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Toward Marrow Adipocytes:
Adipogenic Trajectory of the Bone
Marrow Stromal Cell Lineage
Yuki Matsushita , Wanida Ono and Noriaki Ono*

University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States

Bone marrow contains precursor cells for osteoblasts and adipocytes in the stromal
compartment. Bone marrow adipose tissue (BMAT) is an important constituent of the
bone marrow that is particularly abundant in adults. BMAT is composed of the proximal
“regulated” BMAT containing individual adipocytes interspersed within actively
hematopoietic marrow, and the distal “constitutive” BMAT containing large adipocytes
in the area of low hematopoiesis. Historically, bone marrow adipocytes were regarded as
one of the terminal states of skeletal stem cells, which stand at the pinnacle of the lineage
and possess trilineage differentiation potential into osteoblasts, chondrocytes and
adipocytes. Recent single-cell RNA-sequencing studies uncover a discrete group of
preadipocyte-like cells among bone marrow stromal cells (BMSCs), and recent mouse
genetic lineage-tracing studies reveal that these adipocyte precursor cells possess
diverse functions in homeostasis and regeneration. These adipogenic subsets of
BMSCs are abundant in the central marrow space and can directly convert not only
into lipid-laden adipocytes but also into skeletal stem cell-like cells and osteoblasts under
regenerative conditions. It remains determined whether there are distinct adipocyte
precursor cell types contributing to two types of BMATs. In this short review, we
discuss the functions of the recently identified subsets of BMSCs and their trajectory
toward marrow adipocytes, which is influenced by multiple modes of cell-autonomous
and non-cell autonomous regulations.

Keywords: single-cell RNA sequencing (scRNAseq), skeletal stem cells (SSCs), in vivo lineage-tracing experiments,
bone marrow stromal cell (BMSC), bone marrow adipose tissue (BMAT)
INTRODUCTION

Bone marrow houses diverse classes of cells, including cells in the skeletal (or mesenchymal), the
hematopoietic (blood) and the endothelial (vascular) lineages. Bone marrow contains precursor cells
for bone-making osteoblasts and lipid-accumulating adipocytes in the stromal compartment, both of
which are considered to play important roles in bone homeostasis and regeneration, as well as in
hematopoiesis by providing a microenvironment. Classically, skeletal stem cells with self-renewability
andmultipotency are considered to stand at the top of the lineage, and their descendants fall through a
hierarchical model, differentiating first into progenitors then into terminally differentiated cells such as
n.org April 2022 | Volume 13 | Article 8822971
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osteoblasts or adipocytes (1). However, it remains largely
undefined whether skeletal stem/progenitor cells can be defined
as discrete cell populations within the continuous spectrum of the
bonemarrow stromal cell lineage, and how their relationships with
osteoblasts and adipocytes develop in a complex bone
marrow microenvironment.

Recent single-cell RNA-sequencing (scRNA-seq) studies
reveal profound cellular heterogeneity within bone marrow
stromal cells (BMSCs) that are isolated by fluorescence-
activated cell sorting (FACS) (2–9). These studies consistently
found discrete preadipocyte-like cells populations expressing
leptin receptor (Lepr) and C-X-C motif chemokine ligand 12
(Cxcl12) within BMSCs. These cells highly express classical
adipocyte markers such as adiponectin (Adipoq) and
adipogenic transcription factors such as peroxisome proliferator
activated receptor gamma (Pparg). These adipogenic cell
populations encompass newly defined subsets of Adipo-
CXCL12 abundant reticular cells (Adipo-CAR cells) (10, 11)
and marrow adipogenic lineage precursors (MALPs) (12), which
mainly exist as non-proliferative pericytes and perivascular
stromal cells. Recent mouse genetic studies highlight the
diverse functions of bone marrow adipocyte precursor cells
that not only contribute to the formation of bone marrow
adipose tissues (BMATs) but also regulate the formation of the
trabecular and cortical bones (for more detailed reviews, see
(13, 14)).

