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Diabetes-associated cognitive decline (DCD), is one of the complications of diabetes,
which is characterized by a series of neurophysiological and pathological abnormalities.
However, the exact pathogenesis of DCD is still unknown. Single-cell RNA sequencing
(scRNA-seq) could discover unusual subpopulations, explore functional heterogeneity
and identify signaling pathways and potential markers. The aim of this research was to
provide deeper opinion into molecular and cellular changes underlying DCD, identify
different cellular types of the diabetic mice hippocampus at single-cell level, and elucidate
the factors mediating the pathogenesis of DCD. To elucidate cell specific gene expression
changes in the hippocampus of diabetic encephalopathy. Single-cell RNA sequencing of
hippocampus from db/m and db/db mice was carried out. Subclustering analysis was
performed to further describe microglial cell subpopulations. Interestingly using
immunohistochemistry, these findings were confirmed at the protein level. Single cell
analysis yielded transcriptome data for 14621 hippocampal cells and defined 11 different
cell types. Analysis of differentially expressed genes in the microglia compartments
indicated that infection- and immune system process- associated terms, oxidative
stress and inflammation play vital roles in the progression of DCD. Compared with db/
mmouse, experiments at the protein level supported the activation of microglia, increased
expression of inflammatory factors and oxidative stress damage in the hippocampus of
db/db mouse. In addition, a major finding of our research was the subpopulation of
microglia that express genes related to pro-inflammatory disease-associated microglia
(DAM). Our research reveals pathological alterations of inflammation and oxidative stress
mediated hippocampal damage in the db/db mice, and may provide potential diagnostic
biomarkers and therapeutic interventions for DCD.

Keywords: diabetes-associated cognitive dysfunction, hippocampus, microglia, inflammation, single-
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INTRODUCTION

Metabolic diseases such as diabetes mellitus impairs the function
of the brain and are called diabetic encephalopathy, including
functional impairment of cognition, neuronal signal transduction,
synaptic plasticity and neurophysiological changes, and potential
structural damage associated with diabetes mellitus (1–3).
Diabetes-associated cognitive dysfunction (DCD), a major
complication of diabetes, is gaining more attention (4). The
impairment of cognition in diabetes includes impaired learning,
memory, problem−solving, attention and reduced information
processing speed (1). Additionally, numerous clinical studies
have shown that diabetes mellitus is closely related to vascular
dementia, as well as Alzheimer’s disease (AD) (5, 6). Multiple
studies have demonstrated that factors such as neuronal apoptosis,
oxidative stress, neuroinflammation and altered neurogenesis may
play a role in DCD (7, 8), in which oxidative stress and
neuroinflammation are early-onset mechanism in diabetic
encephalopathy (9, 10). The hippocampus plays a vital role in
learning and memory, and the impairment of its function is linked
to DCD (11). However, the mechanism by which diabetes impairs
cognitive function have not yet been clearly established, including
changes in these individual cellular compartments of the
hippocampus and how they interact with each other.

Analysis of gene expression in hippocampal cells is an
appropriate approach to decipher pathological changes in DCD,
but there is a high degree of cellular heterogeneity in hippocampal
cells. The current advent of scRNA-seq technology can discover
new cell subpopulations and further explore gene regulatory
mechanisms to reveal heterogeneity in genes and functions of
each cell. Recent studies have shown that scRNA-seq in a mouse
model of AD (5xFAD) identified a novel disease-associated
microglia type (DAM), and revealed significant molecular
heterogeneity within DAM, including pro-inflammatory and anti-
inflammatory phenotypes (12, 13). Thus, this technology provides
the opportunity to dissect different cell types in complex tissues,
such as the hippocampus at single-cell resolution, which provides
insights into the transcriptional signature in individual cells from a
more detailed and microscopic perspective (14–16).

To explore the pathophysiology of DCD, we used db/db
mouse, a model of type 2 diabetes (T2DM), characterized by
the homozygous mice express deficient leptin receptors, which
results in T2DM phenotypes including hyperglycemia, severe
obesity, hyperphagia, polyuria and metabolic syndrome. In our
present research, we applied scRNA-seq technology captures
T2DM-induced gene changes in a large number of hippocampal
cells and provides a comprehensive and detailed view of cell
alterations occurring in the hippocampus to decipher the
pathology of DCD.
MATERIALS AND METHODS

Animals
Animal studies were performed in compliance with the
requirements of the National Laboratory Animal Use Act of
the People’s Republic of China and in accordance with protocols
Frontiers in Endocrinology | www.frontiersin.org 2
approved by the Animal Care and Use Committee of Shandong
Provincial Hospital Affiliated to Shandong First Medical
University. Twelve-week male db/db mice (BKS.Cg-Dock7m+/+
Leprdb/J, n=8) and db/m (Dock7m +/+ Leprdb, n=8) were obtained
from Changzhou Cavens Laboratory Animal Co., Ltd (Jiangsu,
China). They were kept in a temperature-controlled room (23 ±
1°C) under a 12 h light/dark cycle and allowed free access to chow
and water. Animals with fasting plasma glucose levels >300 mg/dl
were classified as diabetic.

