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DNA methylation is an important component of the epigenetic machinery that regulates
the malignancy of Ewing sarcoma (EWS), the second most common primary bone tumor
in children and adolescents. Coordination of DNA methylation and DNA replication is
critical for maintaining epigenetic programming and the DNMT1 enzyme has been
demonstrated to have an important role in both maintaining the epigenome and
controlling cell cycle. Here, we showed that the novel nonnucleoside DNMT inhibitor
(DNMTi) MC3343 induces a specific depletion of DNMT1 and affects EWS tumor
proliferation through a mechanism that is independent on DNA methylation. Depletion
of DNMT1 causes perturbation of the cell cycle, with an accumulation of cells in the G1
phase, and DNA damage, as revealed by the induction of gH2AX foci. These effects
elicited activation of p53-dependent signaling and apoptosis in p53wt cells, while in p53
mutated cells, persistent micronuclei and increased DNA instability was observed.
Treatment with MC3343 potentiates the efficacy of DNA damaging agents such as
doxorubicin and PARP-inhibitors (PARPi). This effect correlates with increased DNA
damage and synergistic tumor cytotoxicity, supporting the use of the DNMTi MC3343
as an adjuvant agent in treating EWS.

Keywords: ewing sarcoma, epigenetic therapies, DNA methylation, DNMT inhibitors, DNA damage, Drug
synergism, doxorubicin, PARP inhibitors
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INTRODUCTION

Ewing sarcoma (EWS), a malignancy of mesenchymal origin with
propensity for metastasis, is the second most common primary
tumor of bone and soft tissue in children and young people.
Although important insights into EWS pathogenesis have
emerged in recent years, EWS patient treatment is still confined
to dense multidrug chemotherapy, and the prognosis of high-risk
patients remains dismal, with a less than 40% of survival rate at 5
years for patients with metastatic disease at diagnosis and for those
who relapse after first-line treatment (1–3). Thus, there is a strong
demand from patients, families and physicians for additional
therapies, which may derive only from further knowledge of the
genetic and biological features of the tumor. From a genetic point of
view, EWS is characterized by balanced chromosomal
translocations in which a member of the FET gene family is fused
with an ETS transcription factor, with the most common fusion
being EWS–FLI1 (85% of cases) (4). The tumor is a developmental
disease, genetically homogeneous (5–7) but epigenetically
heterogeneous (8), with an increased level of epigenetic
complexity in individuals with metastatic disease (9). The EWS
epigenome is increasingly being investigated to identify promising
therapeutic targets. EWS-FLI1, the genetic hallmark of EWS and the
driving oncogene (10, 11), is a tumor-specific transcriptional factor,
responsible for massive epigenetic reprogramming, by inducing de
novo Ewing-specific enhancers at GGAA microsatellites and by
altering the state of gene regulatory elements (12–14). The unique
epigenetic signature of EWS could potentially be reverted by the
identification of novel agents targeting epigenetic mechanisms.
Several promising agents for the treatment of this disease have
been reported at the preclinical level, including inhibitors of histone
deacetylases (HDACi) (15–17), lysine-specific histone demethylase
1A (LSD1i) (14, 18), DNA methyltransferases (DNMTi) (9, 19–21)
and combinations of these agents (22, 23). DNA methylation is
essential for crucial biological processes, such as maintaining
genome stability, embryonic development and cell differentiation
(24, 25). Disruption of DNA methylation patterns represents a
common feature of many forms of cancer (26) and was proven to
contribute to EWS pathogenesis (9, 27–29). In humans, DNA
methylation is catalyzed by members of the DNMT family of
enzymes that transfer a methyl group from S-adenosyl-
methionine (AdoMet) to DNA cytosine C5 (30, 31). DNMTs are
mainly classified in de novo methyltransferases, DNMT3s, and
maintenance methyltransferase, DNMT1, required respectively to
establish and maintain genomic methylation. In addition, DNMT1
contains motifs that allow the enzyme to localize at replication foci
during S phase (30), and the absence of DNMT1 was proved to
result in replication fork stalling and activation of the DNA damage
response (DDR) (32, 33), leading to cell cycle arrest, mitotic
catastrophe and through a mechanism independent of DNA
methylation. In this study, we evaluate the efficacy of MC3343, a
new quinoline-based DNMTi with high activity against cancer cells,
including osteosarcoma (34–37). Pharmacologic manipulation of
DNMTs, either through the use of conventional FDA-approved
nucleoside inhibitor of DNA methylation, 5-aza-2’-deoxycytidine
(5AzadC; decitabine), or through non-nucleoside inhibitors was
proven to be sufficient to stop tumor growth, reverse the
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undifferentiated state, and inhibit the invasiveness of cells, thus
supporting the therapeutic value of this approach (38). MC3343 is
reported to preferentially bind to DNA in CG-rich regions, and to
destabilize the DNMT1–AdoM-et DNA complex and two close
analogues of MC3343 were shown to degrade DNMTs via
proteasome degradation (35, 37). Here, we demonstrated that
MC3343 specifically inhibits DNMT1 expression and activity in
EWS cells, but it does not affect the methylation status of EWS cells.
MC3343 slowed cell proliferation, induced DNA damage and cell
death, and acted synergistically with other DNA damaging drugs,
such as doxorubicin and PARPi, thereby indicating its potential use
as an interesting novel adjuvant therapeutic agent against EWS.
RESULTS

