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Type 1 Diabetes (T1D) is an autoimmune disease that results from the destruction of
pancreatic islet b-cells by auto-reactive T cells. The clinical management of T1D faces the
lack of fully predictive biomarkers in its preclinical stage and of antigen-specific therapies
to induce or re-induce immune tolerance to b-cell autoantigens and prevent its
development. From a therapeutic standpoint, preclinical models of T1D have fallen
short of directly translating into humans. To circumvent this limitation, preclinical models
are being optimized to allow defining autoantigen epitopes that are presented to T cells
and directly apply to the human. In this review, we propose to make a point on the latest
available models such as humanized immunodeficient NOD mice models and HLA and
autoantigen transgenic mice and their application in the context of T1D.

Keywords: preclinical model, humanized model mouse, type I diabetes, HLA, autoantigens, antigen-specific
immunotherapy, T cell assay, islet engraftment
1 INTRODUCTION

Type 1 diabetes (T1D) is a multifactorial autoimmune disease in which T cells destroy the insulin-
secreting b-cells of the pancreas. Although initially defined as a juvenile disease, it can occur at any
age. It is associated on the long term with the risk of developing micro and macro-vascular
complications, which makes it a major public health issue. Current diagnostic strategies in T1D
patients rely on detecting anti-insulin, anti-GAD, anti-IA2 and anti-ZnT8 autoantibodies (1).
However, 80 to 90% of b-cells are lost by the time of diagnosis and subjects become insulin
dependent, requiring lifetime insulin delivery in the absence of therapies to revert or stop the
autoimmune process responsible for the destruction of b-cells. Management of T1D remains
challenging and effort should be directed towards a better understanding of the disease. Since
exploring T1D in humans is difficult, the use of animal models that develop a T1D-like disease is a
useful alternative. Among such models, the Non-Obese Diabetic (NOD) mouse model has been a
cornerstone in studying T1D. Nevertheless, this model, alike other models in other rodent species
such as the BioBreeding BB rat, fails to translate to humans in many aspects. New mouse models are
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required to develop screening tools and to study targeted
immunotherapies in the aim to prevent or cure the disease.
2 THE NOD MODEL

T1D is likely a heterogeneous disease when considering the
genetic background on which it develops as well as the severity
of the autoimmune process and the T cell subsets involved. The
immunological characterization of T1D has been challenging
considering the remoteness of the pancreas and the scarcity of
autoantigen-specific T cells in the peripheral blood. For many
years, the NOD mouse has allowed major advances in
delineating the molecular and cellular processes of b-cells
autoimmunity (2, 3). This model develops spontaneous
autoimmune diabetes that shares several genetic and
immunologic traits with the human disease (4). First described
in 1974, the NOD mouse was used to study autoantigens,
susceptibility genes, and disease initiating events as well as to
characterize the nature of involved immune cells (5). It has
allowed to define the successive immune steps involved in the
disease process and the importance of a progressive imbalance
between regulatory and effector T cells in allowing autoimmunity
to proceed. NOD mice share with humans, many target
autoantigens (insulin, Glutamate Decarboxylase 65, IA2/IA2b
and ZnT8) and many genetic susceptibility genes (in particular,
the class-II IAg7 gene that is homolog of the high susceptibility
HLA-DQ8 class-II molecule in humans). However, NOD mice
develop a considerably more extensive insulitis than in human
T1D (4, 6). Also, curative strategies that were efficient in the
NOD mouse have often failed to translate into a therapy to
humans (7). This failure is probably related to the incapacity of
this model to fully reproduce the complexity and the
heterogeneity of the human disease ( (8). There are important
differences between the mouse and the human both in the
architecture of the islets of Langerhans and that of the immune
system. Moreover, class-I and class-II major histocompatibility
complex (MHC) as well as autoantigen genes, although homolog,
differ in their sequence between the mouse and the human.
Therefore, autoantigen epitopes that are presented by class-I and
class-II HLA and H2 molecules to CD8+ and CD4+ T cells,
respectively, differ between the two species (7, 9). Evidence that
favors the use of antigen-specific immunotherapy to cure T1D
highlights the difference in target epitopes in NOD mice as
compared to T1D patients. To address these differences, many
laboratories have developed preclinical humanized models to fill
the gap between mice and humans and to facilitate the
translation of novel discoveries to clinical trials (10, 11).
3 HUMANIZED MOUSE MODELS

Humanized mice are defined as mice engrafted with functional
human cells or tissues or mice expressing human transgenes.
These advanced models are designed to study the
pathophysiology of T1D in vivo, to detect new biomarkers and
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to find new therapeutic targets without putting patients at
risk (12).