Morris Water Maze Test (MWM)
Using the MWM test, we assessed spatial learning and memory
ability of eighteen-week mice (17). The maze apparatus includes
a circular plastic pool filled with water added with black in kat
approximately 22 ± 1°C. The circular plastic pool is divided into
4 quadrants, one of which includes an escape platform (diameter,
5 cm; height, 15 cm) was placed 1 cm underwater and at a fixed
position. The test composed of a 5-day acquisition phase trial
and a probe trail on day 6. During acquisition phase trials, the
animals were placed in the water, were able to reach to the
platform within 60 s, which were remained on the platform for
10 s, and each animal was trained four times every day. However,
if the mice failed to find the platform within 60 s, they were
gently guided to the platform and remained there for 10 s, and
the escape latency was recorded as 60 s. On the sixth day, the
spatial exploration test with the platform removed was carried
out, and rats were permitted to swim for 60 s. Data of the time
spent and the number of platform crossings in the target
quadrant within 60 s were recorded. The mice movement of
the escape latency was recorded using a computerized video
system and analyzed by a computer system.

Hippocampus Dissection and Dissociation
The protocol for dissection and single-cell dissociation were
performed as previously described (18). After Morris Water
Maze testing was completed, mice were immediately
euthanized with sodium pentobarbital (50 mg/kg, i.p.) and
systemically perfused with cell culture grade saline (0.9%,
sigma). The brains were removed and samples of the
hippocampus of the brain were immediately isolated from the
ipsilateral side of the brain on ice, which dissociated into a viable
single-cell suspension. Briefly, using scalpels, we mince
hippocampus samples, which further were digested in Earle’s
Balanced Salt Solution (EBSS) containing DNAse I (0.01 mg/ml)
and papain (1 mg/ml) for 60 minutes at 37°C. Hyaluronidase
prevents dissociation. Intact cells were isolated on a single step
discontinuous density gradient and resuspended in phosphate
buffered saline containing 0.04% weight/volume bovine serum
albumin (BSA), for single cell transcriptomic analysis processing.

ScRNA-Seq
Hippocampus single-cell suspensions from db/db and db/m
mice were added to the Chromium Single Cell Controller
Instrument (10x Genomics, Shanghai Genechem Co.,Ltd.) to
create single-cell gel beads. According to the manufacturer’s
protocol, the scRNA-seq libraries were prepared with the
Chromium Single-cell 3′ Reagent V3 Kits, and sequenced on
June 2022 | Volume 13 | Article 891039
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an Illumina HiSeq X Ten System. We obtained 150 bp paired-
end reads.

ScRNA-Seq Data Analysis
Raw sequencing data, cellular barcodes were demultiplexed by
using Cell Ranger Software Pipeline (version 3.0), using the
STAR aligner (version 3.1.0), we map reads to the mouse
reference genome and transcriptome. To produce a matrix of
gene counts versus cells, down-sample of reads was required to
produce normalized aggregate data across samples. The unique
molecular identifier (UMI) count matrix was processed by using
R package Seurat (version 3.1.1) (19). In order to eliminate low-
quality cells and likely multiplet captures, the cells with >200
genes and <8000 genes; >400 UMIs and <20% mitochondrial
RNA (mtRNA) were retained for subsequent analyses. The
filtered matrix was normalized for library size to gain
normalized counts in Seurat.

Identification of the top variable genes in individual cells was
performed (20). In summary, principal component analysis
(PCA) was performed on the highly variable genes to lessen
the dimensionality, and the top principal components (PCs)
were chosen for cell clustering using a graph-based clustering
method. We visualised the clustering results using t-Distributed
Stochastic Neighbor Embedding (t-SNE) technique. t-SNE
dimensional reduction was performed in R using the Seurat
package. Compared with classical cell type markers, the
identified 26 cell clusters correspond to 10 cell types. In order
to quantify changes in hippocampal intercellular communication
during diabetes mellitus, CellPhoneDB (V2.0) was used to
identify biologically relevant ligand receptor partners (21). To
characterize intercellular correspondence organizations, we
connected any two cell types in which ligands and receptors
were communicated in the previous and last ce l l
types, separately.

The Find Markers function (test.use = bimod) of Seurat
package was used to identify differentially expressed genes. P-
value < 0.05 and |log2foldchange | > 0.58 were set as the
differential expression thresholds. Differentially gene expression
(DEGs) was subjected to GO enrichment and KEGG pathway
enrichment analysis using hypergeometric distribution in R
package, and functional association networks were constructed
and defined using STRING version 11.0.

