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To noninvasively evaluate the three-dimensional collagen fiber architecture of porcine
meniscus using diffusion MRI, meniscal specimens were scanned using a 3D diffusion-
weighted spin-echo pulse sequence at 7.0 T. The collagen fiber alignment was revealed in
each voxel and the complex 3D collagen network was visualized for the entire meniscus
using tractography. The proposed automatic segmentation methods divided the whole
meniscus to different zones (Red-Red, Red-White, and White-White) and different parts
(anterior, body, and posterior). The diffusion tensor imaging (DTI) metrics were quantified
based on the segmentation results. The heatmap was generated to investigate the
connections among different regions of meniscus. Strong zonal-dependent diffusion
properties were demonstrated by DTI metrics. The fractional anisotropy (FA) value
increased from 0.13 (White-White zone) to 0.26 (Red-Red zone) and the radial
diffusivity (RD) value changed from 1.0 × 10-3 mm2/s (White-White zone) to 0.7 × 10-3

mm2/s (Red-Red zone). Coexistence of both radial and circumferential collagen fibers in
the meniscus was evident by diffusion tractography. Weak connections were found
between White-White zone and Red-Red zone in each part of the meniscus. The anterior
part and posterior part were less connected, while the body part showed high
connections to both anterior part and posterior part. The tractography based on
diffusion MRI may provide a complementary method to study the integrity of meniscus
and nondestructively visualize the 3D collagen fiber architecture.

Keywords: DTI, knee, tractography, meniscus, connectivity, segmentation
Abbreviations:DTI, diffusion tensor imaging; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial
diffusivity; GAG, glycosaminoglycan; DSI, Diffusion spectrum imaging; UTE, ultra-short echo; R-R, Red-Red; R-W, Red-
White; W-W, White-White.
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INTRODUCTION

Magnetic resonance imaging (MRI) is the modality of choice for
diagnosing meniscal tears with both high sensitivity and
specificity (1, 2). Conventional morphological MRI relies on
the assessment of surface integrity and sub-surface signal
intensity as indicators of tissue defects, which is qualitative and
has limitations to detect the meniscal composition changes
before surface breakdown or small tears (3). Relaxation time-
based quantitative MRI such as T1 and T2 mappings have been
widely used to investigate the compositional tissue features
beyond morphology and structure (4, 5).

Diffusion MRI (dMRI) has been extensively used to reveal the
microstructure of different tissues due to its sensitivity to the
microscopic cellular organization (6). Diffusion based
tractography has been performed to identify anatomic
connections in mouse brains (7). The derived structural
connectivity maps provide insight into the network of
interconnected brain regions and ultimately lead to improved
diagnosis of various brain disorders (8). Recently, dMRI and
tractography in musculoskeletal system has attracted more and
more attention to investigate the tissue microstructure, local
collagen fiber alignment, and the 3D collagen network (9–11). To
the best of our knowledge, noninvasively probing the 3D
collagen fiber architecture and connections among different
parts of the porcine meniscus have not been reported yet,
probably due to a few reasons. First, the tractography is
challenging in menisci due to the low fractional anisotropy
(FA) and short T2 (4). Second, the spatial resolution is often
limited for meniscus MRI due to its thin-layer anatomical
structure. Third, the structural connectivity analysis relies on
segmenting the meniscus to different sub-regions (12). However,
structural connection by diffusion tensor imaging (DTI) reveals
not only the local tissue properties but also the 3D fiber network
through the whole tissue area.

Besides tractography, the scalar metrics from DTI model are
known to be related to the tissue microstructure (8, 13, 14). For
instance, the FA and mean diffusivity (MD) are found to be
sensitive to the collagen architecture and glycosaminoglycan
(GAG) content in different zones of cartilage (15). Exploring
the FA and MD variations at different zones of meniscus may
help to better understand the microstructure of meniscus, which
requires to segment the tissue manually or automatically.
Cooper’s classification is one of the most commonly used
meniscal classification systems based on the blood supply (16).
According to the classification, menisci can be divided into Red-
Red zone (outer third of the meniscus), Red-White zone (middle
third of the meniscus), and White-White zone (inner third of the
meniscus) (17).