3.1 HLA Transgenic Mice
Genetic susceptibility is considered a valuable clue to the
molecular mechanisms of T1D. In humans, over 50 gene
variants have been identified as carrying a risk for T1D, the
most important being HLA genes contributing to 40-50% of the
lifetime risk of T1D (13). HLA class-II genes provide the highest
susceptibility. They are involved in the initiation of the T cell
response to b-cells autoantigens in T1D. Among HLA class-II
genes, HLA-DQ8 molecule carries the highest risk and is present
in over 40% of at-risk and pediatric T1D patients (14), while
HLA-DQ6 molecule is protective with a relative risk of 0.2 (15).
HLA-DRmolecules carry an independent risk with the particular
case of HLA-DR*04:01 (14), and to a lesser extent DR*04:05 and
04:02 (16). HLA class-I molecules provide a lower risk and are
associated to the progression of the disease. The strongest class-I
susceptibility is conferred by HLA-B*39:06, HLA-B *57:01,
HLA- B*18:01, HLA-A*02:01, HLA-A*24:02 and HLA-C*05:01
(15, 16). Class-I and class-II MHC genes directly control the
peripheral T cell repertoire and the spectrum of antigen epitopes
that are presented to T cells. Thus, introducing HLA transgenes
in the mouse allows to characterize HLA-restricted autoantigen
peptides at play in human T1D (11). “Humanized mouse”
models have been developed by introducing HLA class-I or
class-II transgenes into different mouse strains with or without
invalidating corresponding murine H2 class-I or class-II genes
(11). The expression of HLA class-I transgenes and their
interaction with murine CD8+ T cells has been obtained using
constructs encoding a human b2-microglobulin (b2m)
covalently linked to HLA alpha1 and alpha2 and H2 cytosolic
and transmembrane alpha3 chain domains (11, 17, 18). H2 class-
I genes have been invalidated by deleting either the murine b2m
or the MHC class-I locus. On the NOD genetic background, mice
expressing HLA-A2.1 or HLA-B39 transgenes developed
accelerated T1D (19–22) while the expression of HLA-DQ6
decreased the incidence of spontaneous diabetes and insulitis
(23, 24). HLA-DQ8 or HLA-DR4 transgenic NODmice depleted
for IAg7 were resistant to diabetes probably because T cells shift
toward a tolerogenic regulatory profile (25). HLA transgenic
mouse models have not been limited to the NOD background.
HLA transgenes have been introduced in non-diabetes prone
strains, mainly C57/BL6 mice. The expression of T1D
susceptibility HLA class-II genes in these mice is not sufficient
to induce diabetes. However, immunizing these transgenic mice
with b-cells autoantigens allowed homing of T cells to the
pancreas and the development of insulitis. The expression of
the human costimulatory B7.1 molecule under the control of the
rat insulin gene promoter as a transgene in these mice led to the
development of diabetes. HLA-DQ8/RIP-B7.1 transgenic mice
showed the highest incidence, whereas the genotype HLA-
DR*04:01/HLA-DQ8 attenuated this effect and HLA-DQ6/
RIP-B7.1 mice were protected from diabetes (24, 26). Table 1
shows the different HLA transgenic models that have
been reported.
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TABLE 1 | HLA transgenic mouse models.

HLA mole-
cules

Mouse name Genotype Phenotype Applications References

HLA class-I
HLA-A*02 :01 NOD HLA-A2.1 NOD-b2m-/-, HLA-A2.1/HHD+ - Accelerated incidence of diabetes.

-MHC class-I mediates diabetogenic
immune responses.

Identification of HLA-A2.1 restricted
autoantigens epitopes.

(17, 19, 20)

NOD A2.1 NOD-mI-/-, HLA-A2.1/HHD+ -T1D more penetrant than b2m-/-

models.

- Express murine non classical MHC
class-I molecules CD1d Qa-2 and
FcRn.

Test potential antibodies and serum
albumin based T1D treatments.

(21)

HLA-A∗02:01-
transgenic (het)
Ins2KO NOD mice

NOD-b2m -/-, ins2+/-, HLA-A2.1/
HHD+

- Earlier onset of disease compared to
ins2+/+.

-Higher prevalence of diabetes in males.

- Uncover the mechanisms behind
class-I VNTR alleles and T1D
development

- Study insulin targeted therapies.

(27)

HLA-A∗02:01-
transgenic Ins2KO

NOD mice

NOD-b2m-/-, ins2-/-, HLA-A2.1/
HHD+

Increased proportion of restricted HLA-
A2.1 insulin specific CD8+ T cells in the
islets

Develop therapeutic strategies targeting
insulin-specific T cells.

(28)

HLA-A*11:01 NOD HLA-A11 NOD-mb2m-/-, hb2m+, HLA-
A11+

Reduced incidence of diabetes. Identification of b-cell peptides in
prevalent HLA class-I molecules.

