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Aim: Accurate severity grading of lumbar spine disease by magnetic resonance images
(MRIs) plays an important role in selecting appropriate treatment for the disease. However,
interpreting these complex MRIs is a repetitive and time-consuming workload for
clinicians, especially radiologists. Here, we aim to develop a multi-task classification
model based on artificial intelligence for automated grading of lumbar disc herniation
(LDH), lumbar central canal stenosis (LCCS) and lumbar nerve roots compression (LNRC)
at lumbar axial MRIs.

Methods: Total 15254 lumbar axial T2W MRIs as the internal dataset obtained from the
Fifth Affiliated Hospital of Sun Yat-sen University from January 2015 to May 2019 and
1273 axial T2W MRIs as the external test dataset obtained from the Third Affiliated
Hospital of Southern Medical University from June 2016 to December 2017 were analyzed
in this retrospective study. Two clinicians annotated and graded all MRIs using the three
international classification systems. In agreement, these results served as the reference
standard; In disagreement, outcomes were adjudicated by an expert surgeon to establish
the reference standard. The internal dataset was randomly split into an internal training set
(70%), validation set (15%) and test set (15%). The multi-task classification model based
on ResNet-50 consists of a backbone network for feature extraction and three fully-
connected (FC) networks for classification and performs the classification tasks of LDH,
LCCS, and LNRC at lumbar MRIs. Precision, accuracy, sensitivity, specificity, F1 scores,
confusion matrices, receiver-operating characteristics and interrater agreement (Gwet k)
were utilized to assess the model’s performance on the internal test dataset and external
test datasets.

Results: A total of 1115 patients, including 1015 patients from the internal dataset and
100 patients from the external test dataset [mean age, 49 years ± 15 (standard deviation);
543 women], were evaluated in this study. The overall accuracies of grading for LDH,
LCCS and LNRC were 84.17% (74.16%), 86.99% (79.65%) and 81.21% (74.16%)
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respectively on the internal (external) test dataset. Internal and external testing of three
spinal diseases showed substantial to the almost perfect agreement (k, 0.67 - 0.85) for the
multi-task classification model.

Conclusion: The multi-task classification model has achieved promising performance in
the automated grading of LDH, LCCS and LNRC at lumbar axial T2W MRIs.
Keywords: magnetic resonance imaging, diagnosis, deep learning, artificial intelligence, low back pain
INTRODUCTION

Low back pain (LBP) is the leading worldwide cause of years lost
to disability, and its medical burden is growing alongside the
increasing and aging population (1, 2). Lumbar disc herniation
(LDH), lumbar central canal stenosis (LCCS) and lumbar nerve
roots compression (LNRC) are the most common causes of LBP
(1, 3), which are the leading reasons for individuals seeking
medical care. Lumbar magnetic resonance (MR) imaging is a
crucial tool to explain complicated causes of LBP and decide
whether to treat it conservatively or surgically (4–6).

MR imaging is preferred in diagnosing LBP and can accurately
grade LDH (7, 8), LCCS (9) and LNRC (10, 11). Each grading of
these three diseases plays an essential role in determining
appropriate treatment options. However, interpreting these
complex MR images (MRIs) is a repetitive and time-consuming
workload for radiologists (12). The artificial intelligence-based on
deep-learning (DL) algorithm has great potential benefits in medical
imaging diagnostics since it can provide semi-automated reports
under the supervision of clinicians (13). It may improve the
accuracy, consistency, objectivity and efficiency of disease degree
assessment, further supporting clinical decision-making.
Mathematically, disease diagnosis is a classification problem.

