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Adipose tissues perform physiological functions such as energy storage and endocrine,
whose dysfunction will lead to severe metabolic disorders. Accumulating evidences show
that exosomes can meditate communications between different tissues by transporting
nucleic acids, proteins and other biological factors. More importantly, exosomes secreted
by adipose tissue function as critical contributing factors that elucidate specific
mechanisms in metabolic disturbance such as obesity, adipose inflammation and
diabetes etc. Adipose tissue is the major source of circulating exosomal miRNAs.
miRNA secreted from adipose tissues not only altered in patients with metabolic
disease, but also result in an increase in metabolic organ talk. Here we have reviewed
the latest progress on the role of adipose tissue derived exosomes roles in metabolic
disorders. Moreover, the current obstacles hindering exosome-based therapeutic
strategies have also been discussed.
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INTRODUCTION

Metabolic dysfunctions include hyperglycemia, obesity, dyslipidemia, insulin resistance, etc. (1).
Adipose tissue dysfunction underlies the pathogenesis of metabolic diseases (2). Adipose tissue is
not only an energy storage organ, but also an endocrine organ that regulates the metabolic
homeostasis of tissues and organs throughout the body. Nearly 100 adipokines have been discovered
(3). Under physiological conditions, adipokines can act on the brain, liver, skeletal muscle,
cardiovascular and immune systems, and endocrine pancreas and other tissues and organs (4).
When the body is in a state of metabolic disorder, the overproduction of pro-inflammatory
adipokines and the decreased expression of anti-inflammatory adipokines lead to increased adipose
tissue volume, adipocyte damage, degeneration, and proliferation, aggravating adipose
inflammation and insulin resistance (5, 6). In addition to adipokines dysregulation, adipose
tissue-derived exosomes have been found to play important roles in metabolic disorders. Early
evidence suggests that adipose tissue-derived exosomes contribute to the development of metabolic
disorders such as obesity and insulin resistance by regulating distant organ tissues, such as the liver
and pancreas (7–9). In studying adipose tissue-derived exosomes, the researchers found that
exosomes from obese adipose tissue, when applied to target cell populations, caused changes
consistent with the obese phenotype (10).

As an important transmitter of cellular information, exosomes have received extensive
attention in recent years. The potential role of exosomes in intercellular communication
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makes exosomes considered an important endocrine mechanism.
Current issues surrounding exosome biogenesis mainly focus on
the components contained in exosomes and the effects of
exosomes on recipient cells (11). The size, content, origin, etc.
of exosomes all contribute to exosome heterogeneity (12).
Exosomes derived from different tissues and cells contain
different properties, which may cause uptake by some specific
cells or organs or have different effects on different recipient cells
(13). This heterogeneity adds complexity to the function of
exosomes in cell-to-cell and organ-to-organ communication.
Adipose tissue, as an important endocrine organ, plays an
indispensable role in intercellular communication, interorgan
communication and systemic metabolic homeostasis. Therefore,
elucidating the role of specific tissue-derived exosomes (such as
adipose tissue-derived exosomes) in the body can provide very
deep evidence for their further application and clinical
translation (10).

This review focuses on the role of adipose tissue-derived
exosomes in different metabolic diseases. We have introduced
the effect of adipose tissue-derived exosomes on homeostasis and
the molecular mechanism, and summarized the research status
of adipose tissue-derived exosomes in stem cell therapy. Also, we
have reviewed some effects of dysregulated metabolic
homeostasis on exosomes.
Frontiers in Endocrinology | www.frontiersin.org 2
BIOGENESIS, COMPOSITION AND
ISOLATION OF EXOSOMES