In this short review, we discuss the functions of bone marrow
adipocyte precursor cells in homeostasis and regeneration, and
potentially diverse cellular sources of bone marrow adipocytes.
BONE MARROW ADIPOSE TISSUE (BMAT)
AND ITS FUNCTION

Functionally, bone marrow adipocyte precursor cells are poised
to differentiate into lipid-laden adipocytes that generate bone
marrow adipose tissues (BMATs). Marrow adiposity increases
under various physiological and pathological conditions such as
aging, osteoporosis, radiation, chemotherapy (15). BMAT
represents a unique form of adipose tissues that constitutes
over 10% of the total fat mass in lean and healthy human
adults (16). BMAT is composed of regulated and constitutive
BMATs (rBMAT and cBMAT, respectively) with distinct
functionality (17). rBMAT is mainly located in the proximal
skeletal components and contains individual adipocytes
interspersed within the areas of active hematopoiesis. In
contrast, cBMAT is mainly located in the distal portion and
contains large adipocytes that develop in the areas of low
hematopoiesis; the latter cBMAT develops earlier and remains
preserved upon systemic challenges (17–19).

Historically, the two types of bone marrow, “red marrow” and
“yellow marrow”, have been recognized for several decades (20).
The “red marrow” consists of blood-forming cells with scattered
adipocytes, whereas the “yellow marrow” is filled almost entirely
with adipocytes (21, 22). The cBMAT starts to form in the distal
area at prenatal to neonatal stages, followed by rapid expansion
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early in life (17). In contrast, rBMAT develops later and expands
with age, generally in areas of active hematopoiesis (17). BMAT
acts as an endocrine organ and energy storage depot that can
contribute to bone homeostasis, metabolism, hematopoiesis, and
cancers (23), and associates with the pathophysiology of bone
diseases such as osteoporosis (24). For example, osteoporosis is
commonly associated with increased BMAT (25), and adipocyte-
derived factors from BMAT can suppress osteoblast
differentiation of skeletal stem cells and regulate bone
remodeling (26). Interestingly, lipid metabolism of BMAT is
distinct from that of subcutaneous adipocytes, as bone marrow
adipocytes show diminished lipolytic activities and exhibit
cholesterol-directed metabolism (27, 28). BMAT also has
distinct roles in glucose homeostasis (29, 30). Moreover, bone
marrow adipocytes regulate hematopoiesis through direct
contact and cytokine secretion. In fact, marrow adipogenesis is
associated with impaired hematopoiesis (31). Bone marrow
adipocytes also regulate the progression of hematological
diseases (32) and hematopoietic microenvironment (HME)
regeneration (33), and promote proliferation and bone
metastasis of cancer cells including prostate and breast cancers
and melanoma (34–37). Therefore, BMAT has important
regulatory functions in bone metabolism, hematopoiesis and
bone metastasis.

Despite unique metabolic status and functions, whether
rBMAT and cBMAT are supported by distinct populations of
precursor cells remains unknown. Subcutaneous and marrow
adipocytes are derived from different precursor cell populations
and possess different metabolic patterns. It is important to
characterize marrow adipocyte precursor cells further to
unravel molecular mechanisms supporting the unique
functions of distinct classes of BMATs.
THE BONE MARROW STROMAL CELL
LINEAGE AND ITS TRAJECTORY
TOWARD MARROW ADIPOCYTES

Understanding the landscape of the bone marrow stromal cell
lineage is essential to identifying potential cellular origins of
BMATs. Cells constituting the bone marrow stromal cell lineage
have been at least partly revealed by recent large-scale scRNA-
seq studies of BMSCs that are isolated by cell sorting (2–5, 11).
The major limitation of these single-cell approaches is that bone
marrow adipocytes are large-sized (~150µm) and fragile,
therefore cannot be captured through conventional cell sorting
or encapsulated in oil droplets in microfluidic devices.
Nonetheless, these scRNA-seq studies successfully have
identified discrete clusters of adipocyte precursor cells
(preadipocyte-like cells) that abundantly express Lepr, in
addition to cell clusters that might correspond to skeletal stem
and progenitor cells, preosteoblasts and other stromal cell types.

These studies further infer the potential lineage relationship
among identified bone marrow stromal cell types using
computational approaches, such as RNA velocity (3, 4, 11).
These studies identify putative skeletal stem cell populations,
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such as Lepr+ (encoding LepR) (3), Cspg4+ (encoding NG2) (11)
or Nt5e+ (encoding CD73) (4), which are predicted to provide a
cellular source of adipocyte precursor cells. Importantly, these
studies place osteoblasts and preadipocytes at the opposite ends
of the inferred lineage trajectory, while simultaneously
identifying a number of transitional cell types among putative
terminal states, highlighting the contiguous nature of the bone
marrow stromal cell lineage that spans over osteoblasts and
marrow adipocytes.