Recently, researchers have proposed some single-task
classification models based on the DL algorithm for lumbar
disease diagnosis from lumbar spine MRIs (14–16). These models
based on the DL algorithm show that they can address this
classification problem well with the advantage of automatically
learning representative features from MRIs. However, one or
more causes of low back pain may coexist on the same axial MRI
image. The single-task classification model has the limitation of
insufficient information utilization, resulting in missed or delayed
diagnosis, which may be limited in clinical application. A multi-task
classification model has become one of the current research
hotspots to address this challenge. By identifying correlations
between multiple training tasks, it carries on joint learning to
these tasks, thereby improving the generalization ability of the
model. A multi-task classification model for evaluating the
severity of numerous lumbar diseases at MRIs would be desirable
and help clinicians make a thorough diagnosis.

To the best of our knowledge, few multi-task classification
models have been currently developed to classify multiple
lumbar diseases at MRIs (17, 18). This study aimed to develop
a multi-task classification model that can provide clinicians with
a precise and comprehensive diagnostic way for automated
grading of LDH, LCCS and LNRC at lumbar axial MRIs.
n.org 2
After the model was trained, its accuracy performance was
assessed on an internal test dataset and an external test dataset,
compared with clinicians.
METHODS

The institutional review board of our institution approved this
retrospective study with a waiver of informed consent.

Datasets Preparation
Our study analyzed 15254 axial T2W MRIs as the internal data
set collected for 1015 patients who received lumbar spine MRIs
in the Fifth affiliated Hospital of Sun Yat-sen University from
January 2015 to May 2019. Before, 143 patients were excluded
based on the exclusion criteria. We screened studies based on the
following inclusion criteria: patients undergoing lumbar MR
imaging because of LBP were suitable to participate in this
study. Exclusion criteria for the study were as follows: (1)
vertebral fractures and/or active inflammation at lumbar MRIs;
(2) history of concomitant malignancy; (3) previous spine
surgery; (4) severe artifacts at lumbar MRIs. The patients of
our internal data set were split into training (n = 710), validation
(n = 152) and test sets (n = 153). In addition, external validation
was performed on the external test dataset, which contains 1273
axial T2W MRIs from 100 patients who received lumbar spine
MRIs in the Third Affiliated Hospital of Southern Medical
University, from June 2016 to December 2017. All patients
received a lumbar MRI scan using a 3.0-T unit (Magnetom
Verio; Siemens, Erlangen, Germany) with T2-weighted turbo
spin echo sequence (T2W TSE). The characteristics of T2W TSE
in the datasets varied: Repetition time: 3500 to 3775 ms. Echo
time: 94 to 120 ms. Field of view: 153 × 153 mm2. Slice thickness:
4 to 4.5 mm. Bandwidth: 250 kHz. The lumbar MRI images were
stored as DICOM files (Digital Imaging and Communications in
Medicine). The patients’ demographics of the two datasets are
summarized in Table 1, and a flowchart of the data selection
processes is illustrated in Figure 1.

Dataset Labeling
As regions of interest (ROIs), Bounding boxes were drawn at all
images by one expert surgeon with MRIcro software. Grading on
these three lumbar spinal diseases was then performed for this
study, with the three classification systems, which were done
using well-established criteria for LDH (7, 19), LCCS (9, 20) and
LNRC (10, 11).
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The three classification systems are described in the following:
the classification system of LDH is divided into four grades,
according to the size of disc herniation: Grade 0, Grade 1, Grade
2 and Grade 3 (Figure 2); the classification system of LCCS is
divided into four grades based on the space of anterior cerebrospinal
fluid: grade 0, grade 1, grade 2 and grade 3 (Figure 3); the
classification system of LNRC is also divided into four grades,
grade 0, grade 1, grade 2 and grade 3 (Figure 4). Two clinicians
independently analyzed each axial T2W TSE MR image of the
internal dataset and graded it using the above classification systems.
In cases of agreement, these grading results of two clinicians served
as the reference standard; in cases of disagreement, these grading
Frontiers in Endocrinology | www.frontiersin.org 3
results were adjudicated by an experienced spinal surgeon to
establish the reference standard. Gwet k was used to assess inter-
reader reliability between both clinicians for each classification
system (21, 22). The external test dataset was graded by two
clinicians independently, using the same method. In cases of
agreement, these grading results of two clinicians served as the
reference standard; in disagreement, these grading results were
adjudicated by an experienced spinal surgeon to establish the
reference standard.