Immunofluorescence Staining
PFA fixed brain tissues were cut into cryosections. Nrf2, HO-1,
Nlrp3, Iba-1, Trem2 and Cmklr1 expression levels in brain tissue
sections were characterized using immunofluorescence.

Cryosections were air dried at room temperature, rinsed with
PBS, supplemented with 0.4% Triton X-100, and submitted for
antigen retrieval. Sections were blocked with 10% normal goat
serum for 1 h at 37°C. The sections were incubated with anti-
Nrf2 (GB113808, Abcam; 1:500), anti-HO-1 (GB11845, Abcam;
1:200), anti-NLRP3(GB11300, Abcam; 1:200), anti-TREM2 (bs-
2723R, Abcam; 1:200), anti- Cmklr1 (bs-10185R, Abcam; 1:200)
or anti-Iba-1 (GB12105, Abcam; 1:500) at 4°C overnight. The
next day, sections were washed and incubated with
tetramethylrhodamine labeled anti mouse IgG for 1 h at room
Frontiers in Endocrinology | www.frontiersin.org 3
temperature; Nuclei were dyed with 4, 6- diaminido-2-
phenylindole (DAPI) before 10 min of mounting. Sections
were then analyzed under a laser scanning confocal
microscope (Olympus, Tokyo, Japan). We analyzed the images
using Image-Pro Plus 6.0 software (Media Cybernetics, USA).
The results were analyzed using GraphPad Prism 5.0 software
and are showed as the mean ± standard error of mean.
Statistically significant differences were determined using a
two-tailed unpaired Student’s t test. P<0.05 was considered
statistically significant. A two-tailed unpaired Student’s t-test
was used to determine statistically significant differences. P <
0.05 was considered statistically significant.
RESULTS

Impairments of Learning and Memory In
db/db Mice
The Morris water maze test is commonly used to study spatial
learning and memory loss in animals. During the acquisition
phase trials, escape latencies did not differ significantly between
groups on day 1 (P> 0.05; Figure 1A), in addition, the time to
find the hidden platform was declined progressively from the
second day to the fifth day. Interestingly, the db/db group spent
significantly more time finding the hidden platform compared to
the db/m group (P < 0.05; Figure 1A). The typical swimming
traces of mice is illustrated in Figure 1B, the db/db mouse
showed a more disorganized and longer swimming paths. The
hidden platform was removed during the spatial probe trial. As
expected, compared with that of the db/m group, the time spent
in the target quadrant of db/db group and the number of
platform crossings were was markedly reduced (P < 0.05;
Figures 1C, D). In summary, these results based on the MWM
test demonstrated impaired learning and memory in db/db mice.
In the current study, all db/db mice developed concomitant
cognitive decline. Hence, we performed single-cell transcriptome
analysis of hippocampal tissues from db/m mice and db/db mice.

ScRNA-Seq Analysis Resulted in 26
Clusters and Identified Ten Cell Types
Isolated hippocampus from db/m and db/db mouse were
separated into single-cell suspensions. After quality control
filters, A total of 14621 cells were used for a following analysis.
Of these, 4667 cells (32%) originated from db/db mice and 9954
cells (68%) from db/m mice. After the completion of quality
control, PCA and t-SNE analysis was conducted. The workflow
of this study is shown in Figure 2A. Based on expression of well-
established markers, the cells were classified into 26
transcriptionally distinct clusters (Figures 2B–E), and divided
into 10 distinct cell types based on cell-type-specific gene
expression and annotated as follows: B cells, Endothelial cells,
Ependymal cells, Fibroblast, Microglia, Mural cells, Neurons,
NKT, Oligodendrocyte, Oligodendrocyte Precursor Cell (OPC).
The abundance of db/m vs db/db cells per cluster is represented
in Figures 2C–E shows the relative abundance of cell types for
each genotype. In this scRNA-Seq data, compared with db/m
June 2022 | Volume 13 | Article 891039
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mice, the relative abundance of microglia and oligodendrocyte in
db/db mice changed significantly (Figure 2E), so we first
analyzed this type of cells, and further performed DEGs and/or
sub cluster analysis on these data.

