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Advanced glycation end-
products are associated with
diabetic neuropathy in young
adults with type 1 diabetes
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Aims/hypothesis: Advanced glycation end-products (AGEs) may contribute to

the development of diabetic neuropathy. In young adults with type 1 diabetes,

we aimed to investigate the association between AGEs and cardiovascular

autonomic neuropathy (CAN) and distal symmetric polyneuropathy (DSPN).

Methods: This cross-sectional study comprised 151 young adults. CAN was

assessed by cardiovascular autonomic reflex tests; lying-to-standing test, deep

breathing test (E/I), Valsalva manoeuvre, and heart rate variability indices; and

the mean square of the sum of the squares of differences between consecutive

R-R intervals and standard deviation of normal-to-normal intervals (SDNN),

high- (HF) and low-frequency (LF) power, total frequency power, and the LF/HF

ratio. DSPN was assessed by light touch, pain and vibration perception

threshold (VPT), neuropathy questionnaires, and objective measures. AGEs

were analysed in four groups using z-scores adjusted for relevant

confounders and multiple testing: i) “glycolytic dysfunction”, ii) “lipid

peroxidation”, iii) “oxidative stress”, and iv) “glucotoxicity”.

Results: A higher z-score of “glycolytic dysfunction”was associated with higher

VPT (4.14% (95%CI 1.31; 7.04), p = 0.004) and E/I (0.03% (95% CI 0.01; 0.05), p =

0.005), “lipid peroxidation”was associated with higher LF/HF ratio (37.72% (95%

CI 1.12; 87.57), p = 0.044), and “glucotoxicity” was associated with lower SDNN

(−4.20% (95% CI −8.1416; −0.0896), p = 0.047). No significance remained after

adjustment for multiple testing.

Conclusions/interpretations: In young adults with type 1 diabetes, increased

levels of AGEs involving different metabolic pathways were associated with
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several measures of CAN and DSPN, suggesting that AGEs may play a diverse

role in the pathogeneses of diabetic neuropathy.
KEYWORDS

advanced-glycation end-products, AGEs, type 1 diabetes, cardiovascular autonomic
neuropathy, peripheral neuropathy, distal symmetric polyneuropathy
Introduction

Diabetic neuropathy is a leading cause of morbidity and

mortality in both type 1 and type 2 diabetes (1, 2). The

progressive nature with insidious onset and varying symptoms

and clinical manifestations often lead to delayed diagnosis with

severe and irreversible symptoms (1). Cardiovascular autonomic

neuropathy (CAN) and distal symmetric polyneuropathy

(DSPN) are the most prevalent types of diabetic neuropathy

with varying prevalence reaching up to 35% and 41%,

respectively, in adults with type 1 diabetes (3–7). Previous

studies have identified a high prevalence of definite and

subclinical manifestations of diabetic neuropathy in young

adults with type 1 diabetes (8–12). This suggests that early

screening in adolescence may detect early stages of CAN and

DSPN, where prevention of progression may still be possible.

Although diagnostic methods for both types of neuropathy are

available, it remains unknown which underlying mechanisms

are involved and lead to painful versus insensate symptoms (1).

Hyperglycaemia and metabolic derangements are suggested

to play an important role in the progression of neurological

complications (1, 13). One of the pathogenic pathways described

is the formation of reactive metabolites leading to increased

levels of advanced glycation end-products (AGEs) as a direct

consequence of hyperglycaemia and lipid peroxidation (13–15).

The accumulation of AGEs tends to alter protein function and

thereby the structure of the nerve tissue, contributing to the

development of neuropathy (15).

In the serum of diabetic patients, AGEs are elevated alongside

levels of their main precursors: glucose and the dicarbonyls

methylglyoxal (MG), glyoxal, and 3-deoxyglucosone (3-DG)

(13, 16).

While studies regarding the dicarbonyls 3-DG and glyoxal

and their corresponding AGEs are scarce (13, 17, 18), MG and

MG-derived AGEs (i.e., methylglyoxal-derived hydroimidazolone

1 (MG-H1)) have been associated with the progression of diabetic

neuropathy, retinopathy, and nephropathy in type 1 diabetes.