Menisci often show low signal intensity on MR images due to
the short T2 relaxation time and conventional MRI cannot
adequately distinguish red zone and white zone because of
little contrast difference between these zones (18). It is possible
to visualize enhancement selectively in the red zone of the
meniscus using ultrashort echo time (UTE) pulse sequence, but
dividing the meniscus to white and red zones is still challenging
Frontiers in Endocrinology | www.frontiersin.org 2
(19). Conventionally, the meniscus can be manually segmented
to different zones, but it is an expertise-intensive and time-
consuming process (20). Numerous subjective interpretations for
separating adjacent structures with similar image contrasts result
in low repeatability and less efficiency. Therefore, automation of
the segmentation process is highly desirable.

In this study, we first acquired 3D diffusion-weighed spin-
echo pulse sequence to probe the microstructure of porcine
meniscus. We then developed a segmentation method with
rotational and radial directions to divide the meniscus into
different sub-regions. The automatic segmentation method was
further validated in the human knee MRI images obtained from
the Osteoarthritis Initiative (OAI) database. The water diffusion
properties derived from DTI have been quantified at different
zones of meniscus. Diffusion tractography was performed
through whole meniscus to visualize the 3D collagen fiber
ne twork . Combin ing t rac tography and automat i c
segmentation, we were able to observe the structural
connections among different areas of the meniscus.
MATERIALS AND METHODS

Specimen Preparation
Five normal porcine menisci were harvested shortly after the
sacrifice of mature porcine knee joints obtained from a local
abattoir. The specimens were then immersed in a phosphate
buffered solution (PBS) solution of 0.5% gadoteridol (Prohance®

Bracco Diagnostics Inc., Princeton, NJ) to shorten the T1
relaxation time to about 110 ms and to reduce the scan time (21).

Microscopic MRI (µMRI) Protocols
The specimens were scanned on a 7.0 T small animal MRI
system (Magnex Scientific, Yarnton, Oxford, UK) equipped with
650 mT/m Resonance Research gradient coils (Resonance
Research Inc., MA, USA). RF transmission and reception were
achieved using a homemade solenoid coil (10 × 5 × 5 cm3) (7). A
modified 3D Stejskal-Tanner diffusion-weighted spin-echo pulse
sequence to support k-space under sampling was performed for
diffusion MRI scans (22). The imaging parameters were: TR =
100 ms, Matrix size = 512 × 256 × 256, FOV = 64 ×32 × 32 mm3,
TE = 13.0 ms, 125 mm isotropic spatial resolution, b value = 1000
s/mm2 with 81 diffusion gradient encoding directions and 8 non-
diffusion-weighted (b0) measurements. The gradient separation
time was 5.5 ms and the diffusion gradient duration time was 4.5
ms for all scans. Acceleration factor (AF) of 8.0 was used for a
sparsity approach, which has been described in detail previously
(22). The scan time was 20.1 hours. The maximum gradient
amplitude was about 60 G/cm. The diffusion gradient
orientations (distributed over half sphere) were optimized to
ensure the uniformity of encoding directions on the shell. The
representative diffusion-weighted images (DWIs) and the signal
intensity variations at different gradient orientations were shown
in Supplementary Figure 1. The temperature was monitored
throughout all the scans and the fluctuation was less than 1°C.
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T2-weighed images were extracted from the non-diffusion-
weighted (b0) images for segmentation purpose only.

3D multi-echo gradient echo (MGRE) scans were acquired at
the spatial resolution of 250 mm with matrix size = 96 × 60 × 40
and 24 echoes (TE = 1.80/1.43/34.69 ms); FOV = 48 mm ×
30 mm × 20 mm, flip angle = 30°, bandwidth (BW) = 125 kHz,
and TR = 100 ms. The scan time was about 16 minutes. The T2*-
weighted image derived from MGRE scans were used for
segmentation purpose only.

Human Knee MRI
To validate the robustness of the automatic segmentation
method, the human knee MRI images were obtained from the
OAI database, which is available for public access (https://nda.
nih.gov/oai/). A sagittal 3D WE DESS (water excitation double-
echo steady-state) MR dataset of the knee featuring a high spatial
resolution (0.37 x 0.37 mm2 in plane, 0.7 mm slice thickness) was
selected. The meniscus mask was manually drawn in ITK-
SNAP software.

Manual Segmentation
Manual segmentation is common for meniscus analysis.
However, due to the irregular shape of the meniscus, the
accuracy of manual segmentation has not been investigated in
detail. The porcine meniscus was manually segmented using
ITK-SNAP software based on DWI. The meniscus was divided
slice by slice into three zones in the Cartesian acquisition
coordinate frame according to Cooper’s classification: Red-Red
(R-R) zone, Red-White (R-W) zone, White-White (W-W) zone
(Supplementary Figure 1).