Therefore, recent scRNA-seq studies corroborate with the well-
established ideas that preadipocyte-like cells represent a distinct
state from osteoblasts and their precursors among BMSCs.
However, the identities of putative skeletal stem/progenitor cell
populations are variable among studies, therefore remain largely
ambiguous. Further studies are required to delineate the identities
of these stem cells and their relationships with more abundant
preadipocyte-like stromal cells.
ADIPOGENIC SUBSET OF CXCL12+LEPR+

CELLS (ADIPO-CAR CELLS) AND THEIR
OSTEOGENIC FUNCTIONS

Asmentioned above, cells abundantly expressing adipocyte-related
markers suchasLepr andAdipoqconstitutemajorcellular subsets of
BMSCs (5, 11).Lepr encodes leptin receptor (LepR) that is a cognate
receptor for the circulating adipokine, leptin. LepR+ stromal cells
overlap substantially withCXCL12-abundant reticular (CAR) cells,
as cells marked by Cxcl12-GFP coincide (approximately 90%) with
cells marked by Lepr-cre (10, 38). LepR+ stromal cells provide a
major source of adipocytes in adult bone marrow (38), which is
further supported by more recent lineage-tracing studies using
Lepr-creER (39). Functionally, LepR promotes marrow
adipogenesis, as conditional deletion of LepR in BMSCs using
Prrx1-cre increases osteogenesis and decreases adipogenesis in
bone marrow (40).

CAR cells have been originally described as adipo-osteogenic
progenitors that form a component of the hematopoietic stem
cell niche (41). CAR cells can be uniformly marked by Ebf3-
creER in the adult stage (Ebf3+ CAR cells), and contribute to both
osteoblasts and adipocytes (42), supporting that LepR+ and
CXCL12+ cells have similar cell fates. Importantly, CXCL12 is
most abundantly expressed by reticular stromal cells in the
central marrow space, and plays important roles in
maintaining hematopoietic stem and progenitor cells (43–49).
In fact, CXCL12 deletion in BMSCs causes reduction in
hematopoietic cells in bone marrow (50, 51).

CAR cells have been recently reclassified into two classes of
Osteo-CAR and Adipo-CAR cells (11), instead of a uniform
entity as adipo-osteogenic progenitors (Figure 1). Osteo-CAR
cells express both Cxcl12 and Alpl (encoding alkaline
phosphatase, a preosteoblast marker), but not Lepr. These
Osteo-CAR cells are localized to arterioles and in proximity to
the bone surface, which are poised to differentiate into
osteoblasts. In contrast, Adipo-CAR cells with pre-adipocyte-
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like properties are localized to the areas around sinusoidal vessels
located in the center of the marrow space, which are poised to
differentiate into adipocytes. Adipo-CAR cells abundantly
express classical adipocyte markers (Adipoq, Lepr) as well as
hematopoiesis-supporting cytokines (Kitl and Cxcl12), but do
not express osteogenic markers and cytokines such as Alpl, Sp7
and Clec11a at the same level. It is intriguing to speculate that the
adipocyte precursor identity may confer these Adipo-CAR cell
with some metabolic advantages to secrete large amounts of
cytokines, such as Kit ligand (SCF), CXCL12 and Adiponectin.

The next important question is, what are the in vivo cell fates and
functions of preadipocyte-like BMSCs including Adipo-CAR cells?
The answer to this question has been partly contributed by mouse
genetic lineage-tracing studies using a Cxcl12-creER line (10).
Interestingly, the Cxcl12-creER bacterial artificial chromosome
(BAC) transgenic line can almost exclusively mark a
preadipocyte-like subset of CAR cells, which may correspond to
Adipo-CAR cells, upon tamoxifen injection. These cells are
quiescent and dormant with little colony-forming activities in
physiological conditions. These Cxcl12-creER+ preadipocyte-like
cells readily becomemarrow adipocytes, but do not become cortical
bone osteoblasts in normal conditions. However, these Cxcl12-
creER+ cells can rapidly convert their identity into a skeletal stem
cell-like state in response to injury, associated with upregulation of
osteoblast-signature genes and activation of canonical Wnt
signaling components. As a result, these cells further differentiate
into cortical bone osteoblasts to repair bone defects.