Biogenesis of Exosomes
Extracellular vesicles are a general term for a variety of nano-
scale vesicles that are actively released by cells, which can be
divided into microvesicles budding from the plasma membrane,
apoptotic bodies shed from dying and disintegrating cells, and
exosomes derived from the endolysosomal pathway (14–16)
(Figure 1). Plasma membrane funnel-like internalization of
cell surface proteins and soluble proteins associated with the
extracellular environment led to the formation of early
endosomes (17, 18). Incoming endocytic cargo matures into
late endosomes through clathrin-dependent or clathrin-
independent pathways and ultimately forms MVBs. This
process is accompanied by the recruitment of partially soluble
molecules (cytosolic proteins and RNA) into ILVs(intraluminal
vesicles) (19–21). Different MVBs have different fates and can
either fuse with lysosomes or autophagosomes to be degraded, or
fuse with the plasma membrane of the parent cell to release the
contained ILVs as exosomes (17, 22, 23). Rab family (such as
Rab27A, Rab27B) are key mediators of exosome release (23),
SNARE (soluble N- ethylmaleimide- sensitive factor attachment
protein receptor) can drive membrane fusion to promote
FIGURE 1 | Schematic illustration of exosome biogenesis and component. Differently from microvesicular bodies (MVBs) and apoptotic bodies, exosome derive from
the endosomal pathway by evolution of the early and then late endosomes, and ultimately MVBs fuse with plasma membrane to release the exosomes. Exosome
surface proteins include characteristic markers (CD9, CD81, CD63 and so on). Exosomes encapsulate various sorts of cell surface and intracellular proteins, coding
and non-coding RNAs, DNA, amino acids, and some metabolites.
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exosome secretion (24). The exosomes released outside the cell
can fuse with the receptor cytoplasmic membrane to release the
cargo directly, or the exosomal transmembrane protein can
directly interact with the signaling receptor of the target cell
(25–27). The third way in which exosomes released into the
extracellular space communicate with recipient cells is that
exosomes enter recipient cells by phagocytosis/endocytosis (28,
29), some phagocytosed exosomes will merge into endosomes by
endocytosis and be released into adjacent cells, and others will
mature into lysosomes and degrade after fusion with
endosomes (30).

Tetraspanins, ESCRT (endosomal sorting complex required
for transport) protein, phospholipids, TSG101 (tumor
susceptibility gene 101), ALIX (ALG-2-interacting protein X),
ceramide and SNARE, etc. are involved in exosome biogenesis.
Tetraspanins are not only one of the most commonly used
exosome marker proteins, but also promote the transport of
other membrane proteins and improve their stability (19). As an
exosomal scaffold protein, Alix binds TSG101 and ESCRT.
Studies have shown that the ESCRT-related cytoplasmic
protein ALIX is not only recruited to endosomes through its
interaction with LBPA (lysobisphosphatidic acid) (22), but also
regulates the formation of ILVs in acidic late endosomes and
thus affects exosome generation (27). Trajkovic et al. found that
purified exosomes were rich in ceramides, and inhibition of
neutral sphingomyelinase reduced exosome release (31).
Ceramides can stimulate exosome production and the content
of ceramides is positively correlated with the increase of
exosome biosynthesis.

Composition of Exosomes
The size of exosomes is arranged from 40nm to 160 nm.
Exosomes contain mRNA, microRNA (miRNA), ribosomal
RNA, long non-coding RNA (lncRNA) and DNA, proteins
and lipids (32). Exosomes from different sources contain
different structural proteins and lipids. Although exosomes are
formed by the invagination of the plasma membrane, the
exosome membrane also includes lipids from the Golgi
complex resulting in a different membrane lipid content than
the plasma membrane (21). The most common proteins include
tetraspanins (like CD63, CD9, CD81), heat shock proteins (like
Hsp70, Hsp90) and endosomal markers (like Alix). It is worth
noting that in addition to the rest of the common cytoskeletal
proteins, albumin, etc., major histocompatibility complex class I
(MHC I) is expressed on all exosomes, while major
histocompatibility complex class II (MHC II) is only expressed
on antigen-presenting cells derived exosomes (33). Microvesicles
and apoptotic bodies are extracellular vesicles of 50nm -5mm and
1mm -5mm in size, respectively. Microvesicles were originally
studied for their role in blood coagulation and were formerly
known as “platelet dust” (34). Unlike exosomes, microvesicle
biogenesis involves changes in lipid composition, protein
composition, and Ca2+ levels. Microvesicles contain a large
amount of cholesterol and calpain, which facilitates membrane
budding and the formation of microvesicles (35). Compared to
exosomes, microvesicles, apoptotic bodies are relatively large
extracellular vesicles that contain remnants of encapsulated
Frontiers in Endocrinology | www.frontiersin.org 3
dying cells. Phosphatidylserine is the only marker of apoptotic
bodies found so far (36). Recent studies on apoptotic bodies have
found that apoptotic bodies can not only activate the immune
system, but also transmit genetic information. Samos et al.
detected apoptotic bodies in the blood of tumor xenograft-
bearing mice (37). Due to cross-running of exosomes with the
biogenesis pathways of the remaining extracellular vesicles, the
precise rate-limiting roles and functions of these molecules in
exosome biogenesis need to be further explored.
ROLE OF ADIPOSE TISSUE-DERIVED
EXOSOMES IN METABOLIC DISEASES