(29)

HLA-B*07:02 NOD HLA-B7 NOD-mb2m-/-, hb2m+, HLA-
B7+

HLA B27 HLA B27
transgenic mouse

C57BL/6-b2m-/-, hb2m+, HLA-
B27+

Protection of diabetes. Peptide identification for preventive
therapy.

(19, 30)

HLA B*39 :06 NOD B39 NOD-b2m−/−, HLA-B39+ No decrease in disease susceptibility Identification of HLA-B39 restricted
epitopes.

(21)

NOD B39 NOD-mI-/-, HLA-B39+ -Express murine non classical MHC
class-I molecules CD1d Qa-2 and
FcRn.

-T1D highly penetrant.

-Retain FcRn functionality.

Test potential antibodies and serum
albumin based T1D treatments.

(21)

NOD B39 with
reduced thymic
insulin expression

NOD-b2m-/-, Ins2+/-, HLA-
B*39:06+

-Earlier diabetes.

- Higher prevalence.

- Escape of insulin-reactive HLA-
B*39:06 restricted T cells from
thymus.

Study the thymus escape of T cells. (22)

HLA class-II
HLA-DQ2.5 HLA-DQ2.5 KI

mice
C57BL/6 -Physiological expression of HLA-DQ2.5

on immune cells in KI model compared
to the transgenic model

Study autoimmune diseases especially
coeliac disease

(31)
DQA1*05:01
DQB1*02:01

HLA-DQ8 HLA-DQ8
transgenic mice
DQ8-Abo

C57BL/6- mII-/-, HLA-DQ8+ HLA-DQ8 restricted-GAD65 specific T
cell responses after immunization.

-Antibodies production.

-Mild insulitis without diabetes.

Identify HLA-DQ8 restricted T cell
epitopes specific of GAD65.

(32)
DQA1*03 :01
DQB1*03 :02

DQ8 positive
NOD mice

NOD- I-Ag7−/−, HLA-DQ8+ - Protection of diabetes.

- hGAD65 immunization induced
different GAD65 peptides than NOD
mice.

Understand the role of HLA molecules
along with in T1D.

(33)

Ab°/DQ8/NOD
mice

HLA-DQ8
transgenic mice

C57BL/6-IAb-/-, HLA-DQ8+ No spontaneous diabetes. Define the peptide restricted to HLA-
DQ8.

(34)

DQ8/mII−/
RIP.B7-1 mice

C57BL/6- mII-/-, HLA-DQ8+,
RIP-hB 7.1+

Spontaneous diabetes at 4 months age. Study in vivo the diabetogenic effect of
this human MHC class-II molecules.

(24, 35)

(Continued)
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TABLE 1 | Continued

HLA mole-
cules

Mouse name Genotype Phenotype Applications References

HLA-DQ6
DQA1*0103
DQB1*0601

NOD-IAb (0)
HLA-DQ6 mice

NOD-I-Ab-/-, HLA-DQ6+ Decrease incidence glycosuria and
insulitis.

Study the protective role of HLA-DQ6. (23)

HLA DQ6
transgenic mice

C57BL/6-I-Ab-/-, HLA-DQ6+ - hPPI immunization shows T cells
restricted epitopes to HLA-DQ6.

(34)

DQ6/mII−/
RIP.B7-1 mice

C57BL/6-mII-/-, HLA-DQ6+, RIP-
hB7.1+

Diabetes protection. (24)

HLA-DR4 DRB1*0401-
transgenic mice

NOD-I-Ab-/-, HLA-DR4+ - Do not develop diabetes.

- Identified HLA-DR4 restricted T cells
epitopes of human GAD65.

Evaluate the antigen-presentation
capacities of the HLA-DR4 molecule.

(25, 36)
DR B1*0401
DRA1*0101 HLA-DRA*0101,

-DRB1*0401,
and hCD4
transgenic mice

BALB/c -DBA- mII-/-, hCD4+,
HLA-DR4+

(37, 38)

RIP-B7/
DRB1*0401 mice

C57BL/6-mII-/-/RIP-hB7.1+,
HLA-DR*04:01+

Spontaneous diabetes (25%). (26)

HLA DR4 RIP-B7/
DRB1*0404 mice

C57BL/6-mII-/-/RIP-hB7.1+,
HLA-DR*04:04+,

Spontaneous diabetes (25%). (26, 39)
DR B1*04:04
DRA1*01:01

HLA-DR4/GAD-
TcR transgenic
mice

C57BL/6-rag2-/-, I-Ab-/-,hTCR+-
GAD65555–567

CD4+ T cells infiltrate in pancreatic islets
with insulitis but no diabetes.

Role of hGAD65 as autoantigen in T1D. (18)

Complex models
HLA-DR3/
DQ8

HLA-DR3/DQ8
transgenic mice

C57BL/6-I-Ab-/-, HLA-DQ8+,
HLA-DR3+, RIP-hB7.1+

Spontaneous diabetes (35%). Evaluates the modulatory effect of HLA‐
DR3 on the HLA‐DQ8 restricted mice.