Automatic Segmentation
Radial Segmentation
The meniscus was divided into three zones according to Cooper’s
classification: Red-Red (R-R) zone, Red-White (R-W) zone, White-
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White (W-W) zone. First, a binary mask (Figure 1B) was generated
based on the DWI image (Figure 1A). The whole meniscus mask
was rotated clockwise (0° - 90°) and anticlockwise (-90° - 0°) with
the step size of 0.5° with respect to the central plane (Figure 1C). A
2D cross-section image by the central plane was generated by each
rotation. Each 2D image was then trisected to R-R, R-W, andW-W
zones evenly based on the length in the radial direction (red dash
lines in Figure 1C and Supplementary Figure 2E). Last, all the 2D
segmented images were reassembled into the final 3D zonal
segmentation. The automatic segmentation was implemented in
Matlab (MathWorks, Natick, MA). Compared to automatic
segmentation, the R-W and R-R zones were partially covered by
W-W zone using manual segmentation (Supplementary Figure 2).

Rotational Segmentation
The whole meniscus could also be divided into 3 parts: anterior
part, body part, and posterior part. To achieve this, the similar
rotations were performed clockwise and anticlockwise for a
certain degree to distinguish the three different parts
(Figure 1D). Then the anterior, body, and posterior parts were
segmented based on the rotation angle (60° in the current study).
Note that no specific rotation degree can be defined as the
ground truth, this angle was set to be adjustable for the
Rotational Segmentation method (Supplementary Figure 3).
In addition, we combined the Radial Segmentation and
Rotational Segmentation methods to further divide meniscus
to 9 regions, where each zone (R-R, R-W, or W-W) contained
anterior, body, and posterior parts (Figure 1E).

Diffusion Metrics of Meniscus
All the DWIs were registered to the baseline images (b0). The DTI
model was used to capture the primary diffusion direction of the
collagen fiber. The scalar indices including FA, MD, axial
diffusivity (AD), and radial diffusivity (RD) were calculated for
both manual and automatic segmentation. Deterministic fiber
FIGURE 1 | The automatic segmentation process used in this study, from the acquired DWI (A) to the 9 different areas of meniscus (E). Both Radial Segmentation
(C) and Rotational Segmentation (D) were derived from the binary mask (B). These two methods were further combined to divide the whole meniscus to 9 regions
(E). R-R, Red-Red zone; R-W, Red-White zone; W-W, White-White zone.
May 2022 | Volume 13 | Article 876784
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tracking was performed for the whole meniscus as well as the ROIs
at three different zones (manually drawn in ITK-SNAP software).
The propagation process was repeated until the tracking trajectory
exceeded the turning angle greater than 45°. The connection
strength map among different zones and parts was generated
after whole meniscus tractography. All fiber tracking operations
were performed using Diffusion Spectrum Imaging (DSI) studio
toolbox (https://dsi-studio.labsolver.org/) (23).
Statistics
The volume and DTI metrics from 5 menisci were reported with
their mean value and standard deviation. Direct comparison of
volume and DTI metrics among different zones (R-R, R-W, and
W-W) were performed using one-way ANOVA analysis in
MATLAB, where p-value below 0.05 stands for a significant
difference of DTI metrics among different zones.

RESULTS

Figure 2 showed the mean volumes and quantitative DTI metrics
(FA, MD, AD, and RD) in three different zones. The
A B

D E

FIGURE 2 | The FA and segmentation 3D rendering images (A), volume (B), DTI metr
at different zones. FA value gradually decreases from R-R to W-W zone (C). The diffusiv
Red-Red zone; R-W, Red-White zone; W-W, White-White zone.

Frontiers in Endocrinology | www.frontiersin.org 4
heterogeneous appearance of the meniscus at different zones was
evident in FA image (2A). The volume (2B) gradually increased
from W-W zone (10.4%) to R-R zone (53.1%). Similar to the
volume, the FA values (2C) gradually increased from W-W zone
(0.13) to R-R zone (0.26) with a 100% increase. In contrast, MD,
AD, and RD values (2D-2F) gradually decreased fromW-W zone
to R-R zone. For instance, the RD values changed from 1.0 × 10-3

mm2/s (W-W zone) to 0.7 × 10-3 mm2/s (R-R zone), which
decreased 30%. Significant differences (p < 0.01) of volume and all
the DTI metrics had been found among three different zones. The
values of volumes and DTI metrics were summarized in Table 1.