In addition to regulating whole-body energy metabolism through
adipocytes, adipose tissue also produces a variety of adipokines,
including leptin and adiponectin (38). These adipokines play a
role not only in maintaining glucose, lipid and energy
homeostasis, but also in communication between adipose
tissue or between adipose tissue and other tissues (39).
Adiponectin is a pleiotropic organ-protective protein secreted
only by adipocytes (40). T-cadherin promotes the accumulation
of adiponectin in multivesicular bodies to stimulate exosome
biogenesis and secretion (40). Wei et al. found that adipose
tissue-derived exosomes were able to modulate insulin sensitivity
in vitro and in vivo (41). Therefore, exosomes not only affects the
process of metabolism, but in turn there biogenesis is regulated
by metabolism. In addition to adipocytes and adipokines,
adipose tissue-derived exosomes, as an emerging cell-to-cell
and organ-to-organ communicator, play a role in metabolic
homeostasis worthy of in-depth study (Figure 2).

Obesity
The most important feature of obesity is the excessive
accumulation of adipose tissue (42). There is increasing
evidence that adipose tissue-derived exosomes not only
function in paracrine and endocrine modes, but also act as
intercellular communicators to facilitate the transition of
adipocytes towards maturity (43). In studies of the role of
exosomes in systemic metabolism, adipocyte-derived exosomes
were found to be mediators linking obesity and insulin resistance
in surrounding tissues such as the liver, interacting with adjacent
sites to promote lipid esterification (44, 45). Connolly et al.
showed that exosomes per adipocyte have higher yields in the
preadipocyte stage and are rich in pre-signal fatty acids (46).
Exosomes contain different fatty acids with different stages of
differentiation. Interestingly, ATM (adipose tissue macrophage)-
derived exosomes not only modulate adipose tissue function and
insulin sensitivity, but also promote the activation of monocytes
to macrophages (M1 pro-inflammatory phenotype) after uptake
by peripheral blood (47). Wei et al. found that miRNAs
contained in adipose tissue macrophage-derived exosomes
from obese mice promoted insulin resistance, while ATM-
derived exosomes from lean mice attenuated insulin resistance
in obese mice (48). In addition, it has been demonstrated obesity
has an impact on the cargo carried by adipocyte-derived
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exosomes. Carlos et al. used exosomes from obese mice to treat
lean mice with glucose intolerance and insulin resistance, and
further found that obesity alters the distribution of exosomal
miRNAs in mice (49). Studies on the 3T3-L1 adipocyte model
showed that these adipocytes increased the content of exosomal
miR-802-5p, which promotes insul in resis tance in
cardiomyocytes by downregulating HSP60 (50). Clinical
studies have shown that subcutaneous adipocyte-derived
exosomes from obese patients are enriched in proteins related
to fatty acid oxidation, leading to pathophysiological changes
(51). Although many researches have showed that macrophages
in adipose tissue are the main pool of exosomes, new studies have
showed that it is adipocytes that released large quantities
of exosomes.

The effect of adipocyte-derived exosomes on body
metabolism has been widely recognized. However, the
functional impact of adipocyte-derived exosomes on the
control of adipogenesis needs to be further explored to clarify
its profound impact in cardiovascular and metabolic diseases. On
the other hand, the effect of obesity on the cargo contained in
adipocyte-derived exosomes has been intensively studied and
explored (52). However, since there is no specific cargo selection
process for cellular uptake of exosomes, the relationship between
Frontiers in Endocrinology | www.frontiersin.org 4
the effect of exosomes on recipient cells and specific exosome
contents needs to be further clarified to facilitate design
exosomes for disease treatment.