Multi-Task Classification Model
The multi-task classification model consists of a backbone
network for feature extraction and three fully-connected (FC)
networks for classification, as shown in Figure 5. The backbone
network is a ResNet-50 framework (23), usually used to extract
image features, excluding the fully-connected network. A 2048-
dimension feature is extracted by the backbone network and then
is put into the three parallel FC networks, whose outputs denote
the classification result of LDH, LCCS and LNRC. Cross entropy
is used as the loss function. The network is capable of capturing
the implicit correlation between LDH, LCCS and LNRC since the
three classification tasks share a backbone network. The
FIGURE 1 | Flowchart showing patients’ selection for the datasets and the process of training multi-task classification model. n, number of patients; MRIs, MRI
images; ROIs, regions of interest.
TABLE 1 | Patients’ demographic.

Characteristics All Internal Datasets
(n=1015)

External Test Dataset
(n=100)

Age (y)* 49 ± 14 (13-88) 53 ± 16 (17-84)
Men 523 (51.5) 49 (49.0)
Women 492 (48.5) 51 (51.0)
Unless otherwise stated, data are numbers of patients, with percentages in parentheses.
*Data are means ± standard deviations, with ranges in parentheses.
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multitask classification network was trained with a batch size of
16 for 100 epochs using the Adam optimizer with a weight decay
of 0.0001. The learning rate was set to 0.001 initially. The training
data was online augmented by random rotation of -15° to 15°
and random cropping to improve the generalization of the
model. All the networks were implemented by Pytorch
(https://pytorch.org), and codes ran in a server with an RTX
2080Ti GPU. Training the multitask classification network took
about 2.5 hours. Testing an image only took 11 ms.

Statistical Analysis
Quantitative evaluation metrics including precision, accuracy,
sensitivity, specificity, F1 scores, confusion matrices, receiver-
operating characteristics (ROC) were applied to assess the
diagnostic performance of the multi-task classification network
on the two test datasets. Gwet k values with 95% confidence
intervals (CIs) were used to evaluate the inter-readers reliability
and this model’s clinical reliability. The model was trained and
assessed by an information technology engineer.
RESULTS

Patient Characteristics in Datasets
A total of 15254 lumbar axial T2W TSE MRIs in 1015 patients in
the internal datasets were evaluated. Overall, the mean age of all
Frontiers in Endocrinology | www.frontiersin.org 4
1015 patients was 49 years ± 14 (age range, 13-88 years), and the
mean age of 492 women was 51 years ± 14 (age range, 15-84
years). (Table 1). For the external test dataset, a total of 1273
lumbar spine axial T2W TSE MRIs in 100 patients were
evaluated. The mean age of all 100 patients was 53 years ±16
(age range, 17-84 years), and the mean age of 51 women was 56
years ± 15 (age range, 23-84 years). (Table 1). The detailed
information on reference standard grading at axial MRIs within
the two datasets is shown in Table 2. The detailed information
on reference standard grading from patients within the two
datasets is shown in Supplementary Material.

A high inter-reader agreement with the reference standard
was reached on the internal datasets and the external test dataset.
For LDH, the k values of the four-grades were 0.93 (95% CI: 0.92,
0.95) for the internal datasets and 0.88 (0.86, 0.90) for the
external test dataset. For LCCS, the k values of the four-grades
were 0.95 (0.95, 0.96) for the internal dataset and 0.96 (0.94, 0.97)
for the external test dataset. For LNRC, the k values of the four-
grades were 0.93 (0.92, 0.94) for the internal datasets and 0.91
(0.89, 0.93) for the external test dataset.