Figure 3 showed the color-FA and the fiber orientation images
of meniscus in different regions. The collagen fiber exhibited
orthotropic directions between the anterior part (ROI 1, green
color) and the body part (ROI 3, red color), between the posterior
part (ROI 4, green color) and the body part. The fiber directions
were found to gradually change from anterior part to the body part
(ROI 2). These fiber directions were also evident from the individual
tracts (Figure 4), where the seeding regions (Figure 4A) are fromR-
R zone (red area), R-W zone (green area), and W-W zone (white
area), respectively. The circumferential collagen fibers were found in
all three zones.
C

F

ics of FA (C), mean diffusivity (D), axial diffusivity (E), and radial diffusivity (F) values
ity metrics exhibit the opposite trends (D–F). ** stands for p-value <0.001. R-R,
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In order to explore the entire meniscus 3D collagen fiber
network, the tractography were performed in the whole
meniscus area (Figures 5A, C, front and back view). The
tractography showed similar collagen fiber architectures as
Figure 4: the circumferential collagen fibers through anterior
part to posterior part. However, the whole meniscus tracts
revealed the coexistence of both radial and circumferential
collagen fibers, especially in ROIs of 1 and 3 (front view), 5
and 6 (back view). The consistent tractography and fiber
orientation results were demonstrated in all five menisci
(Supplementary Figure 4).

Figure 6 exhibited the automatic segmentation (6A), the
diffusion tractography (6B), and the connection heatmap of
meniscus (6E). Several distinct characteristics can be identified
from the tractography images and heatmap. First, the anterior
part showed low connections to the posterior part (red box in
6C), while the body part showed high connections to both
anterior part and posterior part (white box in 6C). Second, in
the same part (anterior, body, or posterior), the R-W zone
exhibited high connections to the adjacent parts (green box
and yellow box).

In order to explore the robustness of the automatic
segmentation method, the Radial Segmentation was also
applied to T2- and T2*-weighted images (Supplementary
Figure 5). We further extended our methods for human knee
Frontiers in Endocrinology | www.frontiersin.org 5
meniscus segmentation (Supplementary Figure 6). Both Radial
Segmentation and Rotational Segmentation (Supplementary
Figures 6B, C) methods showed visually comparable results to
porcine meniscal segmentations.
DISCUSSION

MRI has emerged as an invaluable component of pathogenesis
research in meniscal tear. Quantitative MRI (qMRI) has been
applied to study the correlation between the parametric mapping
and the severity of tissue degradation (4, 5). Most of the qMRI
used to access the biochemical status of the menisci are based on
relaxation times, such as T2, T2*, T1rho, and T1, which are
challenging to estimate the local collagen fiber alignment directly
(24, 25). In order to investigate the comprehensive collagenous
fibril texture of meniscus, other imaging modalities such as
polarized light imaging (PLM), reflectance confocal
microscopy, and scanning electron microscopy (SEM) have
been used in previous studies (26–29). While it is well
appreciated that complex fiber structures (circumferential and
radial) exist within the meniscus using these technologies, they
are often limited in a small region and presented as two-
dimensional (2D) images. Recently, DTI has been used to
TABLE 1 | The volumes and DTI metrics at different zones of meniscus.

Zones Volume (%) FA MD (10-3 mm2/s) AD (10-3 mm2/s) RD (10-3 mm2/s)

W-W 10.40 ± 1.41 0.13 ± 0.01 1.06 ± 0.09 1.17 ± 0.06 1.00 ± 0.06
R-W 36.50 ± 2.80 0.19 ± 0.02 0.90 ± 0.07 1.09 ± 0.06 0.83 ± 0.05
W-W 53.10 ± 4.08 0.26 ± 0.02 0.78 ± 0.06 0.97 ± 0.07 0.70 ± 0.05
May 2022 | Volume 1
FIGURE 3 | The color-FA and the fiber orientation images of meniscus at different regions. Red for horizontal fiber, green for vertical, blue for inside-out. The
collagen fiber orientations were shown at 4 different regions.
3 | Article 876784
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study the tissue microstructure and quantify the local collagen
fiber direction in knee joint (21, 30–32). The local fiber
orientation from DTI model affords an alternative to probe the
complex collagen fiber directions of the whole meniscus.