Diabetes
Diabetes is a group of metabolic disorders characterized by
chronically high levels of blood sugar due to insufficient insulin
production (T1DM) or poor response of receptor cells to insulin
(T2DM) (4, 10). Exosomes have recently been investigated as a
potential candidate for biomarkers involved in obesity-related
diabetes progression and prognosis. Existing evidence suggests
that adipose tissue may coordinate systemic metabolic
homeostasis through exosomes, but the quantity, quality, and
cargo of exosomes produced by adipose tissue are abnormal
under pathological conditions (26, 53). Adipose tissue is divided
into white adipose tissue (WAT) and brown adipose tissue
(BAT). The number of exosomes extracted from white adipose
tissue in patients with inflammation and systemic insulin
resistance is increased, the uptake of exosomes by leukocytes is
increased, and the cargo carried by exosomes may signal the
conversion of endothelial cells with a normal phenotype to a
diabetic phenotype (54). Clair et al. found that adipose tissue-
derived exosomes were more responsive to glucagon compared
FIGURE 2 | Adipose tissue-derived exosomes result in metabolic disorders. Exosomes released from adipose tissue can destroy the epithelium cell, ruin the blood
vessels, aggravate liver fibrogenesis and promote transformation of monocyte to both macrophage (M1 pro-inflammatory phenotype) and macrophage (M2 anti-
inflammatory phenotype). Cytokines such as IL-6 and TNF-a released by M1 can affect systemic metabolism and exacerbate insulin resistance, while IL-10 released
by M2 can alleviate adipose inflammation. The content of miRNAs in adipose tissue-derived exosomes are partially upregulated (e.g. miR-802-5p, miR-34a) and
some are down regulated (miR-126, miR-26a).
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to the exosomes derived from other tissues (55). Glucagon not
only accelerated the uptake of BSA and cargo into exosomes by
adipose tissue endothelial cells, but also enhanced the secretion
of exosomes (56, 57). Because endothelial cell exosomes contain
extracellular/serum signaling molecules, it can be speculated that
the type of signaling in the blood can affect endothelial cell
exosomes and produce functional responses to adipocytes and
metabolic systems (58, 59).

Adipocyte-derived exosomes and adipose tissue macrophage-
derived exosomes drive this intra-organ crosstalk of adipocytes
and macrophages in type 2 diabetes. In type 2 diabetes, sonic
hedgehog containing exosomes can mediate pro-inflammatory
macrophage (M1 pro-inflammatory phenotype) activation (60).
Macrophages (M1 pro-inflammatory phenotype) affect the
metabolic status of adipocytes by releasing cytokines (like IL-6,
TNF-a), leading to systemic glucose intolerance and insulin
resistance (61, 62). Ying et al. found that injection of ATM
(Adipose Tissue Macrophage)-derived exosomes from obese
mice into lean mice reduced the expression levels of
peroxisome proliferator-activated receptor g (PPARg), glucose
transporter type 4 (GLUT4) and adipocyte sensitivity to insulin
(41, 63). miRNA-155, an inhibitor of PPARg, has been shown to
be the most critical factor in ATM exosomes affecting metabolic
disorders (64). Surprisingly, in one study, brown adipocyte-
derived exosomes from normal mice alleviated systemic insulin
resistance in ADiceKO mice after being taken up by the liver
(65). Existing evidence suggest that adipose tissue, especially
brown adipose tissue-derived exosomes, maintain metabolic
homeostasis under physiological conditions (66, 67), while
under pathological conditions, such as T2DM, adipose tissue-
derived exosomes cause intra-organ crosstalk synergy to
aggravate glucose intolerance and insulin resistance (68, 69).