Multi-Task Classification Network
Performance on the Internal Test Dataset
After training, there was a similar agreement between the multi-
task classification model and the reference standard in the
internal test dataset, with k values of 0.80 (0.78, 0.82) for the
FIGURE 2 | The classification system of the lumbar disc herniation (LDH). The top column is a schematic diagram of four grades with LDH, and the bottom column is the
corresponding axial T2W TSE images of four grades with LDH. The size of disc herniation is measured with reference to a single intra-facet line drawn transversely across the
lumbar canal, to and from the medial edges of the right and left facet joint articulations. Grade 0 (A, E) no disc herniation; Grade 1 (B, F) the disc herniation extends up to or
less than 50% of the distance from the non-herniated posterior aspect of the disc to the intra-facet line (size-1), Grade 2 (C, G) the disc herniation extends up to or more than
50% of the distance from the non-herniated posterior aspect of the disc to the intra-facet line (size-2), Grade 3 (D, H), the herniation extends altogether beyond the intra-facet
line (size-3).
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four grades of LDH; 0.86 (0.84, 0.87) for the four grades of LCCS;
and 0.78 (0.76, 0.80) for the four grades of LNRC. Using the DL
algorithm based on ResNet 50 to assess overall grade 0 and the
other grades of each classification system, the overall accuracy
was as follows: 84.17% (1935 of 2299) for LDH, 86.99% (2000 of
2299) for LCCS, 81.21% (1867 of 2299) for LNRC. Detailed
statistics for the four grades of the three classification systems at
axial MRIs are summarized in Figures 6A, C, E. And detailed
statistics for the four grades of the three classification systems at
lumbar MRI levels are summarized in Figures 7A, C, E. An
overview of the results with precision, F1 score, accuracy, k
values, sensitivity and specificity are shown in Table 3. The area
under the ROC curve of the dichotomous classification (grade 0
or grade 1 vs. grade 2 or grade 3) was as follows: 0.97 for LDH,
0.98 for LCCS, 0.95 for LNRC (Figure 8A).

Multi-Task Classification Network
Performance on the External Test Dataset
The outstanding robustness of this multi-task classification
model was obtained in the external test dataset. Reading grades
between the reference standard and the multi-task classification
model had a strong correlation with k values of 0.67 (0.64, 0.70)
for the four grades of LDH; 0.77 (0.75, 0.80) for the four grades of
LCCS; and 0.69 (0.66, 0.72) for the four grades of LNRC. The
overall accuracy was as follows: 74.16% (944 of 1273) for LDH,
79.65% (1014 of 1273) for LCCS, and 74.16% (944 of 1273) for
LNRC. And the F1 scores were 81.3% for LDH, 83.5% for LCCS
Frontiers in Endocrinology | www.frontiersin.org 5
and 84.2% for LNRC. Detailed statistics for the four-grades of the
three classification systems at axial MRIs are summarized in
Figures 6B, D, F. And detailed statistics for the four grades of the
three classification systems at lumbar MRI levels are summarized
in Figures 7B, D, F. An overview of the results with precision, F1
score, accuracy, k values, sensitivity and specificity are shown in
Table 4. The area under the ROC curve of the dichotomous
grading (grade 0 or grade 1 vs. grade 2 or grade 3) was as follows:
0.95 for LDH, 0.98 for LCCS, 0.87 for LNRC (Figure 8B).
DISCUSSION

In this study, we developed and validated a multi-task
classification network in the automated grading of LDH, LCCS
and LNRC at lumbar axial MRIs. This study is the first
comprehensive study of multi-task classification for grading
LDH, LCCS and LNRC at axial MRIs. The multi-task
classification network demonstrated good performance in the
automated grading of LDH, LCCS and LNRC.