DEGs Analysis in db/db vs db/dm
Mice Microglia
Based on DEGs, the following functional networks upregulation
were found in db/dbmicroglia (Figure 3; Supplementary Table 1):
immune system and response, inflammation, neuronal functions,
OXPHOS, Cell cycle, NF-kB signal, nucleic acid binding and RNA
binding, chromosome maintenance, cytoskeleton, DNA Repair,
glucose/lipid metabolism, GTP binding and GTPase activity.
Notably, microglia are immune cells that participate in
inflammatory responses in central nervous system (CNS), we
Frontiers in Endocrinology | www.frontiersin.org 4
observed several markers of inflammatory response, including
Il7ra, Il6ra, Irf2bpl, Cmklr1, Mafg, Map2k3, Ncf1, Nlrp3 and
Trem2. To determine glial activation and inflammation factors,
immunofluorescent staining for in the hippocampus of mice were
performed. Iba-1 is highly expressed in activated microglia. We
found that the expression of Nlrp3, Cmklr1, compared with db/dm
group, the number of positive cells labeled by TREM2 and Iba-1 in
hippocampus of db/db group was significantly increased
(Figure 4), suggesting that T2DM facilitates microglial activation
and increases levels of inflammatory factors in the hippocampus.
Additionally, Immunofluorescence was also used to analyze the
expression of Nrf2/HO-1 system, which has beneficial effects by
protecting against oxidative damage (22). As seen from Figure 5,
the db/db group rats showed significantly lower levels of Nrf2 and
HO-1 in the hippocampus (P<0.05) compared to the db/m group
rats, suggesting the antioxidant system was damaged in the db/db
mice. Downregulated genes in db/db mice microglia associated
into OXPHOS, myelin and glial cell differentiation (Figure 3;
Supplementary Table 1).

Compared with the db/dmmice microglia, 768 differential genes
were expressed in the db/db mice microglia, of which 386 genes
were up-regulated and 382 genes were down-regulated
(Supplementary Table 2). Functional enrichment analysis of
upregulated genes was performed using the Kyoto Encyclopedia
of Genes and Genomes (KEGG). The top 10 most remarkably
enriched KEGG pathways were exhibited in microglia. KEGG
pathways analysis suggested that compared with the db/dm mice
microglia, the enrichment items of the db/db mice microglia were
mainly concentrated in infection- and inflammation-associated
pathways, such as pathways in Coronavirus disease-COVID-19,
Epstein-Barr virus infection, phagosome and NF-kB signaling
pathway (Figure 6A; Supplementary Table 3). Previous studies
demonstrated that brain microglial overactivation can induce
proinflammatory gene expression by activation of NF-kB
signaling pathway following stroke (23), The down-regulated
genes were evaluated by KEGG analysis, and the KEGG pathways
were mainly enriched for terms involved in Parkinson disease, AD,
oxidative phosphorylation, Huntington disease and Pathways of
neurodegeneration-multiple diseases (Figure 6B; Supplementary
Table 4). GO term analysis of the upregulated genes of microglia
revealed enrichment of expected biological processes such as
immune system process, inflammatory response, cellular response
to lipopolysaccharide, defense response to Gram−positive
bacterium and positive regulation of interleukin-6 (Figure 6C),
and it has also been reported that microglial inflammatory
activation, stimulated by diabetes mellitus (DM), which caused
memory deficits, gene alterations in brain endothelium (24).
Furthermore, GO analysis was performed on the down-regulated
genes (fold change > 1.5), and the gene functions were primarily
enriched in the items related to myelination, microtubule
cytoskeleton organization, neuron projection development,
nervous system development and oligodendrocyte differentiation.
(Figure 6D). Consistent with our findings, microglial plays a crucial
role in neurodegeneration, probably as a result of the different
pathological substrates associated with neurodegenerative diseases
as well as systemic inflammation and factors influencing insulin
A

B

C D

FIGURE 1 | Learning and memory impairment in db/db mouse. In the MWM
test, day 1 represents performance on the first trial, and subsequent scores
show average of all daily trials. (A) Escape latency of the 5-day acquisition
trials in MWM. (B) Representative swim pathways of respective groups in the
spatial probe test. (C) Time spent in the target quadrant during the probe
trial. (D) The numbers of the target platform crossings in the probe trial. Data
are represented mean ± SEM for 3 mice in each group. ⁎P < 0.05 vs. db/m group.
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resistance, such as T2DM (25). Taken together, the results of GO
and KEGG analysis reveal that the T2DM could induce the
activation of microglia which in turn might cause learning and
memory, as well as an increased risk of neurodegenerative diseases.

Diverse Microglial Activation Responses
Are Triggered in db/db Mice
Study has often referred to the response of microglia to injury or
pathology as ‘‘activated,’’ an umbrella term that refers to
biochemical and physiological deviations from homeostasis.
Frontiers in Endocrinology | www.frontiersin.org 5
Activated microglia are observed in nearly all neurological
disorders, including neurodevelopmental and neurodegenerative
diseases. However, it is unclear whether or how microglia regulate
their response to specific types of injury (T2DM induced brain
injury). Next, we assessed whether microglial cells in our data could
be subdivided into subpopulations based on distinct activation
states, cell markers and biological pathways and determined
twelve subclusters with a microglial transcriptional profile
(Figures 7A, B; Supplementary Table 5). Subsequently, we
sought to determine the proportion of each subpopulation
A