Adipose Inflammation
In the progression of obesity, chronic overnutrition often causes
unhealthy expansion of adipose tissue leading to immune cell
infiltration, which in turn triggers acute and chronic
inflammation of the tissue (70, 71). The most important factor
causing a series of inflammation is the inflammation of adipose
tissue. Macrophages are the main immune cells in adipose tissue
and exhibit different phenotypes depending on the changing
environment in the body (72). ATM undergoes a transition from
an anti-inflammatory M2 phenotype to anM1 pro-inflammatory
phenotype during the progression of obesity and produces pro-
inflammatory factors to exacerbate adipose inflammation (73).
In addition to macrophages, obese adipose tissue recruits
additional immune cells. Studies have shown that CD4+ and
CD8+ T cells secreting proinflammatory mediators are increased
in WAT (74). Studies have shown that injection of M2
macrophage-derived exosomes into obese mice can
significantly improve insulin-glucose homeostasis (75, 76). The
exosomes secreted by adipocytes carrying miRNA-34a inhibited
the polarization of M2 macrophages to promote the occurrence
and development of adipose inflammation, and further found
that miRNA-34a KO mice had higher levels of adiponectin than
WT mice (77). Adiponectin, an adipokine with insulin-
sensit izing activity, abolished macrophage-involved
Frontiers in Endocrinology | www.frontiersin.org 5
extracellular matrix remodeling, such as collagen formation
and fibrosis (78). Adiponectin, Omentin-1 and Secreted
Frizzled-Related Protein 5 (SFRP5) are anti-inflammatory
adipokines (1, 79, 80). Omentin-1 has anti-inflammatory, anti-
obesity, and anti-diabetic properties (81, 82). Omentin-1
enhances insulin stimulation to enhance glucose uptake and
activate insulin receptor substrate (IRS) by inhibiting mTOR
signaling pathway (83, 84). SFRP5 is thought to be a negative
regulator of adipose tissue-related chronic inflammation. SFRP5
inhibits Wnt5a-mediated inflammation, obesity and insulin
resistance by binding to Wnt proteins (85). Serum SFRP5
levels were lower in obese and T2DM patients, and SFRP5
depletion increased macrophage numbers and pro-
inflammatory proteins in mouse adipose tissue (86–88).
EFFECTS OF ADIPOSE TISSUE-
DERIVED EXOSOMAL CARGO
ON METABOLIC DISEASES

miRNAs are non-coding RNA molecules that mediate post-
transcriptional gene si lencing by binding to the 3
‘-untranslated region (UTR) or open reading frame (ORF)
region of target gene mRNAs (89). In the nucleus, RNA
polymerase II transcribes primary miRNAs (pri miRNAs) and
is exported to the cytoplasm upon processing by the
endoribonuclease DROSHA and its RNA-binding partners
(90, 91). The miRNA duplex is then produced by further
processing of the type III endoribonuclease DICER with RNA-
binding proteins (92). Eventually the double-stranded miRNA is
loaded into the RNA-induced silencing complex (RISC), and
Argonaute-2 (AGO2) and chaperones guide it to interact with
target mRNAs (93).

