experimental NASH
models (104). HSCs are primarily activated downstream of
liver injury mediated by inflammatory and oxidative
neutrophil effector functions. Release of myeloperoxidase, an
enzyme that catalyzes the production of multiple oxidant species,
is particularly harmful in the MCD NASH model. In humans,
hepatic MPO content is positively correlated with NASH severity
(105, 106). MPO is also directly stimulatory towards cultured
HSCs and can activate latent TGFb in liver homogenates,
pointing to pathways of direct HSC activation by neutrophils
(105). During inflammatory injury, HSCs may form a positive
feedback loop with neutrophils by secreting factors such as GM-
CSF and IL-15 that extend the neutrophil half-life, at least in co-
culture experiments (107). As observed with other immune cell
types, neutrophils may have dual functions in NASH depending
on disease stage. Depletion of neutrophils after establishment of
liver injury and during the resolution phase of disease impairs
fibrosis regression in the MCD NASH model, where neutrophils
may be an essential source of miR-223, a microRNA that
suppresses the NLRP3 inflammasome in macrophages
(69) (Figure 2).

NK Cells
Early studies in experimental liver fibrosis indicated that NK cells
were programmed to selectively target and kill activated HSCs,
raising hopes that NK cells could have fibrolytic activity in
chronic liver diseases (108–111). Activated NK cells also
secrete antifibrotic IFNg, although in advanced fibrosis HSCs
inhibit NK cells through release of TGF-b (Jeong Hepatology
2011). In NASH, increased recruitment of NK cells to the liver is
correlated with more severe disease (112). Part of the reason NK
cells fail to control fibrogenesis in NASH may be that their HSC-
Frontiers in Endocrinology | www.frontiersin.org 6
targeting activity is being inhibited. NK cells isolated from a
cohort of patients with NAFLD-NASH displayed abrogated HSC
killing when derived from individuals with more severe insulin
resistance and advanced fibrosis (113). In a murine NAFLD
model, increased TGFb signaling led to loss of NK cell cytolytic
activity – potentially an adaptive mechanism to reduce liver
inflammation (114). Together, these studies suggest that
worsening insulin resistance and fibrogenic TGFb signaling
during NASH progression may blunt anti-myofibroblast
surveillance by NK cells.

NKT Cells
NKT cells are the main unconventional innate-like T cells in the
liver, along with gdT cells and mucosal-associated invariant T
(MAIT) cells (115). NKT cells have emerged as key drivers of
hepatocyte injury during NASH pathogenesis, but the
significance of direct NKT-HSC interactions is not well
characterized (115, 116).

NKT cells secrete HSC activating ligands sonic hedgehog
(Shh) and osteopontin (Opn) in the MCD mouse model of
NASH (117–120). Although other hepatic cell types produce
Opn, NKT-deficient Ja18-/- and CD1d-/- transgenic mice have
lower total hepatic Opn levels and reduced fibrosis. Moreover,
NKT conditioned medium stimulates HSC activation in culture,
suggesting a direct fibrogenic role for NKT paracrine signaling
(118). In a co-culture system, NKT cells from the CD-HFD
NASH model activate HSCs more strongly than CD8+ T cells,
even though both immune populations mediate fibrogenic injury
in vivo (121). Intriguingly, studies in CCl4 and DDC liver fibrosis
models have reported that NKT cells can kill activated HSCs
through expression of the NK receptor NKG2D, but its relevance
to NASH has not been explored (122, 123).
FIGURE 2 | HSC-Immune Interactions in NASH Regression. Key immune pathways oppose fibrogenesis during resolution of NASH injury. CD8+ memory and gdT
cells induce apoptosis of activated HSCs. Neutrophil microRNA 223 (miR-223) converts pro-inflammatory macrophages to a restorative phenotype. Hepatocyte-
released acetoacetate promotes anti-fibrogenic signaling by macrophages.
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Other Innate-Like T cells
Hepatic gdT cells are highly enriched in both healthy and
diseased livers (124). Upon exposure to activated HSCs gdT
cells induce apoptosis through the Fas-FasL pathway and
depleting the liver of gdT cells in CCR6-/- mice accelerates
MCD-NASH-related fibrosis (125). Like NKT cells, gdT cells
appear to upregulate NK receptors to acquire HSC-targeting
capacity under injury conditions (126). MAIT cells have recently
emerged as a source of profibrogenic signaling in chronic liver
diseases, but their contribution in NASH has not been clarified
(127, 128).

Adaptive Immunity
Adaptive immune responses are potent inflammatory drivers in
the progression to NASH. Hepatocyte and LSEC-derived signals
recruit a broad repertoire of lymphocytes, resulting in the diffuse
lobular infiltration that is a hallmark of NASH histology (116,
129). Global loss of adaptive immunity in Rag1-/- and b2M-/-

mice is protective against steatosis, inflammation, and fibrosis in
the choline-deficient high fat diet (CD-HFD) model, highlighting
the overall contribution of adaptive immune cells to NASH
disease (121).

Conventional T Cells
T cells may be especially important in promoting NASH and
NASH-HCC (116, 130). The NASH T cell response is
characterized by an enrichment for cytotoxic CD8+ T, TH1
differentiated CD4+ T and NKT cell populations (18, 121, 131–
135). These immune shifts drive hepatocyte metabolic
dysregulation through IFNg, TNFa, and IL-17A signaling and
production of the lymphotoxin LIGHT (18, 121, 132, 133).
Metabolic derangement in NASH also induces T cell
pathology. Notably, CXCR6+ CD8+ T cells acquire hepatocyte
killing activity in response to increased levels of the short-chain
fatty acid acetate (136). Accordingly, depletion of T lymphocyte
populations or disruption of their signaling activity is protective
(115, 133, 137).