The Non-Nucleoside DNMTi MC3343
Reduces DNMT1 Protein Levels and
Enzyme Activity but Does Not Affect the
DNA Methylation Status of EWS Cells
The efficacy of MC3343 was tested in 11 human patient-derived
EWS cell lines, including 8 conventional, and 3 novel cell lines from
patient-derived xenografts (PDX). The IC50 values, calculated after
72h of cell exposure to the compound, were similar in all the cell
lines, ranging from 2 to 5 µM (Table 1). The agent induced a dose-
dependent reduction of the expression of DNMT1, but the effect on
DNMT3a was much milder (Figure 1A), indicating a more specific
mechanisms of action when compared to the conventional inhibitor
of DNA methylation, 5AzadC, that was used as a control.
Consistently, MC3343 was similar to or even more potent than
5AzadC in inhibiting DNMT enzyme activity (Figure 1B).
However, when we used a genome-wide methyl-CpG array to
compare the DNA methylation status of three EWS cell lines
(TC-71, A-673 and PDX-EW#4-C) after 72h treatment with
either MC3343 or 5AzadC, a profound discrepancy between the
two drugs was observed. In fact, while cell exposure to 5AzadC
resulted in extensive reduction of CpG methylation in all three cell
lines, cells treated with MC3343 revealed a methylation pattern
indistinct from that observed in untreated cells (Figure 1C). This
indicates a different mechanism of action between the two
TABLE 1 | Cytotoxic effects of the DNMTi MC3343 in EWS cell lines.

Cell line MC3343 IC50 mM

TC-71 2.48 ± 0.66
LAP-35 5.89 ± 0.06
6647 3.99 ± 0.82
SK-N-MC 2.96 ± 0.17
SK-ES-1 3.96 ± 0.56
IOR/CAR 3.83 ± 0.41
A673 2.20 ± 0.23
RD-ES-1 5.39 ± 0.09
PDX-EW#2-C 4.58 ± 0.84
PDX-EW#4-C 2.28 ± 0.18
PDX-EW#5-C 3.05 ± 0.64
May 2022 | Volume 1
IC50 values (drug concentration inducing 50% of growth inhibition) were calculated after
72h exposition to the drug in 11 EWS cell lines. The mean ± SE of three independent
experiments are reported.
3 | Article 876602

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Cristalli et al. DNMTi MC3343 effects in EWS
compounds that deserves to be further analyzed, because although
5AzadC is approved by the US FDA for the treatment of
myelodysplasia and other malignancies, it has demonstrated
unsatisfactory results in the treatment of EWS patients (39).