(35)

HLA-DQ8/
DR4

DQ8DR4/RIP-B7
mice

C57BL/6-mII -/-, HLA-DQ8+,
HLA-DR4+, RIP-hB7.1+

Same diabetes incidence as HLA-DR4
and lower incidence than HLA-DQ8
alone.

Study regulatory role of HLA-DR4 in
HLA-DQ8 positive settings.

(26)

DQA1*0301
DQB1*0302
and
DRA1*0101
DRB1*0401

HLA DR3/
DQ2
DRB1*03:01-
DQA1*05:01-
DQB1*02:01

HLA-DR3-DQ2
transgenic mice

C57BL/6-mII-/-, hCD4+, HLA-
DR3+, HLA-DQ8+, [RIP-hB7.1+]

- Spontaneous diabetes (46%)

- Similar incidence in males and females
at mean age 24 weeks.

- AutoAb anti-ins2.

Study role of HLA-DR3/DQ2 haplotype. (40)

Mouse HLA transgenic models with human autoantigens
HLA-A2.1-
HLA-DQ8-
hPPI

YES Mice C57BL/6-DBA/CBA-mI-/-, mII-/-,
mb2m-/-, ins1-/-, ins2-/-, HLA-
A2.1/HHD+, HLA-DQ8+, hPPI+

- Normal glucose homeostasis.

- Immune cells restricted to HLA2 and
HLA-DQ8 molecules and specific to
hPPI in diabetic YES mice

- Diabetic induction after poly I:C stimulation.

Allow the characterization of
preproinsulin epitopes recognized by
CD8+ and CD4+ T cells and specific to
human insulin autoantigen.

(41)

HLA-A2.1-
HLA-DQ8-
hPPI-hB7.1

YES-RIP-hB7.1 C57BL/6-DBA/CBA-mI-/-, mII-/-,
mb2m-/-, ins1-/-, ins2-/-, HLA-
A2.1/HHD+, HLA-DQ8+, hPPI+

[RIP-hB7.1+]

- Spontaneous diabetes in males and
females

- Immune cells restricted to HLA2 and
HLA-DQ8 molecules and specific to
hPPI and spliced hPPI in diabetic
YES-RIP-hB7.1 mice.

-Evaluate the relevance of Tcell assays
in the diagnosis of T1D.

-study of modified hPPI peptides

- Evaluate peptide immunotherapy that
would directly apply to human
diabetes.

- study the mechanisms triggering T1D.

(42)

Human insulin HuPI mouse NOD/Lt-Ins1em1(INS)Tkay -Normal glucose homeostasis

-Lower incidence of diabetes then NOD
mice

- Delayed insulitis

-Assess the role of insulin in T1D

-Highlight the importance of CRISPR/
Cas9 in humanized models

(43)

(Continued)
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HLA transgenic mice allowed the identification of key players
in T1D development. Adoptive transfer of T cells from HLA-
DQ8 transgenic mice immunized with GAD65 and having
evidence of insulitis, induced insulitis in recipients (32).
Challenging HLA-DR4/RIP-B7.1 mice with murine proinsulin-
2 peptides accelerated T1D development (46). The level of
thymic insulin 2 gene expression determined the timing and
the incidence of T1D in an HLA-B*39:06 transgenic mouse, a
similar effect of that of the invalidation of the insulin 2 gene in
NOD mice (47) or of the insulin variable number of tandem
repeats (VNTR)in humans (22).

3.2 HLA and Human Autoantigen
Transgenic Mice
Besides pointing to the role of HLA in T1D development, HLA
transgenic models have allowed identifying b-cell peptides
recognized by T cells using either T cell hybridomas, or T cell
assays or class-I or class-II peptide-MHC tetramers (29, 34, 38,
48). The main autoantigens that are recognized by T cells in T1D
patients are insulin and its precursor preproinsulin (PPI)
hereafter described as insulin, GAD65, ZnT8, IA2 and islet-
glucose-6-phosphatase catalytic subunit-related protein (IGRP)
(49, 50). Differences in b-cell peptides have been seen depending
on whether a murine or a human autoantigen was expressed
(34). Therefore, HLA transgenic mice that express human
GAD65 or human PPI have been developed (41, 44).

3.2.1 Humanized Mice That Express Human Insulin
PPI is synthetized in b-cells and translocated to Endoplasmic
reticulum (ER) in the form of proinsulin after cleavage of
signal peptide sequence by a peptidase. Proinsulin is later
converted into mature and bioactive insulin (51). Among the
autoantigens, insulin has been ascribed a key role in T1D (52,
53). In infants followed from birth, anti-insulin antibodies
were detected early in the diabetes process in at risk subjects
(54). The genetic polymorphism of a VNTR 5’ of the INS gene
confers a significant risk for T1D development (55). PPI
epitopes that are presented by different HLA class-I
molecules to CD8+ T cells and by HLA class-II molecules to
CD4+ T cells have been characterized in patients and in mouse
models (50).