Potential Mechanisms by Which miRNAs
Are Sorted Into Exosomes
miRNA can be packaged into exosomes, loaded into high-density
lipoprotein (HDL), and bound to AGO2 protein outside the
vesicle to avoid miRNA degradation (94). The proportion of
miRNAs in exosomes is higher than in parental cells. Studies
have confirmed that miRNAs do not enter exosomes randomly,
and some miRNAs (e.g. miRNA-150, miRNA-451) preferentially
enter the exosome lumen (95). Several studies have shown that
AGO2 and other RNA-binding proteins are involved in
regulating the process of miRNA entry into exosomes (94).
According to current researches, several potential approaches
have been put forward to show the exosomal miRNA sorting
modes. In 2013s, Kosaka et al. firstly found that overexpression
of sphingomyelinase 2 (nSMase2) in cancer cells can increase the
number of exosomal miRNAs and promote angiogenesis as well
as metastasis in tumor microenvironment (96). miRNA motif
and sumoylated heterogeneous nuclear ribonucleoproteins
(hnRNPs)-dependent pathway have also been reported to
regulate exosomal miRNA sorting. Both Villarroya Beltri and
Gao et al. have found that hnRNPA2B1 could recognize the
GGAG motif in the 3’ sides of miRNA and result in specific
May 2022 | Volume 13 | Article 873865
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miRNAs to be packed into exosomes (97, 98). Similarly,
Koppers-Lalic et al. have revealed that 3’ sides of uridylated
endogenous miRNAs were mainly sorted in exosomes derived
from B cells or urine, in the meanwhile, the 3’ sides of adenylated
endogenous miRNAs were mainly concentrated in B cells (99).
Also, recent studies have found that miRNA-induced silencing
complex (miRISC)-related pathway might be correlated with
exomal miRNA sorting (100). For instance, Guduric Fuchs et al.
have discovered that knockout of AGO2 in 293T cells can
downregulate the bundance of the specific miRNAs such as
miR-451 and miR-142-3p in exosomes (95). In the past year,
Xiao-Man Liu et al. have found that phase separation-mediated
local enrichment of cytosolic RNA-binding proteins enables
their targeting and packaging by exosomes (101). They found
that YBX1 protein efficiently forms liquid-like droplets in cells
and miR-223 could be efficiently partitioned into YBX1 droplets
(101). Although miRNA sorting to exosomes might be a passive
mechanism to deliver miRNAs even in excess of their acceptor
cells, emerging researches suggest that exosomes can be actively
uptake by other cells. These results lead to specific miRNA
transfer among different cells. In addition, certain miRNA
signatures in exosomes might represent biomarkers of diseases.
For example, tumor cells have altered transcriptomic profiles,
which in turn will significantly influence miRNA sorting to
exosomes (102). A great number of previous reviews have
summarized the exosomal miRNA can act as biomarkers. Not
only miRNA can function as biomarkers, but also miRNAs can
reach neighboring and distant cells through exosome circulation,
mediate cell-to-cell communication by targeting mRNAs and
confer characteristic changes in the expression levels of target
genes (103). Thomas Thomou ei al. have found that adipose
tissues are major source of circulating exosomal miRNAs and
function as gene regulator in distant tissues thereby serving as a
novel adipokine (104). To be specific, they found that mice with
adipose-specific knockout of the miRNA-processing enzyme
Dicer (ADicerKO), as well as humans with lipodystrophy, have
less circulating exosomal miRNAs compared with normal
samples (104). Similarly, C. Ronald Kahn et al. also have found
that different cell types released different amounts of exosomes
and differentiated 3T3-L1 cells (white adipocytes) having the
highest production and release rates per cell (102). Furthermore,
they found that miRNAs possess sorting sequences which
determine their secretion in exosomes or cellular retention and
that different cell types make preferential use of specific sorting
sequences, thus defining the exosomal miRNA profile of that cell
type (105).
Impact of Adipose Exosomal miRNAs on
the Metabolism
Adipose tissue is a particularly important contributor to the
circulating exosomal miRNA pool, with adipocytes and stem
cells expressing a wide range of miRNAs. miRNAs in adipose
tissue-derived exosomes promote metabolic homeostasis in an
endocrine manner. Thomas et al. used ADicerKO mice to
significantly reduce exosomal miRNAs, reduce WAT, and
whiten BAT (104). After transplantation of adipose tissue into
Frontiers in Endocrinology | www.frontiersin.org 6
ADicerKOmice, the glucose tolerance of the mice improved, and
the content of most exosomal miRNAs returned to normal levels
(104). Interestingly, serum FGF21 (fibroblast growth factor-21)
and liver FGF21 mRNA remained unchanged in ADicerKO mice
after WAT transplantation (104). In contrast, FGF21 mRNA in
the liver of ADicerKO mice transplanted with BAT was reduced
by about 50% (104). To further clarify which miRNAs might
regulate FGF21, AML-12 hepatocytes were transfected with
adenoviral pacAd5-FGF213’-UTR luciferase reporter gene and
found that only miR-99b resulted in a significant decrease in
FGF21 luciferase activity (104). Other studies have shown that
miRNAs in adipose tissue-derived exosomes may also regulate
body metabolism in a paracrine manner. Exosomes containing
miR-16, miR-27a, miR-146b and miR-222 released from
adipocytes can enter small adipocytes to stimulate adipogenesis
(49). By comparing exosomes released by adipose tissue-derived
stem cells (ADSC-Exos) with exosomes released by adipose
tissue (AT-Exos), Zhang et al. found that compared with
ADSC-Exos, AT-Exos contained 7 times more miR-450a,
While miR-450a increases adipogenesis by inhibiting WISP2
(106). This study demonstrated that exosomal miRNAs also have
autocrine functions. Adipose tissue macrophage-derived
exosomes also overexpressed miR-155. miR-155 inhibits
insulin action by downregulating PPARg mRNA (41, 65).
Diabetic patients had lower levels of miRNA-126 and miRNA-
26a compared to normal individuals, which are characteristic
markers of endothelial cell-derived exosomes (107, 108). Studies
have shown that the release of exosomes is up-regulated by
physiological (such as insulin) and pharmacological (such as
glimepiride) stimuli (109). Fang et al. reported that after
administration of rosiglitazone, adipocytes secreted exosomes
containing a large amount of miR-200 and were taken up by
cardiomyocytes resulting in hypertrophic changes (110).
Interorgan crosstalk mediated by exosomal miR-200 may be
the molecular mechanism of the adverse effects of rosiglitazone.
However, studies on the effects of metabolized drugs on the
production, release, and transport of exosomes on the body are
limited, but research to explore the therapeutic application of
exosomes still holds attractive prospects. In addition to adipose
tissue-derived exosomal miRNAs, circulating miRNAs from
other sources have increasingly been found to be strongly
linked to metabolic disorders (111). Continued in-depth
exploration of miRNAs will expand our understanding of the
specific relationship between miRNAs and body metabolism.