Therefore, Adipo-CAR cells, which are broadly distributed
throughout the central marrow space, may maintain the potential
to dedifferentiate into skeletal stem cell-like cells under regenerative
conditions, supporting the theory that dormant adipocyte-like
marrow stromal cells can support the remarkable regenerative
capacity of bones through cellular plasticity. These findings also
suggest that skeletal stem cells that are actively involved in
regenerative conditions may be at least in part contributed
through cellular plasticity in adults (Figure 2A) (10, 52).

Additionally, another preadipocyte-like subset of BMSCs
termed marrow adipogenic lineage precursor (MALP) cells,
which are marked by “adipocyte-specific” lines such as Adipoq-
cre and Adipoq-creER, regulates bone formation within marrow
space (12). MALP cells form a vast three-dimensional network
surrounding sinusoidal blood vessels, and ablation of these cells
using a diphtheria toxin fragment A (DTA) allele causes a massive
increase of trabecular bones throughoutmarrow space, especially in
female mice (12, 53). This is considered to arise from loss ofMALP
cell-derived factors that locally inhibit differentiation of skeletal
stem/progenitor cells. Therefore, MALP cells can regulate
osteogenesis in a cell non-autonomous manner.

Therefore, multiple adipocyte-related cell types have been
described to date in the bone marrow, and these adipogenic
subsets of BMSCs possess unexpectedly diverse functions beyond
formation of marrow adipose tissues, particularly in the context
of cortical and trabecular bone formation and regeneration. The
important remaining question is whether these thus-far
identified adipogenic BMSC subsets represent separate or
overlapping entities, or reside in distinct bone marrow
April 2022 | Volume 13 | Article 882297
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FIGURE 1 | Two major subsets of bone marrow stromal cells (BMSCs). Adipogenic BMSCs (Adipo-CAR cells) with pre-adipocyte-like properties are localized to the
areas around sinusoidal vessels located in the center of the marrow space, which are poised to differentiate into adipocytes.
A

B

FIGURE 2 | Adipogenic trajectory of the bone marrow stromal cell lineage. (A) In physiological condition, dormant Adipo-CAR cells can become marrow adipocytes.
Hematopoietic cells may regulate marrow adipogenesis in a manner dependent on CXCL 12-mediated physical coupling. CXCL 12 deletion leads to a reduction of
stromal-hematopoietic coupling and accelerates marrow adipogenesis. In contrast, Adipo-CAR cells convert into skeletal stem cell-like cells in response to injury, and
redifferentiate into osteoblasts through cellular plasticity to support cortical bone regeneration. (B) Central bone marrow of control (Cxcl12GFP/+) and Col2a1-CXCL12
cKO (Col2a1-cre; Cxcl12GFP/fl) mice stained for CD45 and lipid TOX, at 3W (left) and 3M (right).
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microenvironments in a way consistent with two different classes
of BMATs. Delineating adipogenic BMSC subsets further will
facilitate our understanding of diverse functions of bone marrow
adipocytes and their precursor cells.
CXCL12-MEDIATED CELL NON-
AUTONOMOUS MECHANISMS DIRECT
BONE MARROW ADIPOGENESIS

The prevailing notion is that bone marrow adiposity is induced
by an aberrant cell fate shift of bone marrow skeletal stem cell
populations due to cell-intrinsic changes. For example, loss of
Wnt/b-catenin signaling (54), intracrine VEGF signaling (55) or
PTH/PTHrP receptor signaling (56) and its downstream Gsa
signaling (57), has been shown to induce a bias in cell
differentiation toward adipocytes. However, because there are a
large number of preadipocyte-like cells within the stromal
compartment throughout the marrow space and these cells
have not yet accumulated intracellular lipid, marrow adiposity
may be more promptly regulated at the transition between these
precursor cells to fully lipid-laden marrow adipocytes. In other
words, the rate-limiting step for marrow adiposity may be at the
level of precursor cells, but not at the level of stem cells.