In mice as well as in some fish species, two genes located on
different chromosomes encode respectively insulin 1 and insulin
2 (56). However, humans carry a unique Insulin gene that shows
homology with the murine Insulin 2 gene. Murine insulin 1 and
Frontiers in Endocrinology | www.frontiersin.org 5
insulin 2 differ by two amino acids located in the insulin B chain
at positions B9 and B29 and by amino acids located in the insulin
leader and C-peptide sequences. The Insulin 1 gene lacks an
intron that is present in Insulin 2 and in the human Insulin gene.
In the mouse, insulin 1 is the main insulin isoform secreted in the
pancreas whereas insulin 2 predominates in the thymus. Normal
glycemia was maintained in the absence of either insulin1 or
insulin2 on conventional mouse genetic backgrounds (43, 57).
However, the invalidation of the Insulin 1 or the Insulin 2 gene
led respectively to prevent and accelerate T1D development in
the NOD mouse (47, 58) while invalidation of GAD or IA2 gene
had limited effects. In genetically modified mice, human
transgenes are randomly integrated in the genome which may
lead to abnormal gene expressions and functions (59). This raises
concerns about losing the insulin physiologic function when
replacing murine insulin with human insulin. Nevertheless,
using a PPI transgene in NOD models invalidated to Insulin 1
and Insulin 2 genes restored the metabolic function of insulin
even when switching tyrosine to alanine at position B16 (57).
Also, YES mouse that lacks the expression of murine MHC class-
I, class-II and insulin genes and expresses human insulin (hPPI),
HLA-A*02:01 and HLA-DQ8 transgenes, showed normal b-cell
mass and normal glycemia values even after intraperitoneal
injection of glucose (41).

3.2.2 Implications of HLA Transgenic Mice
Expressing Human Autoantigens
HLA transgenic mice modified to express human autoantigens
allow mapping T cell epitopes that match human epitopes,
especially in case of autoantigens with low expression in mice
(11). These mice highlight the importance of certain antigens in
the initiation of diabetes and allow the detection of specific T
cells in the pancreas. Immunization with hGAD cDNA induced
insulitis and glucose intolerance in HLA-DQ8/mII-/RIPB7.1-
hGAD65 transgenic mice (36). When immunized against hPPI,
YES mice showed insulin specific T cell responses that are
restricted to HLA-A*A2:01 and HLA-DQ8 molecules (41).
These mice developed diabetes when injected with polyI:C
(Toll-like receptor 3 agonist) and spontaneous diabetes when
co-expressing RIP-hB7.1 along with CD8+ and CD4+ T cell
responses that largely overlap (41, 42). Thus, in addition to
refining the study of human susceptibility genes and human
autoantigen epitopes that are targeted by T cells in T1D,
humanized models allow evaluating the role of environmental
factors in triggering T1D development.
TABLE 1 | Continued

HLA mole-
cules

Mouse name Genotype Phenotype Applications References

HLA-DQ8-
GAD65

DQ8 and RIP7-
GAD65 double
transgenic mice

C57BL/6-mII-/-, HLA-DQ8+,
hGAD65+, RIP-hB7.1+

Insulitis after immunization with GAD
cDNA.

Test susceptibility genes of diabetes. (44)

Double
transgenic (DQ8-
GAD65) mice

BTBR- mII-/-, HLA-DQ8+,
hGAD65+, RIP-hB7.1+

Immunization by GAD antigen specific
insulitis develop diabetes.

Study role of human GAD in diabetes. (45)
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3.3 Humanized Immunodeficient
NOD Models
HLA transgenic NOD models has been a unique model to advance
our understanding of T1D. However, the genomic inflammatory
responses in humans and mice do not overlap, possibly explaining
the failure of translating therapies from mice to humans (60).
Immunodeficient mice engrafted with human immune cells and
tissues provide NOD mice with a humanized functional immune
system to overcome this problem. Immunodeficient NOD (NSG)
mice were obtained by deleting the IL2-receptor g C gene, although
not the SCID-Prkdc gene, from NOD-SCID mice (61). These mice
are engrafted by a human immune system and/or by human islets
(8). In NSGmice, the lack of B, T, and NK cells and the poor lymph
node organization and development support the engraftment with
human cells and tissues. The human immune system engraftment
could originate from human peripheral blood monocytes or from
human stem cells isolated from the umbilical cord, from fetal liver
or mobilized to the periphery through G-CSF. It can also be
obtained by transplanting the human fetal liver and autologous
thymus fragments under the renal capsule while injecting the
autologous human HSC intravenously (8, 12) (Figure 1). This
leads to murine models harboring a functional human immune
system. The proper technological approach for engraftment and the
proper mouse model are chosen depending on study objectives, i.e
study of autoreactive or alloreactive T cells, or HLA-restricted
epitopes, or induction of autoimmune diabetes. However, the
scope of these models is limited by the murine component of
many immune determinants: cytokines, murine major
Frontiers in Endocrinology | www.frontiersin.org 6
histocompatibility complex (H2), homing molecules, poorly
developed lymph nodes and in case of diabetes, the cutoff level of
a normal glycemia (62, 63).