Proteins and Other Cargoes
Besides miRNAs, adipose tissue-derived exosomes or other
cargoes are also involved in metabolic homeostasis. Liu et al.
transferred adipose tissue-derived exosomes to mouse
macrophages by melatonin to reduce metabolic inflammation
and increase a-ketoglutarate (aKG) levels, and found that aKG
is a melatonin inhibitor of adipose inflammation ‘s target (112).
Melatonin attenuates adipocyte inflammation by promoting
TET-mediated DNA methylation by transporting adipose
tissue-derived exosomal aKG to macrophages (112). Studies
have isolated exosomes derived from adipose-derived
mesenchymal stem cells, and demonstrated that glyoxalase-1
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(GLO-1) is highly expressed in the exosomes and efficiently
targeted to deliver adipose-derived exosomes loaded with GLO-1
protein bygenetic engineering to protect endothelial cells and
enhance angiogenesis in type 2 diabetic mice (113). Regarding
the study of proteins and other cargoes, current evidence
suggests that adipose-derived exosomes play an active role in
metabolic homeostasis.
THERAPEUTIC POTENTIAL OF ADSCS-
EXOS IN METABOLIC DISEASES

Mesenchymal stem cells (MSCs) in the stromal vascular part of
adipose tissue, also known as adipose-derived stem cells (ADSCs),
have the ability to differentiate into pluripotent cells (114). ADSCs
can produce and secrete a large number of exosomes (ADSCs-
Exos), which inherit many functions of cells, such as immune
regulation, angiogenesis, proliferation and migration (115).
Notably, miRNAs (e.g. miR-126, miR-130a, miR-132) carried by
ADSCs-Exos were able to increase growth factors (like epidermal
growth factor, fibroblast growth factor) in endothelial cells to
promote angiogenesis (116, 117). Han et al. further found that
hypoxia-treated ADSCs-Exos enriched more growth factors and
had higher pro-angiogenic capacity. There is increasing evidence
that ADSCs-derived exosomes (ADSC-Exos) can transfer DNA,
RNA and proteins to adjacent cells or tissues (118). ADSCs-Exos
not only reduced the secretion of IFN-g to inhibit T cell activation
to reduce adipose inflammation and immune responses, but also
dominated the polarization of the anti-inflammatory (M2)
macrophage phenotype, which can express high levels of
tyrosine Hydroxylase, thereby releasing catecholamines, activates
the expression of white adipose tissue (WAT)-specific uncoupling
protein 1, remodeling immune homeostasis in WAT (119, 120).
Another study reported that ADSCs-Exos from epididymal WAT
polarized macrophages to an M2 phenotype by transferring active
STAT3, further promoting browning of WAT and reducing
adipose inflammation (119). Nevertheless, there are still few
studies on the relationship between ADSC-Exos and
metabolism. Some studies even shown that when adipose tissue-
derived exosomes and ADSCs-Exos were respectively co-cultured
with ADSCs, only adipose tissue-derived exosomes could induce
adipogenesis, ADSC-Exos could not (121, 122). However, its
specific molecular mechanism is still unclear. More attention
and research are still needed on the role of exosomes as
adipogenic molecules on the adipose tissue microenvironment
and the interaction between adipose-derived mesenchymal stem
cells and adipose tissue cells in the microenvironment. Although
there are some limitations of ADSC-Exos, ADSC-Exos is still a
rising star in cell-free therapeutic drugs, and even has the potential
to become an alternative to ADSC (123). Li et al. demonstrated the
ability to promote skin healing in rats with diabetic foot ulcers by
using ADSC-Exos overexpressing Nrf2 (124). Shilan et al.
transplanted ADSC-Exos-loaded alginate hydrogel into the full-
thickness wound excision site of rats to promote tissue
regeneration of rat skin wounds (125). Encouragingly, related
studies have demonstrated that preservation of exosomes with
trehalose, a natural nontoxic cryoprotectant, can prevent exosome
Frontiers in Endocrinology | www.frontiersin.org 7
aggregation and cryo-damage compared to PBS (126). We have
every reason to believe that ADSC-Exos is a very promising
regenerative therapy.
CONCLUSION AND FUTURE
PERSPECTIVES