DNMTi MC3343 Treatment Results in
Reduced Proliferation of EWS Cells and
Induction of a Genotoxic Stress Response
The depletion of DNMT1 leads to the removal of the enzyme
from replication forks, which was demonstrated to result in
DNA strand breaks and the activation of genotoxic stress
pathway signaling, leading to further DNA damage, gH2AX
foci formation and cell death (40, 41). Thus, we analyzed the
impact of MC3343 treatment on EWS cells on these biological
processes. Using double labeling with propidium iodide to
mark S-phase cells and bromodeoxyuridine (BrdU) to label
cells actively synthesizing DNA, we discovered that MC3343
treatment triggers a significant accumulation of cells in the G1
(Figure 2). As expected, the percentage of cells in G1 phase was
higher in the faster proliferating TC-71 and A-673 cells
(doubling time: 18-20h) compared to LAP-35 and PDX-
EW#4-C (doubling time: 40-50h) (p < 0.05 Student’s t test).
Besides effects on the cell cycle, MC3343 induced the
formation of histone variant gH2AX foci, a characteristic
marker of cells undergoing replication stress and DNA
strand breaks (42) with much faster kinetics as compared to
5AzadC. In fact, treatment of EWS cells with MC3343 led to an
induction of gH2AX foci starting after 3h with a peak at 6h;
while in cells treated with 5AzadC, the appearance of gH2AX
foci formation occurred only after 24h and not in all cell lines
(Figure 3 and Supplementary Figure S1). We also evaluated
the impact of MC3343 on genomic instability in four EWS cell
lines. Control and treated cells were cultured for 6 to 24 hours,
and the impact on genome stability monitored by evaluating
micronuclei, a well-recognized marker of genomic instability
(43) (Figures 4A, B). This effect was better represented in p53
mutated TC-71 and A-673 cells than in p53wt LA-P35 and
PDX-EW#4-C cells (p< 0.0001 Student’s t test). In addition,
the percentage of cells with micronuclei following exposure to
MC3343 was maintained in p53 mutated cells even after
removing the compound for at least two cell doublings
(rescue for 48h-96h), indicating that in p53 mutated cells
(TC-71 and A-673) micronuclei are inherited and persist
into the daughter cells. In contrast, when the p53 response is
functional (LAP-35 and PDX-EW#4-C), exposure to MC3343
led to activation of p53-dependent signaling (Figure 5A) and
cells that were more prone to apoptosis, as demonstrated by
annexin labeling (Figure 5B). Representative western blottings
indicated that inactivation of DNMT1 by MC3343 induced
phosphorylation of p53 on Ser15, a residue that is targeted by
ATM and whose phosphorylation has been correlated with
accumulation of p53 and activation of its downstream targets
in response to DNA damage (44). Moreover, upregulation of
p21 and cleavage of pro-Caspase 3 and PARP1 were
consistently observed in p53 wt MC3343-treated PDX-
EW#4-C but not in p53 mut TC-71 cells.
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The DNMT1 MC3343 Inhibitor
Synergistically Increases the Cytotoxicity
of Doxorubicin and PARPi in EWS Cells
We then evaluated the impact of the DNMTi MC3343 on
cytotoxicity induced by DNA damaging agents, such as
doxorubicin, a widely-used genotoxic drug that intercalates
between DNA base pairs and inhibi ts the enzyme
topoisomerase II (45), and talazoparib, a PARPi that functions
by impairing DNA repair mechanisms (46, 47). The
pretreatment of cells with the MC3343 increased the
cytotoxicity of both doxorubicin and talazoparib (Figure 6A).
Combination indexes ranged from moderate to strong synergism
(Figure 6B) and the formation of micronuclei that are prone to
rupture (gH2AX positive) was significantly higher in combined
treatments (Figures 6C, D).
DISCUSSION

EWS is a developmental tumor that derives from the
transformation of an undifferentiated mesenchymal stem cell
that is blocked during the differentiation process by the
occurrence of a reciprocal chromosomal translocation and
forming of an EWS-ETS chimera. The quiet nature of the EWS
genome, the paucity of mutations, and the evidence that EWS-
FLI1 can induce a complete reprogramming of gene expression
(12, 13) guided the attention of researchers to epigenetic
alterations as the main mechanisms capable of regulating
progression of this disease. Among the different epigenetic
mechanisms, DNA methylation was demonstrated to have an
important role leading to patterns of enhancer reprogramming
that were shared by all EWS samples (9). The importance of
DNA methylation alterations in EWS tumorigenesis and
progression together with exciting outcomes in hematological
malignancies (21, 48, 49), encouraged us to study the therapeutic
potential of DNMT inhibitors in EWS. Unlike genetic
alterations, DNA methylation is reversible, which makes it
extremely interesting for therapeutic approaches. However,
although several epi-drugs received FDA approval (39),
epigenetic therapy is still in its early stages. 5-azacytidine (5-
AZA) and 5AzadC, first synthesized by Piskala and Sorm (1964),
are known to be incorporated into DNA and to inhibit DNA
methylation, which has led to the use of Decitabine as a first line
therapeutic agent for cancers in which epigenetic silencing of
critical regulatory genes has occurred (50). Nevertheless, despite
their high efficacy, such drugs have demonstrated poor
bioavailability, chemical instability, and toxic side-effects in
phase I trials, supporting the need for development of other,
more effective and less toxic compounds. The quinoline
derivative MC3343 specifically targets DNMT1, and we have
recently demonstrated that this novel non-nucleoside DNMTi
affects osteosarcoma cell proliferation, induces osteoblastic
differentiation through specific re-expression of genes
regulating this physiologic process and increased stable
doxorubicin binding to DNA with fewer toxic effects on
healthy cells than either 5-AZA or 5azadC (34). Here, we
May 2022 | Volume 13 | Article 876602
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A