To optimize these humanized models, mice can be manipulated
to induce diabetes or to express human genes such as IL3, MG-CSF,
SCF, thrombopoietin, SIRP alpha and HLA class-I or class-II
depending on the study outcome (62, 64). Table 2 shows the
hyperglycemic and the HLA transgenic NSG mouse models.

These models are valuable to decipher the pathophysiology
of T1D. They serve to study T1D triggering factors. Fifty
percent of NSG mice transplanted with human islets and
infected with cocksackie virus developed hyperglycemia (78).
Also, these models serve in studying human b-cells
proliferation in vivo. NSG strains have been genetically
modified to develop hyperglycemia either spontaneously or
chemically (79). These hyperglycemic models could be
transplanted with human islets or human stem cells derived
from b-cells or progenitor cells to revert the hyperglycemia
(66). Engraftment of hyperglycemic NRG Akita mice with
human islet cells increased the b-cell proliferation by 6 folds
as compared to normoglycemic NRG Akita mice (80).

Additionally, such models allow to identify key players in T1D
and mechanisms behind b-cells destruction. Destruction of
pancreatic islets and infiltrates with human CD4+ T cells was
observed in humanized NSG mice after injection of irradiated
monocytes from diabetic NODmice (81). The adoptive transfer of
T cells transduced to express human autoantigen-specific TCR
allows to isolate a larger number of human diabetogenic T cells
FIGURE 1 | Immunodeficient humanized mice model with functional human immune system.
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and dissect the role of islet autoantigens in T1D. A mouse model
can be engrafted by human or murine stem cells transduced to
express autoantigen-specific TCRs to create retrogenic humanized
models. The retrogenic mouse model allows to study human
autoreactive T cells phenotype and function and to study thymic
selection (82). The retrogenic mouse can express multiple
autoreactive or control TCRs to better mimic the physiological
setting. In a TCR-transgenic humanized mouse model,
Frontiers in Endocrinology | www.frontiersin.org 7
thymocytes expressing TCRs specific to the HLA-DQ8 restricted
peptide hPPI 33-47 (insulin B9-23) were negatively selected in an
HLA-DQ8 positive human immune system more efficiently than
on an HLA-DQ8 negative immune system (83). In another model,
HLA-DR4 retrogenic mouse expressing monoclonal or polyclonal
TCRs reactive to native or deamidated GAD-65115-127 peptides
showed that post-translational modifications epitopes do not
support T reg development (76).
TABLE 2 | HLA Transgenic immunodeficient mouse models.

Mouse
model

Genotype Properties Advantages References

Diabetic models to study the function of human islets and stem cell–derived b-cells in the absence or presence of an alloreactive human immune
system.
NSG-STZ NOD/Lt-scid-Il2rg-/- - Chemically induced diabetes (STZ).

-Islet engraftment reverse hyperglycemia.

- HLA-mismatched human PBMC return hyperglycemia.

Hyperglycemia induced at will, engraftment
with functional human system.

(65)

Human islet allograft rejection model.

NRG akita NOD-rag1-/-, Il2rg-/-,
ins2akita

- Monogenic model of diabetes, not auto-immune.

- Spontaneous diabetes.

- Normoglycemia if human islet transplantation.

Study hyperglycemia effect on beta cell
proliferation.

(66, 67)

NSG RIP-
DTR
mouse

NOD-scid-Il2rg-/-, RIP-
DTR+

Administration of diphtheria toxin leads to beta cell destruction and
hyperglycemia

Control timing of induction of hyperglycemia. (68, 69)
No toxicity.
Homogeneity.
Irreversible hyperglycemia

HLA transgenic models to study the human autoreactive immune cells in vivo using PBMCs or HSC engraftments from T1D patients
NSG-A2
mice

NOD-scid-raggc-/-,
HLA-A2+

- Detection of transduced HLA-A2.1 restricted CD8+ T cells
expressing TCR specific for 3 IGRP epitopes in the blood,
spleen and pancreas up to 5 weeks post-transfer

- In vitro reaction to specific peptides

Evaluation of T cell‐modulatory interventions in
an in‐vivo system.

(70, 71)

- Transfer of PBMC from HLA matched T1D patients and healthy
donors.

- The immune system from T1D donors had a higher capacity to
infiltrate the pancreas and produce insulitis.