CXCL12 has well-documented roles in hematopoiesis.
Additionally, CXCL12 released by BMSCs regulates osteogenesis
and adipogenesis; while osteogenesis is controlled by a cell-
autonomous mechanism mediated by the CXCL12-CXCR4
signaling pathway, adipogenesis is regulated by a cell-non-
autonomous mechanism involving an unidentified cell type (50).
The Lai group demonstrates that conditional deletion of Cxcl12
using Prrx1-cre or Osx-cre leads to marrow adiposity and reduced
trabecular bones, whereas conditional deletion of Cxcr4 using Prrx1-
cre causes reduced trabecular bones without marrow adiposity.
Interestingly, marrow adiposity in these Cxcl12-deficient mice
occurs in the metaphyseal region starting from neonatal stages
(50). These premature bone marrow adipose tissues in the mutant
mice resemble rBMAT, indicating that rBMAT formationmay be at
least in part regulated by non-cell autonomous mechanisms.

The next important question is, what are the potential cell non-
autonomous mechanisms that regulate premature marrow
adiposity associated with CXCL12-deficient BMSCs? More recent
studies demonstrate that many CXCL12+ preadipocyte-like cells
(Cxcl12-creER+, Adipo-CAR cells) are physically coupled with
hematopoietic cells, particularly with B-cell precursors, monocytes
and granulocytes, in a protease-sensitive manner, possibly through
CXCL12-CXCR4 interactions (51). Further, CXCL12 deletion in
BMSCs using Col2a1-cre leads to a reduction of stromal-
hematopoietic coupling and extensive marrow adipogenesis
specifically in adult bone marrow (Figure 2B). Interestingly,
unlike other CXCL12-deficient models, marrow adiposity does
not occur in younger stages in these Col2a1-cre-driven Cxcl12
mutant mice, with Adipo-CAR cells appearing to directly convert
into lipid-laden adipocytes without involving cell-intrinsic defects
in skeletal stem/progenitor cell fates.
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Therefore, these studies indicate that there may be a potential
link between CXCL12-dependent stromal-hematopoietic coupling
and marrow adipogenesis, as the adipogenic subset of CXCL12+

BMSCsarehighly interactivewithhematopoietic cells.Onepossible
mechanism is that physically-coupled hematopoietic cells provide
some types of microenvironmental cues to prevent premature
differentiation of pre-adipocyte-like stromal cells into fully lipid-
laden marrow adipocytes (50, 51). It is intriguing to think that
hematopoietic cells may directly or indirectly regulate marrow
adipogenesis in a manner dependent on CXCL12-mediated
physical coupling, although details need to be clarified by further
experimentation (Figure 2). Thismay serve as one of the important
mechanisms that dictate age anddisease-related increase inmarrow
adiposity commonly observed in humans.
BONE-SPECIFIC SECONDARY
ADIPOGENESIS PATHWAY: FROM
OSTEO-CAR TO MARROW ADIPOCYTES?

Interestingly, recent studies demonstrate that there might be an
alternative bone-specific adipogenic pathway that bypasses classical
adiponectin-expressing preadipocyte-like cells. This unique
adipogenic pathway has been discovered in fat-free (FF) mice, in
which essentially all adiponectin-expressing adipocytes and their
precursor cells are ablated using Adipoq-cre and inducible DTA
expression (58). This genetic model mimics Berardinelli-Seip
congenital generalized lipodystrophy, which is associated with
increased bone mass and diabetic conditions. Interestingly, in
these lipodystrophic FF mice, bone marrow adipocytes still
develop within regions of bone marrow that are normally devoted
tohematopoiesis under aging and states ofmetabolic stresses. These
bone marrow adipocytes are recruited from adiponectin-negative
stromal cells and specialized for lipid storage with compromised
lipid mobilization and cytokine expression.

What is the identity of adiponectin-negative stromal cells that can
give rise to special bone marrow adipocytes under lipodystrophic
conditions? One possibility is that bone marrow adipocytes can
originate alternatively from alternative preosteoblast-like subsets of
BMSCs, such as Osteo-CAR cells that localize to the peripheral
arterioles and endocortical surfaces, or bone-lining cells that are
marked by a pulse-chase protocol using Dmp1-creER (59) (Figure
2A), although neither of these studies (53, 59) provided direct
evidence based on rigorous in vivo lineage-tracing approaches that
can directly target these cells. These potentially diverse cellular
sources of bone marrow adipocytes highlight the adaptability of
BMATs, particularly “regulated” rBMAT inbonemarrow,which can
promptly respond to systemic and local health anddisease conditions
(17). In fact, these ectopic lipodystrophicmarrow adipocytes develop
in the regions that normally develop rBMATs, indicating an
association between adiponectin-negative adipocyte precursor cells
and rBMAT formation. It remains to be determined if preosteoblast-
like subsets of BMSCs (such as Osteo-CAR cells) can be directly
converted to bone marrow adipocytes in rBMAT under
physiological conditions.
April 2022 | Volume 13 | Article 882297
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LIMITATIONS OF CURRENT STUDIES
AND FUTURE DIRECTIONS