B

C

FIGURE 1 | MC3343 efficiently reduces DNMT protein level and enzymatic activity in EWS cells but DNA methylation status is left unaltered. (A) Western blot
analysis of DNMT1 and DNMT3a, in untreated (CTRL), MC3343-treated (3–10 mM), and 5azadC-treated (3–10 mM) TC-71, A-673, LAP-35 and PDX-EW#4-C cells.
Equal protein loading was monitored by anti-GAPDH blotting. One representative immunoblot of three independent experiments is shown. (B) DNMT activity
measured in EWS cells after MC3343 and 5azadC treatments expressed as OD (optical density)/hours/mg (*p < 0.05; **p < 0.01, ***p < 0.001, one-way ANOVA
test). The mean ± SE of three independent experiments are reported. (C) Heatmap illustrating the difference of methylation between EWS cells treated with MC3343
and 5azadC.
Frontiers in Endocrinology | www.frontiersin.org May 2022 | Volume 13 | Article 8766024
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demonstrated that although MC3343 reduced DNMT1 protein
levels and enzymatic activity in all EWS cell lines tested, the
compound had little effects on the DNA methylation status of
treated cells. This effect was remarkably different with respect to
5AzadC as but similar to what was previously reported in studies
in where DNMT1 knock-down was obtained by either antisense
oligonucleotides or siRNA approaches (51–53). The genetic
inactivation of DNMT1 was found to activate a number of
genes involved in the cellular stress response and cell cycle
arrest by a DNA methylation-independent mechanism (54). In
EWS cells, disruption of DNMT1 induced by MC3343 resulted
in the loss of cell proliferation, followed by progressive DNA
instability and cell death. Upon inactivation of DNMT1, cells
arrest in the G1 phase, leading to blockage of DNA replication.
DNMT1 is normally recruited to the replication fork, and
previous data suggested that it is the absence of the DNMT1
protein from the fork, not the loss of its DNA methylation
activity, that causes stalled forks and activation of the DNA
damage response (52). Accordingly, we observed DNA double
strand break (DSB) formation (gH2AX foci) after treatment with
Frontiers in Endocrinology | www.frontiersin.org 5
MC3343. DNA damage led to the accumulation of cells with
persistent DNA instability in p53 mutated cells, as shown by
increased micronuclei, while in wt p53 cells, which are most
representative of the condition in EWS (7), MC3343 led to the
activation of p53 and induction of apoptosis. In addition,
pharmacologic targeting of DNMT1 by MC3343 was found to
potentiate the efficacy of cytotoxic agents, such as the
conventional chemotherapeutic doxorubicin and the PARPi
talazoparib. Doxorubicin is a leading drug in the treatment of
EWS but fails as a single agent; while PARPi were found to be
highly effective in preclinical conditions (55), but they have failed
to show impressive clinical benefits for patients with EWS (56),
suggesting the need to develop new strategies to maximize the
effectiveness of these agents. We previously demonstrated that
MC3343, as well as siRNA against DNMTs, was capable of
increasing stable doxorubicin bonds with DNA, triggering
doxorubicin-induced DNA damage (34). Others have shown
that pretreatment with DNMTi also leads to enhanced tight
binding of PARP1 to chromatin, enhancing DNA damage and
PARPi efficacy (57). In this paper we confirmed that the
FIGURE 2 | MC3343 induces a G1 block in EWS cells. Cell-cycle analysis of four representative EWS cell lines after 24 h of exposure to MC3343 as determined by
BrdU uptake. x-axis indicates DNA content (PI) and y-axis indicates BrdU incorporation (log10). In each panel, the different stages of the cell cycle are highlighted.
Percentages of cells in each cell-cycle stage are shown in histograms on the right. Data represent the mean ± SE of at least three experiments.
May 2022 | Volume 13 | Article 876602
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combination of the DNMTi MC3343 and DNA damaging agents
potentiates effects against EWS.