B C

D E

FIGURE 2 | Schematic diagram of the experimental workflow, and scRNA-seq analysis of db/db vs db/m mouse hippocampus. The workflow is illustrated in (A),
* represent barcode sequence labeled cells. (B) t-SNE plot of 14621 cells isolated from db/db and db/m hippocampus, exhibiting 26 clusters that were identified.
(C) t-SNE plot of 14621 cells isolated from the db/db and db/m hippocampus, colour coded according to genotype. (D) Number of db/db (orange) and db/m (cyan)
hippocampus cells per cluster. (E) Relative abundances of the different hippocampus cell types per genotype.
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FIGURE 3 | STRING analysis of DEGs networks in db/db with db/m microglia. Shapes represent up - and downregulated messages. Triangles represent
upregulated gene networks and circles represent downregulated gene networks; Different colors represent different cluster, the size of the dots represents the degree.
Frontiers in Endocrinology | www.frontiersin.org June 2022 | Volume 13 | Article 8910396
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(Figures 7C, D), and perform DEGs and gene set enrichment
analysis. Interestingly, subpopulation 0, db/db mice had an
increased proportion of inflammatory related subpopulations of
microglia, such as subpopulation 1, subpopulation 3, subpopulation
7 and subpopulation 9 (Figure 7C, D). We identified the marker
genes [sorted by average log2(fold change)] for each subpopulation
relative to all other microglia subpopulations, and these genes were
plotted using a heatmap (Figure 7E; Supplementary Table 6).

Our gene expression analysis revealed that most of the analyzed
cells highly expressed marker microglia genes (C1qa, Fcrls, Cx3cr1,
P2ry12/P2ry13, and Trem2) (26), but not all cells (Supplementary
Table 6), indicating that existing detection techniques and marker
definitions require further exploration. Except for the highly
expressed marker genes, genes significantly upregulated were also
found in specific microglial states, such as AD risk genes
(Supplementary Table 6) (Ctsb, Ctsd, Trem2, and Tyrobp) are
enriched in the activated response microglia (ARM), which was
identified main activated microglia states by Sala Frigerio et al. (26).
This highlights cognitive dysfunction in diabetes and the
pathogenesis of AD may share some commonalities. We also
observed upregulation of neurodegeneration- and inflammation-
related genes such as Csf2ra, Jun, Cox6c, Tlr7, and Ttr. We found
that cluster 1 expressed the higher levels of Gadd45b (Growth arrest
and DNA-damage-inducible 45 beta) gene, which acts as an
apoptosis factor and mediator of neuroinflammation (13, 27, 28),
and inflammation makers (Cd14 and Tlr2) (13, 29), and showed
enrichment for the GO term regulation of immune system process,
Frontiers in Endocrinology | www.frontiersin.org 7
inflammatory response and positive regulation of NF-kB
transcription factor activity (Figures 8A–C). Additionally, the
cluster 10 expressed the highest levels of the two best-known
inflammation genes, Gpx1 and Cat (30) (Supplementary
Figures 1A–D), the GO terms, including hydrogen peroxide
catabolic process, heme biosynthetic process, response to oxidative
stress and response to hydrogen peroxide (Supplementary
Figure 1E). It is well known that persistent hyperglycemia causes
oxidative stress, which leads to brain damage (31).

Interestingly, increased transcripts were observed for otherMs4a
family members (Ms4a6b, Ms4a6d, Tmem176a, and Tmem176b)
expressed by microglia (Cluster 0, 1, 3, 5, 6, 8, 9) (Supplementary
Table 6). Genes such as macrophage migration inhibitory factor
(Mif), lactate dehydrogenase A (Ldha), and triosephosphate
isomerase 1 (Tpi1) were found to be upregulated in cluster 5
microglia (Supplementary Table 6). Of note, we found the most
significantly enriched genes in cluster 7 microglia expressed many
inflammatory signals that were not normally expressed in other
microglial clusters (Figures 9A-B; Supplementary Table 6). They
upregulated various pro-inflammatory chemokines Nlrp3, Lgals3,
Cxcl2, Cxcl10, Cxcl16 and inflammatory cytokine interleukin 1
(Il1a, Il1b), as well as Ccl4 and Ccl3 (32, 33). The ligand for
chemokine receptor type 5 (Ccr5) is Ccl4, also referred to as
macrophage inflammatory protein-1b (Mip-1b), which adjusts
the transmission and responder functions of different immune
cells (34). Additionally, cluster 7 showed enrichment for the GO
term regulation of immune system process, inflammatory response,
A