- IGRP, IAPP, Insulin, IA2 specific CD8+ T cells were detected.

Identify HLA A2 restricted epitopes recognized
by CD8+ T cells.

(17, 72)

HLA-
DQ8–Tg
Hu-Mice

NOD-scid-raggc-/-,
HLA-DQ8+

- Engrafted with HLA-DQ8 human fetal thymus and CD34+ fetal
liver cells into HLA-DQ8 transgenic mice.

- Develop diabetes after low dose STZ injections and autologous
HLA-DQ8 insB9-23 TCR transfer or insB9-23 immunization.

- Insulitis.

Study pathogenesis of T1D and the role of
insulin in inducing T1D.

(73)

Test for therapeutic interventions.

NSG.DR4
mice

NOD-scid-raggc-/-,
HLA-DR4+

- Auto antigen expanded HLA-DR4 restricted CD4+ T cells from
T1D patients induce insulitis with reduction in insulin expression and
increased beta injury.

Understand mechanisms of induction of
human diabetes.

(74)

TCR.DR4
mice

Tcrb−/−, I–Ag7+/+,
DR4Tg/0

-Lack a/b T cells, and express the human DR4 transgene

- Models with TCR that retains the binding specificity of the human
TCR but can interact with the mouse CD3 signaling complex

Carry multiple different TCRs, both
autoreactive and control TCRs.

(75)

Study the peptide- HLA based therapies

DR4Tg
mice

NOD.HLA-
DR4Tg.H2Ab1-/-
.Rag1-/-

-Express HLA-DR4 transgene

-Retrogenic mouse model expressing TCR reative to GAD65115-126
native or deamidated peptides

- GAD65 specific T cells infiltrates the pancreas after immunization

- Study the immunogenicity of GAD65
peptides

-Study the phenotype of activated CD4+ T
cells

-Study the response of T cells against PTM
epitopes in T1D and their role in inducing
autoimmune diabetes.

(76)

NSG Ab0
–DR4
mice

NOD.Cg‐Prkdcscid,
Il2rgtm1Wjl H2-
Ab1tm1Gru, HLA‐
DRB1+

Transfer of GAD TCR‐transduced primary human CD4+ T cells HLA
DR4 restricted causes insulitis without overt diabetes.

Study of human T‐cell modifications in vivo,
development of human disease models that
incorporate human T cells.

(77)
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3.4 Applications of Humanized Models in
T1D Diagnosis, Treatment and Prevention
The diagnosis of autoimmunity in full-blown T1D is based on
the detection of autoantibodies (1). However, in prediabetic
individuals, while positivity for three or four different antigenic
specificities is highly predictive, positivity for one or two
autoantibodies has a low predictive value, highlighting the
importance of developing new assays for early and accurate
diagnosis (84). Providing the key role of T cells in driving the
autoimmune process against b-cells, T cell assays need to be
developed. T cell responses to epitopes recognized in the context
of HLA class-I and class-II transgenic mice will be useful in
helping to develop these assays for diagnosing and immune
monitoring in patients under immunotherapy.

Identifying epitopes recognized by T cells in T1D pave the way
to developing antigen-specific immunotherapies which are likely
to carry a high benefit/risk ratio (85). Among recent examples,
injecting NOD-b2mnull HHD mice with a nanoparticle-peptide
complex (PSB coupled to HLA-A2 restricted ZnT8 or IGRP
epitopes) induced immune tolerance and prevented diabetes by
decreasing the numbers of autoreactive CD8+ T cells (86). Altered
peptide ligand for insulin B1(5-14) induced antigen-specific
anergy in a similar model (87). Vaccinating NSG-HLA-DQ8
transgenic mice with insulin mimotopes stimulated Foxp3+

Tregs in vivo (88).
These models can allow discovering and testing new-targeted

therapies. The study of teplizumab in HLA-A2/NSG mice
allowed the identification of CCR6+ Treg cells secreting IL-10
which could be considered as a therapeutic target (89). HLA-
DQ8/hGAD65 transgenic mice have been used to test a targeted
therapy using GC7 molecule which inhibits the eucaryotic
translation initiation factor A-1 (eIF5A) activating enzyme. In
this model, the onset of T1D was delayed and the function of b-
cells improved (90).