Taken together, we demonstrate in the present study that
DNMT1 is essential for the proliferation and survival of EWS
cells. Complete inactivation of DNMT1 by MC3343 results in a
G1 phase arrest and triggers the activation of DDR. Very likely,
p53 mutated cells that escape cell cycle arrest enter mitosis with
their damaged DNA largely unrepaired, which causes severe
abnormalities, culminating in cell death. In p53 wt cells, p53
activation following replication disruption led to apoptosis. In
keeping with previous evidences (51–53), this response appears
to be independent of the effects of DNMT1 in DNA methylation.
The fact that different methods of DNMT1 knockdown targeting
different regions of DNMT1 as well as pharmacological
inhibition trigger the same response in a broad panel of cells
from both human and mouse supports the hypothesis that
depletion of DNMT1 is mainly responsible for the general
cellular response reported here. The demonstration that
MC3343 treatment increases the efficacy of doxorubicin and
PARPi in killing EWS cells offers the possibility of reducing the
toxicity of these agents while improving therapy, which
Frontiers in Endocrinology | www.frontiersin.org 6
represents a valuable extra benefit for pediatric patients
with EWS.
MATERIALS AND METHODS

Chemicals
MC3343 was prepared as previously reported (36, 37). Stock
solutions of 5-Aza-2′-deoxycytidine (5azadC) (A3656, Sigma-
Aldrich, St. Louis, MA, U.S.), Doxorubicin (D1515, Sigma-
Aldrich) and Talazoparib (BMN673) (S7048, Selleckchem,
Houston, TX, U.S.) were prepared and stored according to the
manufacturer’s instructions.

DNMT Activity Assay in a Cell Context
DNMT activity was quantified with an EpiQuick DNA
Methyltransferase Activity/Inhibition Assay Kit (P-3001-1,
Epigentek Inc., Farmingdale, NY, U.S.). Cells were treated with
MC3343 or 5azadC (3-10 µM) for 48 h, and 5µg of nuclear extracts,
isolated with EpiQuick Nuclear Extraction Kit (OP-0002-1,
Epigentek Inc), were added to each reaction well, according to the
A B

FIGURE 3 | MC3343 and 5azadC kinetics of DNA damage induction. (A) Merged immunofluorescence of TC-71 and A-673 staining for gH2AX (green) and DAPI
(blue) after 3, 6 and 24h of treatment with DMSO, MC3343 or 5azadC. Digital images were acquired under identical conditions at the same time, using image
analysis software (NIS Elements, Nikon). Representative images are shown. Scale bars, 20 µm. (B) DNA DSBs measured by levels of mean fluorescence intensity
(MFI) of gH2AX positive nuclei in at least 20 different fields for each condition. (*p < 0.05; ***p < 0.001, one-way ANOVA test).
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manufacturer’s protocol. Absorbance was determined using a
microplate spectrophotometer at 450 nm (GloMax luminometer,
Promega, Madison,WI, U.S.). The data are expressed as the mean ±
SE of three independent experiments.

Cells Lines
A panel of 11 EWS human cell lines were analyzed. A-673 (CRL-
1598), SK-ES-1 (HTB-86), SK-N-MC (HTB-10), and RD-ES
(HTB-166) were provided by the American Type Culture
Collection (ATCC, Manassas, VA, U.S.); TC-71 and 6647 were
kindly provided by T.J. Triche (Children’s Hospital, Los Angeles,
CA, U.S.). LAP-35 and IOR/CAR, were obtained in the
Experimental Oncology Lab of the Rizzoli Institute as
previously described (58, 59). The cell lines PDX-EW#2-C,
PDX-EW#4-C and PDX-EW#5-C were obtained from patient-
derived xenografts (PDXs) as previously described (60). All cell
lines were tested for mycoplasma contamination every 3 months
(LT07-318, MycoAlert Mycoplasma Detection Kit, Lonza, Basel,
Switzerland). Cell lines were authenticated (STR profiling) by
analysis of the following loci: AMEL, D3S1358, TH01, D21S11,
D18S51, D10S1248, D1S1656, D2S1338, D16S539, D22S1045,
VWA, D8S1179, FGA, D2S441, D12S391, D19S433 and SE33
(last control December 2017 and July 2018; POWERPLEX ESX
17 Fast System, Promega, Madison, WI, U.S.). All cell lines were
immediately amplified to constitute liquid nitrogen stocks and
were never passaged for more than 1 month upon thawing. Cells
were maintained in Iscove’s Modified Dulbecco’s Medium
(ECB2072L, IMDM, Euroclone, Milan, Italy) supplemented
with 10% heat-inactivated FBS (ECS0180L, Euroclone),
Frontiers in Endocrinology | www.frontiersin.org 7
penicillin (20 U/mL) and streptomycin (100 µg/mL)
(ECB3001D, Euroclone) in a 37°C humidified at 5% CO2.