Tractography, as a promising technology to visualize the
complex 3D fiber network, has been recently applied to
individual connective tissues in knee joint, such as cartilage,
anterior cruciate ligament (ACL), and tendon (9, 10, 33, 34).
However, the application of tractography to probe the meniscal
microstructure is rare, probably due to the low signal-to-noise
ratio (SNR) and short T2* values (35–37). To overcome this
issue, the menisci were images in a preclinical 7T system with
powerful gradients to increase the SNR by minimizing the TE
value to 13.0 ms. With the proposed automatic segmentation
methods, the connection heatmap has been generated to quantify
the connections among different zones (R-R, R-W, and W-W)
and different parts (anterior, body, and posterior). Compared to
the exisiting qMRI methods focusing on the local change of the
tissue properties, the alteration of the connections in meniscus
may provide a complementary method to study the integrity of
meniscus and meniscal tears in future studies.

It has been reported that FA is sensitive to collagen
architecture and MD is sensitive to GAG content in cartilage
(31). Cartilage has been found to show depth-dependent
response to the degradation, especially in the superficial zone
at early osteoarthritis (OA) (18). The variations of DTI metrics at
different parts and zones may be related to the meniscal
microstructure and composition changes after degradation.
Several automatic and semi-automatic segmentation methods
have been developed to segment the cartilage, bone, and
meniscus in knee joint (38, 39). Although these methods
FIGURE 4 | The Tracts (B) from three seeding regions (A): red area in R-R
zone, white area in R-W zone, and white area from W-W zone. R-R, Red-Red
zone; R-W, Red-White zone; W-W, White-White zone.
FIGURE 5 | The entire meniscus 3D collagen fiber network (A, C) resolved by tractography. The coexistence of both radial and circumferential collagen fibers was
found from ROIs 1 and 3 (front view, B), and ROIs 5 and 6 (back view, D).
May 2022 | Volume 13 | Article 876784
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provide excellent segmentation accuracy to distinguish meniscus
to other soft tissues, automatically dividing the meniscus to
different zones and parts is still limited. Unlike the articular
cartilage, which can be divided into three zones according to the
collagen fiber directions, both red zone and white zone show
similar fiber directions in meniscus (40). The lack of apparent
image contrasts between red zone and white zone makes the
segmentation more challenging.

In this study, we adapted Cooper’s classification for the
segmentation. The segmentation allows us to investigate the
diffusion properties of menisci at different zones or parts. It
also helps us to obtain the heatmap to show the structural
connections among different regions. The proposed
segmentation, even is not a gold standard, does afford a
convenient way for quantitative analysis of meniscus diffusion
properties. The proposed segmentation method requires a simple
binary mask of the meniscus, which is relatively easy to obtain
from MRI scans, such as T2-weighted image, T2*-weighted
image, and DWI (41). The automatic segmentation method
may not be limited to MRI and can be applied to different
imaging modalities as long as the binary mask is available.
Furthermore, the method also shows robust results for human
meniscus segmentation, which suggests that our method holds
the potential to segment meniscus to different sub-regions for
human studies (42).
Frontiers in Endocrinology | www.frontiersin.org 7
There are a few limitations in our study. First, the sample size
is small due to the extremely long scan time, the consistent
collagen fiber alignment and tractography were demonstrated in
all five specimens. Second, the dMRI was acquired with a
preclinical setting that may not relevant to the clinical study.
To the best of our knowledge, it’s still challenging to achieve high
quality meniscus dMRI and tractography for in vivo human
studies. Advanced acquisition technologies, stronger gradients,
higher magnetic field, and novel reconstruction methods shed
the light to bridge the gap (43). Third, although the collagen fiber
architecture revealed by dMRI is consistent with other imaging
modalities in previous studies, complete validation of MRI
findings using other imaging modalities is warranted in future
studies. Last, this Cooper’s classification is originally defined for
human meniscus, our method may be improved for animal
meniscal studies when further shape information about
different species is known.

In conclusion, the porcine meniscus microstructure was
investigated using a 3D diffusion-weighed spin-echo pulse
sequence. Strong zonal-dependent diffusion properties were
demonstrated by DTI metrics (FA, MD, AD, and RD). The
complex 3D collagen fiber architecture of the entire meniscus
was visualized by diffusion tractography. Combining
tractography and automatic segmentation method, we were
able to observe the structural connections among different
FIGURE 6 | The structural connection heatmap of meniscus (C) obtained by the automatic parcellation (A) and tractography (B).
May 2022 | Volume 13 | Article 876784
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areas of the meniscus. It may offer a novel method to evaluate the
local meniscus tears and address the alteration of connections
among different regions of the meniscus.
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