B C D E

FIGURE 4 | The changes of microglial activation and neuroinflammation in hippocampal CA1 sections from from db/m and db/db group. (A) Representative
immunofluorescence staining of Iba-1, Nlrp3, Cmklr1 and Trem2. Representative images of Iba-1 (red) staining and representative images of Nlrp3, Cmklr1, Trem2
(green) staining. Nuclei are stained with DAPI (blue). (scale bar = 50 mm). Quantification of Iba1- (B), Nlrp3- (C), Cmklr1- (D), Trem2- (E) positive cells in the db/db
mice hippocampus. All data are represented as means ± S.E.M for 8 mice in each group. *P < 0.05, **P < 0.01 vs. db/m group.
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positive regulation of I-kb kinase/NF-kB signaling and NF-kB
transcription factor activity (Figure 9C), leading us to postulate
that these cells represent pro-inflammatory lesional microglia,
which might be defined as into the phenotypes M1
(proinflammatory) (35). Recently Rangaraju et al. found
significant molecular heterogeneity in DAM (disease-associated
microglia) (13). Interestingly, genes related to pro-inflammatory
DAM, such as Tlr2, Ptgs2, Il1b and regulators (NF-kb, Stat, and
RelA), were mainly enriched in cluster 7 microglia (Supplementary
Table 6). Moreover, cluster 6 microglia also expressed upregulated
the inflammatory signals genes in cluster 7 microglia, indicating an
overlap in transcriptional signaling and may be some association
between these two states. These findings could be translated to
human disease, and novel microglial pathogenic markers might
serve as biomarkers or therapeutic targets, which also help to
further define how we distinguish microglial activation states
in vivo.
DISCUSSION

Cognitive impairment is an important complication in the CNS
of diabetic patients, which could reflect diabetes induced changes
in the brain. There are some studies suggesting the link
between AD and T2DM, such as hyperglycemia, leading to
glutamate induced excitotoxicity in neuronal cells and may
Frontiers in Endocrinology | www.frontiersin.org 8
contribute to oxidative stress, amyloid- b accumulation, tau
hyperphosphorylation, formation of advanced glycation end
products (36). Whereas, the multifactorial pathogenesis of
diabetic encephalopathy remains unclear. The diabetic db/db
mouse is a ideal animal model to study the pathophysiology of
diabetes mellitus, because this organism, like humans, develops
diabetes and its associated complications, including oxidative
stress, obesity, and hyperglycemia. Furthermore, db/db mouse
shows neurobehavioral deficits, autonomic behavior and memory
impairment are important roles of hippocampal damage caused by
T2DM (37). In the present study, our MWM results suggested that
db/db mice suffered from impaired in memory ability and spatial
learning, indicating db/db mice had deficits in long-term and
spatial memory functions (38, 39). The complexity of
hippocampus structural makes it vulnerable to a variety of
pathological conditions such as diabetes and is one of the most
sensitive regions of the brain to microenvironmental changes (1).
Next, we explored the different cell types and their unique
transcriptional features in the mouse hippocampus at single-cell
level using scRNA-seq technology. Overall, the results of analysis
based on changes in cell abundance and intercellular
communication suggest different hippocampus cells exhibit
different degrees of sensitivity to DCD. Analysis of DEGs
between the db/m and db/db groups showed that gene
transcription in each cell type underwent widespread changes in
db/db mice.
A

B C

FIGURE 5 | The changes of expression of Nrf2/HO-1 system in hippocampal CA1 sections from from db/m and db/db group. (A) Immunofluorescence analysis of Nrf2
and HO-1. Representative images of Nrf2 and HO-1 (green) staining in the hippocampus. Nuclei are stained with DAPI (blue). (scale bar = 50 mm). Quantification of Nrf2-
(B) and HO-1- (C) positive cells in the db/db mice hippocampus. All data are represented as means ± S.E.M for 8 mice in each group. *P < 0.05 vs. db/m group.
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The pathogenesis of DCD is complex and not very clear,
among which the more definite view is that persistent
inflammation caused by the secretion of a large number of
pro-inflammatory factors and pro-oxidant substances is the
main contributing factor to DCD (40). Activated microglia of
the CNS are major cellular responders to injury or infection,
which may drive or perpetuate CNS inflammation by increasing
the expression of inflammatory molecules, thereby exacerbating
some of these detrimental processes (41). GO and KEGG
pathway analyses showed that inflammation-, immunity-, and
infection-associated terms were enriched in db/db mice
microglia, such as Il17ra, Il6ra, Cmklr1, Nlrp3, Trem2,
Coronavirus disease-COVID-19, Epstein-Barr virus infection,
phagosome and NF-kB signaling pathway. Among immune
cells in the CNS, which has a vital role in propagating
neuroinflammation (42). Numerous evidences suggested that
the activation of Nlrp3 plays a vital role in DCD and other
neurodegenerative diseases (43, 44). Nlrp3 is mainly involved in
neuroinflammation in vivo and in vitro. For example, recent
studies have reported that Nlrp3 can activate Tlr4 signaling,
leading to the neuroinflammatory responses (45), and illustrated
the possible mechanism related to Nlrp3 inflammasome and
peripheral inflammation in microglia of mice, and the
aggravation of diabetes neuroinflammation in the cortex and
hippocampus (46, 47). Additionally, research shows that the
chemokine-like receptor 1 (Cmklr1) is a chemokine like G
Frontiers in Endocrinology | www.frontiersin.org 9
protein-coupled receptor expressed on specific cell populations
in mice and humans, including inflammatory mediators,
dendritic cells, neurons and microglia, regulating chemotaxis
to the sites of inflammation and activation state (48, 49). Lately, it
has been reported that Cmklr1 axis contributed to the
development of diabetic cardiomyopathy on inflammation,
which was primarily mediated by Nlrp3 inflammasome (50).
Triggering receptor expressed on myeloid cells 2 (Trem2) is a
single pass transmembrane receptor that activates a range of
signaling pathways associated with immune function through
ligand binding (51). Trem2 has been used as a microglial
activation marker and a general requirement for its activation
(29, 52). Galectin-3 can bind to the Trem2, activate microglia,
and induce neuroinflammatory responses in an AD mouse
model, our recent study confirmed that inhibition of
endogenous Trem2 ligand ameliorates DCD by inhibiting
oxidative stress and neuroinflammation (53). In addition,
studies have shown that hyperglycemia leads to NF‐kB
activation and triggering the release of proinflammatory
cytokines (54). Cytokines (IL and TNF‐a) expressed and
secreted by microglia in the CNS and are involved in the
regulation of neuroimmune endocrine networks (55). The
histological features of many neurological diseases are mostly
characterized as ‘‘microgliosis’’, which includes alterations in
microglial morphology, change of gene expression, but also
migration, growth and proliferation in response to injury (56).
A B