In the past, the understanding of metabolic diseases mainly relied
on the examination of biochemical indicators and physical signs.
The impact of adipose tissue-derived exosomes on metabolic
disorders such as obesity is emerging. Exosomes are endogenous
products, thus understanding the biogenesis, transfer, and
molecular mechanisms of exosomes causing metabolic disorders
in the body will help to design new therapies for various metabolic
diseases mediated by adipose tissue-derived exosomes (17).
However, current researches on exosomes still lack breakthrough
progress, especially the methods for isolating specific types of
exosomes are still immature. The current extraction methods of
exosomesmainly include: A. Differential ultracentrifugation, which
is convenient to operate but has the disadvantage of relatively less
yield and protein and RNA contamination. B. Density gradient
ultracentrifugation, which is efficient to separate exosomes but is
time consuming and low yield. C. Polymer precipitation, which is
easy and time-saving but not pure. D. Size exclusion
chromatography, which has high purity and reproducibility but
time-consuming. E. Immunoaffinity, which is suitable for isolating
specific exosomes but not consuming. F. Microfluidics-based
isolation, which has high purity but low yield. Based on the
advantages and disadvantages of the above methods, as well as
previous studies, we believe that it is crucial to develop new and
efficient methods of exosome extraction, so exploring the
biogenesis and other related properties of exosomes is an
important prerequisite for developing new methods. Although
proteomics of exosomes revealed the heterogeneity of exosome
markers, it suggested that exosomes could be purified according to
different markers, which improved the practicability of exosome
research and experimental design, and promoted the research
progress of exosomes from different tissue (127, 128). However,
exosome size heterogeneity, content heterogeneity, functional
heterogeneity, and labeling heterogeneity limit the study of
exosome-mediated processes (129). Studying the content of
exosomes by transient stimulation, the transient changes in the
content of the contained cargo to deeply explore cellular functions
may be a feasible means to understand the different mechanisms
and scope of exosome action.

In this review, we elaborate on the biogenesis of exosomes and
the roles that adipose tissue exosomes play in metabolic diseases.
At present, the research on adipose tissue-derived exosomes
mainly focuses on the research of the cargo (miRNA, protein,
etc.) contained in the exosomes. Growing evidence suggests that
obesity-related and adipose tissue-derived miRNAs hold promise
as novel therapeutic targets for the treatment of obesity and
related diseases (130). Key aspects such as the underlying
mechanisms of exosome-mediated crosstalk in the body’s
metabolic environment, long-range cellular interactions, and
May 2022 | Volume 13 | Article 873865
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heterogeneity of exosomes have been intensively studied. These
studies are beneficial to the development of new exosome-based
therapeutics, such as miRNA mimics, miRNA-loaded exosomes
and other gene therapies may have a very promising market and
future in metabolic diseases. However, few studies have
combined the RNA contained in exosomes with proteomics to
synergistically study its impact on the body’s metabolism.
Combining the two studies may provide new directions
and insights for exosomes in the diagnosis and treatment of
diseases. There is still a long way to go to overcome the current
obstacles hindering exosome-based therapeutic strategies for
metabolic diseases.
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