HSCs are an integral part of the sinusoidal niche and likely
provide signals that influence T cell functions in NASH.
Receptor-ligand analysis of their dense signaling networks
includes potential chemokine interactions with T cells (19).
Moreover, HSCs are the key hepatic source of vitamin A and
its immunologically important metabolite RA (8). Vitamin A
from HSCs is converted by neighboring LSECs to RA which
primes CD4+ T cells to acquire a gut-homing phenotype
mediated by a4b7 integrin and CCR9 expression (42, 138).
These a4b7+ CD4+ T cells are key mediators of intestinal
barrier disruption, increasing enterohepatic circulation of LPS
and bacteria. Antagonism of this pathway in an experimental
mouse model of NASH reduces hepatic inflammation and
fibrosis (139).

T cells may act to restrain HSC fibrogenesis during NASH
regression (Figure 2). In a HFD NASH model there was
expansion of CD69+ CD103− CD8+ tissue resident memory T
cells when mice were allowed to recover on a regular chow diet.
These CD8+ memory T cells attract HSCs through the
chemokine receptor CCR5 and induce HSC apoptosis via Fas-
Frontiers in Endocrinology | www.frontiersin.org 7
FasL. Adoptive transfer of regression-primed CD8+ memory T
cells reduces the number of aHSCs and controls fibrosis (21).

B Cells
Intrahepatic B cell infiltration is associated with NASH
progression (140, 141). Soluble markers related to B cell survival
and activity including BAFF and IgG increase with worsening
NASH severity, but the mechanisms by which B cells contribute to
disease have not been characterized (142, 143). In HFD-NAFLD
and MCD-NASH mouse models, B cells display prominent
innate-like signaling function characterized by release of pro-
inflammatory TNFa and other cytokines that activate HSCs and
promote TH1 T cell activity (140, 144, 145). Future studies
empowered by advances in scRNAseq and associated
technologies may identify additional points of communication
between B cells and HSCs (145). Potential interactions are hinted
at, but not explored, in some of the first single cell analyses of
NASH livers, including Cxcl12-Ccr4 in mouse and TNFRSF14-
BTLA in human aHSCs and B cells, respectively (19, 146).
EMERGING AREAS

Cellular heterogeneity is now evident among HSCs and immune
cell subsets as a result of increasing use of scRNAseq, raising new
questions about how interactions between these cell types may be
subdivided and targeted with greater precision (19, 20, 145, 147).
At the same time, there is growing appreciation for antifibrotic
signaling by immune cells, especially during fibrosis regression.
Future studies that can identify pro-fibrotic and antifibrotic cell
types and interactions with greater precision will be of great value
to the development of targeted therapies.

Single cell analysis of HSC populations in murine NASH
recently identified a cluster of “inflammatory” HSCs
characterized by reduced collagen scar production and increased
immune and secretory pathway activity that may be more relevant
to immune crosstalk (148). Separately, fibrogenic TREM2+CD9+

“scar-associated” macrophages have been characterized in human
cirrhosis (56). These may represent key pathologic cellular subsets
worthy of therapeutic targeting. Likewise, depletion of other
disease-associated subpopulations such as senescent HSCs,
which are inflammatory, immune-stimulating in NASH, would
be an appealing approach; however, these studies will rely on
characterizing a unique molecular signature of HSCs to selectively
target this cell type (149, 150). Any cell-directed therapies will
need to avoid inhibition of beneficial activities by cells including
“restorative” Ly-6Clo macrophages and miR-223-producing
neutrophils. In support of this, additional work is needed to
further define the cell subsets with antifibrotic roles, especially
those that promote fibrosis regression.
CONCLUSIONS

Interactions between HSCs and hepatic immune cells clearly
regulate fibrosis in NASH. HSCs collaborate with innate immune
June 2022 | Volume 13 | Article 867940
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cell types to initiate hepatic inflammation in the transition from
simple steatosis to steatohepatitis. They also undergo fibrogenic
activation in response to inflammatory signaling, mediated by both
innate and adaptive cell types, and signal back to those immune
subsets, amplifying their activation (Figure 1) (3, 9). However,
increasing evidence indicates that immune-HSC crosstalk is also
tightly linked in the resolution of NASH injury and fibrosis
regression. In specific contexts NK, NKT, and CD8+ T cells all
induce HSC apoptosis to attenuate scar deposition (21, 108, 123).
Neutrophil and macrophage subsets may blunt HSC activation and
promote fibrosis regression as well (Figure 2) (69, 103).

Future studies need to establish the key signals that
orchestrate the shift from pro- to antifibrotic signaling by
immune cells. Many new candidate interactions are already
suggested through single cell transcriptomic analyses, enabling
a global assessment of immune cell interaction networks (147,
151, 152) Ultimately, functional validation will be necessary to
establish which interactions are most impactful.
Frontiers in Endocrinology | www.frontiersin.org 8
Careful dissection of timing and key regulators of HSC-
immune interactions in NASH promises to clarify which
therapeutic strategies will disrupt disease promoting
pathways without interfering with the liver’s innate capacity
for repair.
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