C D

FIGURE 6 | DEGs analysis reveal altered pathways in microglial cells in db/db mice. Representative GO (A) and KEGG (C) terms of upregulated gene in db/db mice
microglial cells versus db/m microglial cells and representative GO (B) and KEGG (D) terms of downregulated gene in db/db mice microglial cells versus db/m
microglial cells. Significance is indicated as a P value calculated using the Fisher exact test (P< 0.05) and expressed as -log10 (P value).
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A B

C D

E

FIGURE 7 | Subclustering of microglial cells. (A) t-SNE plot showing microglial cells subclusters. (B) t-SNE plot of microglial cell, colour coded according to
genotype. (C) Percentage of cells in each microglial cell cluster. (D) Cell cluster percentages across two experimental groups (db/db and db/m). (E) The heatmap
showing the expression levels of specific genes in microglial cells subclusters.
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Iba-1, a microglia specific marker, has been reported to be widely
used for microglial detection, and increased expression of Iba-1
could suggest microglial activation (57), which was also
confirmed by our Iba-1 immunofluorescent staining results. In
addition, Microglial activation was closely associated with
neurodegenerative diseases, such as AD, Parkinson’s disease,
and multiple sclerosis (40). Interestingly, our KEGG pathway
analyses revealed that Parkinson disease, AD, Huntington
disease and Pathways of neurodegeneration-multiple diseases
were enriched in microglia.

The state of microglia in the CNS changes rapidly with the
change of environment, but its molecular and functional
characteristics are not clear (41). Accumulating evidence
suggests that CNS microglial activation is heterogeneous,
depending on the factors that microglia become activated,
there are three states of microglia, “classical activation,”
Frontiers in Endocrinology | www.frontiersin.org 11
“alternative activation,” and “acquired deactivation” (58).
Classical activation is related to the production of pro-
inflammatory cytokines such as TNF-a, nitric oxide (NO) and
proteases and are also called “M1microglia,”, whereas alternative
activation and acquired deactivation are termed “M2 microglia”
(58). In brief, the M1 activation state is defined as the pro-
inflammatory M1 phenotypes, and the M2 activation state is
considered to anti-inflammatory or neuroprotective M2
phenotypes. In our results, compared with db/m mice, the
relative abundance of microglia in db/db mice changed
significantly, further analysis of differentially expressed genes
revealed, the inflammation related genes were found to be
upregulated in db/db microglia, which leading us to postulate
that these cells represent pro-inflammatory lesional microglia,
which might be defined as into the phenotypes M1
(proinflammatory). However, simple classification scheme
A

B

C

FIGURE 8 | Gene expression pattern analyses in cluster 1. (A) Feature plot of inflammation marker genes Gadd45b, Cd14 and Tlr2 in cluster 1. (B) Violin plots
revealed the expression of inflammation marker genes for 1 cluster. (C) The enriched GO terms of cluster 1 are shown.
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might lump together heterogenous sets of microglia, the
information obtained from histological research might be
limited or even misunderstood.