MRI plays an important role in the assessment of LBP and
accurate grading of LDH (7), LCCS (9) and LNRC (10, 11).
However, detailing such assessment information, which may be
beneficial to clinicians in providing more effective treatment
strategies for patients with LBP, is repetitive and time-
consuming and subjective for clinicians (12). A multi-task
classification network that reliably classifies the severity of
FIGURE 3 | The classification system of lumbar central canal stenosis (LCCS). The top column is a schematic diagram of four grades with LCCS, and the bottom
column is the corresponding axial T2W TSE images of four grades with LCCS. LCCS is divided into four grades according to the obliterated severity of anterior
cerebrospinal fluid space: Grade 0 (A, E) normal; Grade 1 (B, F) minor stenosis with clear separation of each cauda equina nerve roots; Grade 2 (C, G) moderate
stenosis with some cauda equina nerve roots combination; Grade 3 (D, H) severe stenosis with all cauda equina nerve roots as a bundle.
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FIGURE 4 | The classification system of lumbar nerve root compromise (LNRC). The top column is a schematic diagram of four grades with LNRC, and the bottom
column is the corresponding axial T2W TSE images of four grades with LNRC. Grade 0 (A, E) No compromise of the nerve root is seen (normal). There is no evident
contact of disk material with the nerve root and the epidural fat layer between the nerve root and the disc material is preserved. Grade 1 (B, F) There is visible
contact of disc material with the nerve root and the normal epidural fat layer between the two is not evident (contact). The nerve root has a normal position and there
is no dorsal deviation. Grade 2 (C, G) The nerve root is displaced dorsally by disc material (deviation). Grade 3 (D, H) The nerve root is compressed between disc
material and the wall of the spinal canal; it may appear flattened or be indistinguishable from disc material (compression).
FIGURE 5 | The framework of a multi-task classification network consists of a backbone network for feature extraction and three fully-connected (FC) networks for
classification, where n denotes the number of output channels and s is the stride of convolution.
Frontiers in Endocrinology | www.frontiersin.org June 2022 | Volume 13 | Article 8903716
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lumbar degenerative diseases may be desired and useful in
clinical practice.

Previous studies (14, 24) have shown the potential of the DL
algorithm to classify spinal diseases shown on lumbar MRIs.
They validated the feasibility of using the DL algorithm to grade
LCCS or LDH automatically. However, these automated grading
models based on the DL algorithm were only used to classify a
single lumbar disease and failed to realize the automated grading
of multiple lumbar diseases. Therefore, researchers explored the
potential of a multi-task classification network to evaluate
multiple lumbar diseases. Jamaludin et al. (25) proposed a
multi-task classification network: SpineNet, which was
developed for the automated classification of several
pathological spinal features, including Pfirrmann grading (26),
intervertebral disc stenosis, lumbar central canal stenosis, bone
marrow changes and endplate defects. Lu et al. (18) developed
the DeepSpine model, which could be used to diagnose lumbar
central canal stenosis and neural foraminal stenosis
automatically at axial and sagittal T2W MRIs. More recently,
in 2021, a multi-task classification model was developed to
automatically detect and classify lumbar central canal, neural
foraminal stenosis and lateral recess at axial and sagittal T2W
MRIs (27). It can be used to evaluate lumbar spinal stenosis in
clinical practice quickly. Overall, these studies suggest the efficacy
of multi-task classification models in the automated grading of
spinal stenosis on lumbar MRIs. To date, Lewandrowski et al.
(28) have made a preliminary attempt and demonstrated that a
multi-task classification model based on the DL algorithm is
feasible for automated grading of disc bulging, disc herniation,
and lumbar stenosis at routine MRIs. But they failed to diagnose
Frontiers in Endocrinology | www.frontiersin.org 7
the severity of disc herniation and lumbar stenosis, which may
not be enough to help surgeons make clinical decisions.