Cell Treatments
To perform cell viability experiments, 2-5x105 cells were plated
in 6-well dishes and treated after 24h with the indicated drugs for
72h, roughly equivalent to at least two doubling times of each cell
line, before Trypan blue (T8154, Sigma-Aldrich) vital cell
counting or DNA methylation studies. In parallel, cells were
treated with medium containing dimethyl sulfoxide (DMSO)
(D2438, Sigma-Aldrich) as a control. The highest final
concentration of DMSO in the medium was <0.005%, which
had no effect on cell growth.

In sequential drugs combination experiments, cells were
plated and pre-treated with MC3343 (3-5 µM) for 24h then
the medium was replaced with the drugs at indicated
concentrations (doxorubicin 3-30 ng/ml, talazoparib 1-10 nM)
or fresh IMDM medium without drugs.

Flow Cytometry
For cell cycle analysis after 24h of treatment, 5-bromo-2’-
deoxyuridine (BrdU) (B5002, Sigma-Aldrich) labeling was used to
assess cell proliferation. Cells were processed for indirect
immunofluorescence using anti‐BrdU mAb (1:8, 347580, BD-
Biosciences, Franklin Lakes, NJ, U.S.) primary antibody and anti‐
mouse FITC secondary antibody (1:100, 31569, Thermo Fisher
Scientific, Waltham, MA, U.S.) and 20 mg/mL propidium iodide
(P4170, Sigma-Aldrich) for the analysis of DNA content prior to
flow cytometry analysis (Sysmex, Partec GmbH Münster,
A B

FIGURE 4 | MC3343 treatment induces micronuclei formation. (A) Representative images of gH2AX (green) and DNA (Hoechst 33258, blue) staining of EWS cells
following treatment with MC3343. The white arrows indicate micronuclei that contains DSBs (as indicated by DNA and gH2AX double-staining). Scale bars, 10 µm.
(B) Percentage of micronuclei in EWS cells treated with MC3343 at the indicated times and after 48-96h of rescue with drug-free medium replacement. Data are
presented as the mean percentage of micro-nucleated cells quantified from at least 20 random fields (mean ± SE; *p < 0.05, ***p < 0.001, one-way ANOVA test).
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Germany). Detection and quantification of apoptosis was obtained
by cell staining with Annexin V and 7-amino-actinomycin D (7-
AAD) (A1310, Thermo Fisher Scientific) using the PE Annexin V
detection kit I (Life Technologies Corporation, Monza, Italy)
according to the manufacturer’s instructions. Samples were
analyzed on an Attune NxT Acoustic Focusing Cytometer (Life
Technologies Corporation), and data were analyzed using Attune
Cytometric 2.6 software (Life Technologies Corporation). Cells were
classified as early apoptotic, late apoptotic or dead if they were
Annexin V+/7-AAD−, Annexin V+/7-AAD+ or Annexin V−/7-
AAD+, respectively.