Next, we identified twelve microglial subpopulations
according to microglia with different activation states/biological
pathways, which possessed unique molecular signatures in
response to injury. We found that cluster 1 expressed the
higher levels of Gadd45b gene, which was a member of the
gene family related to apoptosis, and DNA damage repair (13).
Studies have demonstrated that Gadd45b might be critically
involved in neuroinflammation related neurological diseases
(59, 60). Interestingly, our previous study confirmed Gadd45b
modulated hippocampal neuroinflammation in animal model of
post-stroke depression (PSD), Gadd45b may have therapeutic
potential for CNS diseases through neuroinflammation (27). Of
note, we found that inflammation associated terms were
enriched in cluster 7, and express Nlrp3, Lgals3, Cxcl2, Cxcl10,
Cxcl16 and inflammatory cytokine interleukin 1 (Il1a, Il1b), as
well as chemokines Ccl4 and Ccl3. Additionally, regulation of
immune system process, inflammatory response, positive
regulation of I-kb kinase/NF-kB signaling and NF-kB
Frontiers in Endocrinology | www.frontiersin.org 12
transcription factor activity were enriched in cluster 7. We
speculate that they might be a specialized group that uniquely
initiates the inflammatory response. For example, Il1b can cause
neurotoxicity (61), chemokines Ccl4 attracts infiltrating immune
cells can exacerbate pathology. Lgals3 is the gene of galectin-3,
our recent study showed that serum galectin-3 levels were
remarkably increased not only in the of T2DM patients with
mild cognitive impairment (MCI), but also in the serum and
brain of T2DM mice, and we also confirmed galectin-3 was
associated with neuroinflammation, oxidative stress, impaired
learning and memory (53, 62). Our results suggested that
galectin-3 could be a promising therapeutic target candidate
for treating DCD. The functions of Ms4a family genes found in
cluster (0, 1, 3, 5, 6, 8, 9) are currently not well defined and are
primarily are transmembrane chemosensors (63), some of which
regulate immune cell functions (64). Ms4a family members are a
key modulator of Alzheimer’s disease risk (65), nevertheless, the
functions of Ms4a family members in the disease is not
understood. In addition, Mif in cluster 5 microglia is closely
linked to the growth, motility, inflammation and immune
regulation of immune cells in the CNS. Ldha and Tpi1 were
A

B

C

FIGURE 9 | Gene expression pattern analyses in cluster 7. (A) Feature plot of inflammation marker genes Nlrp3, Il1a, Il1b and Cxcl2 in cluster 7. (B) Violin plots
revealed the expression of inflammation marker genes for 1 cluster. (C) The enriched GO terms of cluster 7 are shown.
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related to glycolysis, indicating that the metabolic profile of these
cells has changed. A change from oxidative phosphorylation to
glycolysis and metabolism occurs when microglia are stimulated
by adverse factors (40), and they regulate glucose metabolic
profile after the transition to the active state, presumably to meet
increased energy requirements.

A potential subtype of protective microglia, disease-associated
microglia (DAM) were recently proposed in mice model of AD
(5xFAD), and decipher their dynamics during AD progression
(12). Interestingly, the conversion of microglia from a stable state
to an activation status is thought to be a continual process, which
includes two phases. The Trem2 independent stage (DAM1),
involving activation of Tyrobp, Apoe, and B2m, and
downregulation of the Cx3cr1 and P2ry12/P2ry13 genes,
followed by the Trem2 dependent stage (DAM2) including
upregulation of Cst7, Lpl, and CD9 genes (12). Research showed
that DAM mitigates the disease through enhancing phagocytosis
in the late stage of AD (12). In addition, single-cell analysis
confirmed DAM have been identified in normal aging and in
models of neurodegenerative disease, suggesting that DAM
represent a general response to neurodegenerative diseases (66).
Interestingly, we did not detect protective microglia associated
with neurodegeneration in diabetes. DCDmay be an early stage of
dementia with MCI, or cognitive impairment due to diabetes
related cerebrovascular damage could serve as an explanation.
Whereas, our study found pro-inflammatory DAM emerges in
hippocampus of T2DM mouse model and are characterized by
expression of pro-inflammatory genes (Tlr2, Ptgs2, and Il1b) and
regulators (NF-kB, Stat, and RelA) (13). Over all, our study
discovers previously unknown heterogeneity of microglia, a
potential detrimental microglia type associated with DCD.
Additionally, understanding the heterogeneity within the DAM
may find new biological opinions into diversity of microglia and
might contribute to the discovery of immunomodulatory
therapeutic targets and drugs for DCD.
CONCLUSION

In conclusion, through single-cell RNA sequencing, we gained a
deeper insight into the heterogeneity of microglial cell
populations in the db/db mice hippocampus. We observed
changes in the abundance of hippocampal cell populations,
most notably microglial cell populations, which confirm the
novel opinion that microglia play a vital role in DCD. Our
findings in this article should be verified in additional early/
intermediate stage DCD models, and to determine their
Frontiers in Endocrinology | www.frontiersin.org 13
relevance in humans, in patient samples. Moreover, further
evaluation of the differentially expressed pathways in
functional experiments is required to assess whether they play
a deleterious or protective role in DCD.
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