The classification systems of these three diseases in our model
correlate with surgical treatment modalities. Mysliwiec et al. (7)
suggest that patients with grade 1 should be excluded from
surgical consideration, and patients with grade 2 or grade 3
should be considered for performing micro discectomies. This
classification system is currently widely used in the clinical
setting (29, 30). In addition, the classification system of LCCS,
a valuable method for clinicians and radiologists to use in clinical
practice, is defined by the degree of separation of the cauda
equina related to the severity of the clinical signs (9, 31).
Moreover, the classification system of LNRC is decided by the
spatial relationship between herniated disc material and nerve
roots, and this system is proven to be relevant to surgical grading
(10, 11). Notably, our model achieved superior performance for
the dichotomous classification (grade 0 or grade 1 vs. grade 2 or
grade 3). Each result of the area under the ROC curve on the
internal test dataset (external test dataset) was as follows: LDH:
0.97 (0.95); LCCS: 0.98 (0.98); and LNRC: 0.95 (0.87). This
superior performance demonstrates that our model is a
promising tool to be used in clinical practice to assess LDH,
LCCS and LNRC.

The model proposed in our study achieves good performance
for grading LDH, LCCS and LNRC at axial MRIs. Firstly, on the
internal test dataset, our model showed substantial to the almost
perfect levels of agreement for the three classification systems
with four grades. Especially in the grading of LCCS, our model
had a k value of 0.86 for the four grades, which is higher than the
k value of 0.82 reported by Hallinan et al. (27). Our model also
showed substantial levels of agreement on the external test
dataset. In addition, the model has high accuracy for the
automated classification of LDH, LCCS and LNRC. The
average classification accuracy rates (grade 0, grade 1, grade 2
and grade 3) of LDH, LCCS and LNRC were 84.17%, 86.99% and
81.21%, respectively. Among these, the average classification
accuracy of LCCS is higher than that reported in previous
studies (14, 18, 27).

Although this multi-task classification network shows
considerable consistency and good performance in the
automated grading of LDH, LCCS and LNRC, our study has
several limitations. First, we selected the international
classification systems relevant for surgical selection as the
reference standard, although there remains controversy
concerning LDH, LCCS and LNRC classification at MRI (31,
32). Second, the diagnostic accuracy of grade 2 and grade 3 for
the three lumbar diseases was low in our study, which may be the
potential to be associated with a data class imbalance. Increasing
the data sample size would be one way to improve the diagnostic
accuracy and will be completed in our future work. Using only
axial MRIs for grading LDH, LCCS and LNRC may be another
limitation, although the grading of three systems is taken from
the axial T2W MRIs. In addition, automated grading of multiple
lumbar diseases such as Pfirrmann grading and osteoporotic
vertebral fractures using multiple MRI sequences should be
integrated into our model in the future. Finally, we did not
TABLE 2 | Reference standard classifications of the three lumbar diseases at
axial T2W MRIs.

Data Set and
Diseases
Severity

Lumbar Disc
Herniation

(LDH)

Lumbar Central
Canal Stenosis

(LCCS)

Lumbar Nerve
Roots Compromise

(LNRC)

Internal training
and validation
dataset
Grade 0 6450 (49.8) 10770 (93.1) 9403 (72.6)
Grade 1 4933 (38.1) 1836 (14.2) 2227 (17.2)
Grade 2 1435 (11.1) 226 (1.7) 648 (5.0)
Grade 3 137 (1.1) 123 (0.9) 677 (5.2)
Total 12955 12955 12955

Internal test
dataset
Grade 0 1121 (48.8) 1902 (82.7) 1616 (70.3)
Grade 1 864 (37.6) 343 (14.9) 424 (18.4)
Grade 2 287 (12.5) 40 (1.7) 127 (5.5)
Grade 3 27 (1.2) 14 (0.6) 132 (5.7)
Total 2299 2299 2299

External test
dataset
Grade 0 550 (43.2) 1105 (86.8) 866 (68.0)
Grade 1 499 (39.2) 105 (8.2) 305 (24.0)
Grade 2 196 (15.4) 42 (3.3) 44 (3.5)
Grade 3 28 (2.2) 21 (1.6) 58 (4.6)
Total 1273 1273 1273
Unless otherwise stated, data are numbers of patients, with percentages in parentheses.
June 2022 | Volume 13 | Article 890371