DNA Extraction and Methylation Profiling
DNA was extracted from cell pellets by PureLink genomic DNA
kit (K182001, Thermo Fisher Scientific). The DNA methylation
profiles of the samples were obtained using the Infinium
Methylation EPIC Array (850 K). DNA samples were assessed
for their quality using a NanoDrop® ND-2000 UV-Vis
Spectrophotometer (Thermo Fisher Scientific). The samples
were separated in agarose gels. Those with intact genomic DNA,
showing no smear in the gel, were selected for subsequent
experiments. Intact genomic DNA was diluted to 50 ng/mL
based on Quant-iT PicoGreen (Invitrogen) quantitation.
Concentrations were adjusted according to these results. For
Frontiers in Endocrinology | www.frontiersin.org 8
bisulfite conversion, 600 ng of input gDNA was required.
Bisulfite-modified gDNA was prepared using the EZ DNA
Methylation kit (Zymo Research) according to the
manufacturer’s instructions. Conversion reagent was added,
followed by subsequent incubation in a thermocycler to
denature the samples. CT-converted DNA was washed and de-
sulfonated with de-sulfonation buffer, after which the DNA was
washed again and eluted with 12 mL elution buffer. The whole-
genome amplification process required 250 ng of input bisulfite-
converted DNA (MA1) and created a sufficient quantity of DNA
(1,000X amplification) for use on a single BeadChip in the
Infinium methylation assay (Illumina RPM and MSM). After
amplification, the product was fragmented using a proprietary
reagent (FMS), precipitated with 2-propanol (plus precipitating
reagent; PM1), and re-suspended in formamide-containing
hybridization buffer (RA1). The DNA samples were denatured
for 20 min at 95°C and placed in a humidified container for a
minimum of 16 h at 48°C, allowing CpG loci to hybridize with the
50-mer capture probes. Following hybridization, the BeadChip/
Te-Flow chamber assembly was placed on a temperature-
controlled Tecan flow-through chamber rack, and subsequent
washing, extension, and staining were performed by adding
reagents to the Te-Flow chamber. For the allele-specific single-
base extension assay, primers were extended by polymerase and
A

B

FIGURE 5 | Activation of p53 signaling and induction of apoptosis in TP53 wild type cell lines. (A) TP53 mutated TC-71 cell line and TP53 wild-type PDX-EW#4-C
cells were treated with 3µM MC3343 for 24h. Whole cell lysates were analyzed using western blot. Three independent experiments were performed and one
representative immunoblot of p-ATM, p21, phospho-p53, p53, PARP and caspase-3 cleaved is shown (B) Representative flow cytometry scatter plots showing
apoptosis of p53 mutated (TC-71 and A-673) and p53 wild-type (LAP-35 and PDX-EW#4-C) EWS cells stained with Annexin-V/7-AAD following 48h treatment with
MC3343 (3-5 µM) or DMSO. Numbers at the corners represent the percentage of cells found in each quadrant (viable-lower left, early apoptotic-lower right, late
apoptotic-upper right, and dead cells-upper left are indicated).
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labeled nucleotide mix (TEM), and then stained by repeated
application of STM (staining reagent) and ATM (anti-staining
reagent). After staining, the slides were washed with low-salt wash
buffer (PB1), immediately coated with XC4, and imaged using the
iScan System (Illumina). The iScan System has a two-color (532
nm/658 nm) confocal fluorescent scanner with 0.54 mm pixel
resolution. The scanner excited the fluorophores generated during
signal amplification/staining of the allele-specific (one color)
extension products on the BeadChips. Image intensities were
extracted using Illumina’s GenomeStudio Software.
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DNA Methylation Analysis
Methylation array data was processed with R statistical language
using methods from the Bioconductor. Data quality was assessed
using the standard pipeline from the minfi package: Low quality
probes (detection pvalue > 0.01) and low-quality samples (> 0.05%
low quality probes) were removed from the analysis and known
SNPs, sex chromosomes and cross-hybridizing probes were
excluded. The data was normalized using ‘ssNoob’ normalization
method and, after normalization, m-values and beta-values were
calculated. Differential methylation analysis was performed with the
A

B

D

C

FIGURE 6 | Synergism of combined treatments with DNA damaging drugs. (A) TC-71, A-673, LAP-35 and PDX-EW#4-C cells were treated for 24h with 3-5 µM
MC3343 and, after wash-out, treated for 48h with 3-10 ng/mL of doxorubicin or 3-10 nM of talazoparib. Cell viability was measured by trypan blue vital cell counts
and is expressed as the percentage of live cells with respect to the untreated control. Data are shown as mean ± SE of three independent experiments (*p < 0.05;
**p < 0.01, ***p < 0.001, one-way ANOVA test). (B) Heatmap of drug interactions of sequential treatments with MC3343 and doxorubicin or talazoparib. Cell viability
was assessed by trypan blue cell counts. Synergistic, additive, or antagonistic drug interactions were calculated by combination index (CI). (C) Merged
immunofluorescence of EWS cells staining for gH2AX (green) and DNA (blue) after treatment with MC3343 and doxorubicin/talazoparib as indicated. Representative
images are shown. Scale bars, 10 µm. (D) Percentage of micro-nucleated cells after sequential treatment with MC3343 and doxorubicin or talazoparib. Data are
presented as mean percentage of micro-nucleated cells quantified from at least 20 random fields (mean ± SE; ***p < 0.001, one-way ANOVA test).
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limma package (~ 0 + treatment + cell line; single sites, p<0.01) and
DMRcate (regions, fdr < 0.01).