It is evident that bone marrow adipocytes constituting the two types
of BMATs originate from BMSC subsets. Therefore, the unique
metabolic and functional features of bone marrow adipocytes are
likely to be conferred by their precursor cell populations. Single-cell
RNA-seq studies reveal that preadipocyte-like BMSCs do not
represent a single homogenous entity, but are instead constituted
by a spectrum of heterogeneous cell types spanning over
preosteoblasts and lipid-laden adipocytes. The reasonable
hypothesis is that the two distinct classes of BMATs are formed
by different types of bone marrow adipocyte precursor cells.
However, detailed characteristics of these adipocyte precursor
cell subtypes have not been successfully revealed.

Despite tremendous progress in the field in recent years, in-depth
functional analyses of bonemarrow adipocytes have been hampered
due to critical technical limitations. First, bonemarrowadipocytes are
extremely fragile and large-sized, therefore there isnoreliablemethod
to isolate these cells for single-cell analyses or culture them in vitro.
Second, no transgenic tool is available yet to target only adipocytes
and their precursors in bone marrow, but not those in subcutaneous
tissues or elsewhere.Becauseof these technical hurdles, the functional
significance of bone marrow adipocytes in bone metabolism and
hematopoiesis has not been fully uncovered. Third, an inducible
genetic tool that can specifically mark preosteoblast-like subsets of
BMSCs, such as Osteo-CAR cells, is not yet available. Therefore,
whether an alternative bone-specific adipogenesis pathway truly
exists has not been formally demonstrated.

Technical breakthroughs are needed to unravel intercellular
interactions among bone marrow adipocytes and their
surrounding cells at a single-cell level in their native environment.
Bone marrow adipocytes constitute a part of the stromal-reticular
network, residing in an intricate microenvironment (60) and
abundantly secreting a large variety of cytokines including SCF
andCXCL12.More sophisticated approacheswill beneeded to fully
define the functions of different types of bone marrow adipocytes
and their precursor cells in vivo, and eventually define how they
regulate bone metabolism and hematopoiesis through both cell-
autonomous and cell-non-autonomous mechanisms.
CONCLUSION

In this review, we discussed the current understanding of the
bone marrow stromal cell lineage, which is largely contributed by
Frontiers in Endocrinology | www.frontiersin.org 6
recent scRNA-seq and in vivo lineage-tracing studies. These
studies have substantially refined our idea on bone marrow
adipocytes and their precursor cells, particularly highlighting
important functions of the adipogenic subsets of bone marrow
stromal cells in marrow adiposity and bone homeostasis.

It has been generally considered that skeletal stem cells have
pivotal roles as a cellular origin of bone marrow adipocytes.
While this concept still holds true, the emerging notion is that
the important regulatory step may lie downstream at the level of
adipocyte precursor cells; this is facilitated by the discovery of a
discrete preadipocyte-like population of CXCL12+LepR+ BMSCs
that exist in a large number throughout the marrow space.
Functionally important subsets of adipogenic BMSCs include
recently described populations of Adipo-CAR cells and MALPs
that have substantial regulatory functions in osteogenesis.
Prompt increase in marrow adiposity in aging and other
disease conditions may be induced by virtue of the inherent
capacity of adipogenic BMSCs that can easily convert to lipid-
laden bone marrow adipocytes.

The trajectory to bone marrow adipocytes is now becoming
clearer.The remaining task is toclarify if there arediscreteprecursor
cell populations that contribute to two typesofBMATs. It is possible
that bone marrow adipocytes of “regulated” rBMAT are also
contributed to by an alternative bone-specific pathway originating
from preosteoblasts, although this pathway has been demonstrated
so far only in extreme adipocyte scarcity in lipodystrophic fat-free
mice. Clarifying further cellular origins of bonemarrow adipocytes
of cBMAT and rBMAT will give us the opportunity to clarify the
formation and the disappearance of marrow adipocytes in normal
development, pathological conditions and therapeutic responses.
These future endeavors will lead to a more detailed understanding
of the function of bone marrow adipocytes that have incredibly
diverse functions through local and systemic regulations.
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