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Su et al. Automated Grading of Lumbar Diseases
A B

C D

E F

FIGURE 6 | Confusion matrix of the multi-task classification model at axial MRIs. Confusion matrix of the multi-task classification model for grading lumbar disc
herniation LDH (A), lumbar central canal stenosis LCCS (C) and lumbar nerve roots compression LNRC (E) on the internal test dataset. Confusion matrix of the
multi-task classification model for grading LDH (B), LCCS (D) and LNRC (F) on the external test dataset.
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A B
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E F

FIGURE 7 | Confusion matrix of the multi-task classification model at lumbar MRI levels. Confusion matrix of the multi-task classification model for grading lumbar
disc herniation LDH (A), lumbar central canal stenosis LCCS (C) and lumbar nerve roots compression LNRC (E) on the internal test dataset. Confusion matrix of the
multi-task classification model for grading LDH (B), LCCS (D) and LNRC (F) on the external test dataset.
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TABLE 3 | The accuracy performance of the multi-task classification model on the internal test dataset.

Predicted Grading Precision (%) F1 Score (%) Accuracy (%) Sensitivity (%) Specificity (%) Gwet k

LDH 84.1 84.1 84.2 90.7 92.2 0.80
Grade 0 90.4 91.3
Grade 1 80.1 80.6
Grade 2 74.9 68.7
Grade 3 50.0 58.5
LCCS 87.0 86.8 87.0 65.2 94.5 0.85
Grade 0 92.9 93.7
Grade 1 63.3 56.7
Grade 2 27.9 33.7
Grade 3 37.5 47.4
LNRC 79.7 80.0 81.2 79.2 92.9 0.78
Grade 0 91.4 92.1
Grade 1 54.7 59.1
Grade 2 27.3 11.2
Grade 3 67.5 65.9
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LDH, lumbar disc herniation; LCCS, lumbar central canal stenosis; LNRC, lumbar nerve roots compromise.
A B

FIGURE 8 | Receiver operating characteristic (ROC) curves of dichotomous grading (grade 0 or grade 1 vs. grade 2 or grade 3) for the three spine diseases. (A) ROC
curves for the automated grading of three diseases: lumbar disc herniation (LDH), lumbar central canal stenosis (LCCS) and lumbar nerve roots compression (LNRC) on
the internal test dataset. (B) ROC curves for the automated grading of three diseases: LDH, LCCS and LNRC on the external test dataset.
TABLE 4 | The accuracy performance of the multi-task classification model on the external test dataset.

Predicted Grading Precision (%) F1 Score (%) Accuracy (%) Sensitivity (%) Specificity (%) Gwet k

LDH 75.8 74.1 74.2 86.9 88.0 0.67
Grade 0 83.6 85.7
Grade 1 78.6 68.3
Grade 2 53.5 63.2
Grade 3 27.6 28.1
LCCS 88.6 83.3 79.7 94.6 86.5 0.77
Grade 0 99.1 92.4
Grade 1 23.1 24.8
Grade 2 9.1 13.3
Grade 3 25.3 40.0
LNRC 74.1 73.4 74.2 68.8 87.6 0.69
Grade 0 85.7 86.6
Grade 1 56.5 51.3
Grade 2 25.0 4.2
Grade 3 31.5 43.6
LDH, lumbar disc herniation; LCCS, lumbar central canal stenosis; LNRC, lumbar nerve roots compromise.
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explore the relationship between clinical symptoms and the
grading of three systems. This relationship may play an
essential role in clinical decision-making and will be completed
in our future work.

In conclusion, we proposed a multi-task classification
network for automated grading of LDH, LCCS and LNRC at
lumbar axial MRIs. The current study found that automated
grading of LDH, LCCS and LNRC at lumbar axial MRIs using a
multi-task classification network is feasible with moderate to
high accuracy. Additionally, our model showed comparable
agreement with clinicians in classifying LDH, LCCS and LNRC.
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