Immunofluorescence Analysis
Immunofluorescence was performed on adherent cells grown on
coverslips, fixed in cold methanol for 7 minutes at -20°C and
permeabilized with 0.15% Triton X-100 (T8787, Sigma-Aldrich)
in PBS, blocked with 4% Bovine serum albumin (BSA) (A4503,
Sigma-Aldrich)/PBS for 1 hour at room temperature and
incubated with anti-phospho-histone H2A.X (Ser139) antibody
(1:100, 9718, Cell Signaling Technology, Danvers, MA, U.S).
Nuclei were counterstained by bisbenzimide Hoechst 33258 (0.5
µg/ml, B2883, Sigma-Aldrich, St. Louis, MA, U.S.). Cell
fluorescence was then evaluated using a Nikon Eclipse 90i
microscope (Nikon Instruments, Florence, Italy). For
quantification purposes, gH2AX spots and micronuclei were
quantified from at least 20 random fields (~500 cells),
expressed as gH2AX mean fluorescence intensity (MFI) and
percentage of cells with micronuclei respectively. Images
acquisition and processing were conducted using the NIS-
Elements A.R. 3,10 software.

Western Blotting
EWS cells were lysed with RIPA buffer (89900, Thermo Fisher
Scientific) containing protease inhibitors (A32955, Thermo
Fisher Scientific) and phosphatase inhibitors (A32957, Thermo
Fisher Scientific). Equivalent amounts of total cell lysates were
separated by 8-12% SDS-PAGE under denaturing conditions and
transferred onto nitrocellulose membrane (0.45 mm, Bio-Rad,
Hercules, CA, U.S.). Membranes were incubated overnight with
the following primary antibodies: anti-DNMT1 (1:2000, A300-
041A-M lot# 1, Bethyl Laboratories, Montgomery, TX, U.S),
anti-DNMT3a (1:1000, sc-20703 lot # L0412, Santa Cruz
Biotechnology, Dallas, TX, U.S.), anti-phospho-ATM (S1981)
(1:2000, ab36810 lot# gr3185919-27, Abcam, Cambridge, UK),
anti-p21 (1:1000, sc-6246 lot # E0511, Santa Cruz
Biotechnology), anti-phospho-p53 (Ser15) (1:2000, 9284 lot#9,
Cell Signaling Technology), anti-p53 (1:3000, MCA1701 lot
#410, Bio-Rad), anti-PARP1 (1:5000, 9542 lot#15, Cell
Signaling Technology), anti-cleaved Caspase-3 (Asp175)
(1:500, 9661 lot # 38, Cell Signaling Technology) and anti-
GAPDH (1:10000, 2118 lot # 14, Cell Signaling Technology).
After washes with 1x Tris-buffered saline/Tween20, the
membranes were incubated with secondary anti-rabbit or anti-
mouse antibodies conjugated to horseradish peroxidase (GE
Healthcare, Piscataway, NJ, U.S.) and revealed by SuperSignal
West Pico PLUS Chemiluminescent Substrate (34580, Thermo
Fisher Scientific).

Statistical Analyses
All statistical analyses were performed using Prism version 7.0
(GraphPad Software, La Jolla, CA, US). IC50 (concentration
required to inhibit cell proliferation by 50%) values were
calculated from the linear transformation of dose-response
curves. Comparison between two groups were evaluated with
two-tailed Student’s t-tests. Experimental data including more
than 2 groups were analyzed using one-way or two-way
Frontiers in Endocrinology | www.frontiersin.org 10
ANOVA. The data were considered statistically significant at p
<0.05. Drug interactions were analyzed by the combination index
(CI) calculated with the fractional product method based on that
described by Chou et al. (61). Subclassification of CI values was
used (0.1– 0.3 strong synergism, 0.3–0.7 synergism, 0.7–0.85
moderate synergism, 0.85–0.9 slight synergism, 0.9–1.1
nearly additive).
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