In other preclinical models, humanized mice engrafted with
human immune precursors have been used to evaluate the
translational potential of promising therapies. Currently,
pancreatic islet transplantation can restore normoglycemia in
patients with long-onset T1D. However, it faces the shortage in
human donors and the risk of graft rejection. Manipulation of
the hematopoietic stem-cells or PBMC engrafted NSG strain
has generated mice in which chemically or spontaneously
induced diabetes was reversible by islet engraftment (61, 91).
This allowed the identification of new potential therapeutic
targets and the study of the mechanisms of islet graft rejection
and the means to prevent this rejection (92). Combining
human immune system and islet engraftment in these models
allow the optimization of protocols for inducing remission in
T1D through islet engraftment and suppression of graft
rejection. Treatment with IL-2 and rapamycin suppressed
effector T cells and stimulated regulatory (CD4+FOXP3+) T
cells reducing human islet allograft rejection in NSG mice
transfused with human spleen mononuclear cells (93).
Combination therapy with ethylcarbodiimide, rituximab and
rapamycin limited the rejection of xenogeneic porcine islets in
humanized mice (94).
Frontiers in Endocrinology | www.frontiersin.org 8
As another approach, costimulation blockade has been shown to
prevent the rejection of allogeneic pancreatic endoderm by human
PBMCs in a humanized model in vivo (95). Co-transplantation of
human bone marrow-derived mesenchymal stem cells (hBMSCs)
could prevent immune rejection and improve human islet
transplantation in a humanized NSG mouse (96). Another NSG
mouse model was created by transferring genetically modified
human embryonic stem cells that lacked CIITA and expressed
HLA-A2 as the only HLA class-I molecule. The differentiation of
these cells into b-cells then the engraftment with human PBMCs
allowed to study the immune response and the islet rejection (97).
Genetically modified b-cells engraftment is another promising
therapy to prevent T1D recurrence post engraftment; human b-
cells engineered to express Herpesvirus encoded immune-evasion
proteins prevent islet destruction in NSG mice by degrading MHC
class-I molecules and inhibiting granzyme B activity (98). Beyond
allograft rejection, NSG mice can be used to study xenogeneic
GVHD reactions. An option has been developed that replaced
human islets by genetically modified porcine islet. Engraftment of
neonatal porcine islet-like cell clusters overexpressing CTLA-4 Ig
analogue in diabetic Hu-HSC-NSG mice reverted diabetes without
a xenogeneic GVHD reaction (99). Despite these advantages, the
translation of treatment to humans is not straightforward. The
dosing, frequency, and route of administration of immunotherapies
are still to be refined.

3.5 Other Humanized Models for T1D
T1D involves an auto-immune destruction of the b-cells.
Therefore, a therapeutic approach aiming at modulating the
immune response represents an attractive means of treatment
approach. So far, therapies have met with varying clinical success
despite efficiency in murine preclinical models. At best, the
response to short-term treatments such as anti-CD3 antibodies
had time limited effect. Pre-clinical models expressing the
human targeted molecules might fill this gap and allow the
optimization of therapeutic protocols. Immunomodulatory
treatments have been attempted. Humanized murine models
expressing human CD3ϵ and CD20 were developed to study the
therapeutic potential of combined protocols in restoring
tolerance in T1D (100). Treating VH125.hCD20/NOD mice
with anti-human CD20 delayed diabetes development by
reducing the effect of costimulatory molecules on B cells, by
decreasing the INFg production and by limiting T cell activation
in the islets. Combining a histone deacetylase inhibitor with low-
dose CD3 antibodies abrogated local inflammation, improved
pancreatic b-cell survival and metabolic function, and led to
long-lasting diabetes remission (101).

b-cell antigen-based therapy is another attractive approach, as
it precludes the long-term side effects of immune modulating
therapy as being antigen-specific. To study the capacity of
dendritic cells to induce an antigen-specific immune tolerance,
a humanized mouse model expressing human CD205 on a NOD
background was produced. CD205, as the endocytic receptor of
antibodies coupled to islet antigens on myeloid dendritic cells,
allows antigen processing and presentation by MHC class-I and
II and modulate antigen-specific T cell responses (102).
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4 PERSPECTIVE

Humanized HLA and autoantigen transgenic mice allow the
identification of the epitopes restricted to HLA class-I and class-II
molecules paving the way to antigen-specific immunotherapy and
to restoration of immune tolerance in T1D patients. Effort should be
made to regenerate b-cell mass after reestablishment of tolerance to
autoantigens in T1D patients with a low b-cells mass (103). Using
humanized immunodeficient models engrafted with human
immune system and human b-cells in the context of human
susceptibility genes will allow a better understanding of the
pathophysiology. Replacing the current engraftment techniques
with the induced pluripotent stem cells (iPS) technology might
provide better means to study the disease. These cells can be isolated
from T1D patients and can differentiate into b-cells, hematopoietic
stem-progenitor and thymic epithelium (61, 104). These models
also allow to identify new biomarkers and to design new screening
and prognostic biological assays that can apply to humans. This
personalized in vivo model provides new insights into the immune
function of patients with T1D. This allows to have a better
Frontiers in Endocrinology | www.frontiersin.org 9
understanding of diabetes in the individual and to overcome the
heterogeneity of the disease. It will facilitate the development of
peptide-based predictive, diagnostic, and therapeutic strategies and
will pave the way to personalized medicine.
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