Likewise, increased plasma levels of MG and MG-H1 have been

associated with diabetic painful peripheral neuropathy in both

type 1 and type 2 diabetes (16, 17).
02
Also, the glucose-derived AGEs, fructose lysine (FL) and

glucosepane, have been identified as strong predictors of

diabetic neuropathy, supporting that high glucose levels may

generally associate with the risk of complications and therefore

have been targeted for treatment (1, 17, 19). However, good

glycaemic control does not necessarily prevent the progression

of diabetic neuropathy (20). Some studies have found

increased levels of MG in both type 1 and type 2 diabetes

independent of blood glucose levels, suggesting that factors

other than hyperglycaemia are involved in late diabetes

complications (14).

Although several AGEs have been associated with diabetic

neuropathy, identifying specific pathways involved in the

pathogeneses of neuropathy is missing. Furthermore, diabetic

neuropathy represents a collection of syndromes, and therefore,

subtypes of neuropathy symptoms may be related to different

dysfunctional pathways.

In this cross-sectional study, we aim to define the metabolic

pathways leading to the formation or accumulation of AGEs and

relate them to measures of CAN and DSPN and thereby to

specify potential pathways associated with distinct neuropathy

signs and/or symptoms. This will be performed in a Danish

population of young adults with type 1 diabetes using objective

sensitive age-matched measuring methods to detect even early

signs of neuropathy.

Methods

Study design and study population

The study was designed as a cross-sectional observational

study and has previously been described in detail (8). In brief,

inclusion criteria were type 1 diabetes and age >17 and <25

years. The patients were recruited from the outpatient clinic at

Steno Diabetes Center Copenhagen, Gentofte, Denmark. Of the

340 eligible participants who received an invitation to

participate, 156 were accepted. Five participants were excluded

due to missing biochemical measures, leaving 151 included in

the study. Ethical approval was obtained from the Danish

Research Ethics Committee (ID No. H-15006967), and written
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informed consent was obtained from all patients prior

to examination.
Measures of diabetic neuropathy

Measures of DSPN were assessed and categorized according

to recommendations made by the Toronto Diabetic Neuropathy

Expert Group (2) and included the following:
Fron
-Symptoms of DSPN were assessed by the questionnaires

Brief Pain Inventory (BPI) and Michigan Neuropathy

Screening Instrument (MNSI). Diabetic neuropathy

was, in the BPI questionnaire, defined as the presence

of pain in both legs and/or both arms peripherally and,

in the MNSI questionnaire, as a score of ≥7 (21).

-Signs of DSPN were assessed by established measures

including light touch perception using a 10-g

monofilament, pain perception using a pinprick

device, and vibration perception threshold (VPT)

determined by using a biothesiometer. To assess

abnormal VPT tests, age-stratified perception

thresholds were used (12). The tests were pathological

if the results were abnormal bilaterally.

-Objective measuring methods using the non-invasive

device Sudoscan™ to test for electrochemical skin

conductance (ESC) on hands and feet and the

handheld NC-stat® to measure sural nerve conduction

velocity (SNCV) and sural nerve amplitude potential

(SNAP).
To identify abnormal results for the ESC test and measures

of SNCV and SNAP, age- and gender-stratified thresholds (22)

and age- and height-stratified thresholds were applied,

respectively. When abnormalities in SNCV, SNAP, or both

bilaterally were found, the measure of sural nerve conduction

(SNC) was used.

The definition of DSPN was stratified into four categories:

“possible DSPN” if the patient had symptoms or signs according

to the abovementioned measures, “probable DSPN” in the

presence of symptoms and signs, and “confirmed DSPN” if the

patient had a combination of either abnormal test for SNC or

ESC and the presence of either symptoms or signs. The presence

of abnormal SNC or ESC without symptoms or signs was

defined as “subclinical DSPN”.

CAN was evaluated by three standard cardiovascular

autonomic reflex tests (CARTs) and measures of 5-min resting

heart rate variability (HRV) using the device Vagus™ and

performed in a quiet examination room in the afternoon.
tiers in Endocrinology 03
After 5 min of supine rest, HRV measures were analysed in

time and frequency domain from 5-min resting heart rate (HR).

Time domain included the mean square of the sum of the

squares of differences between consecutive R-R intervals

(RMSSD) and standard deviation of normal-to-normal

intervals (SDNN). Frequency-domain analyses included low-

frequency power band (LF), high-frequency power band (HF),

total frequency power (Total), and the ratio of low-frequency

power/high-frequency power (LF/HF ratio).

After the 5-min resting HRV test, the three CARTs

for diagnosing CAN were performed and included the

lying-to-standing test (30:15), the deep breathing test (E/I),

and the Valsalva manoeuvre (23). The participants were

asked to restrain from vigorous exercise 24 h prior to the

examination and intake of caffeine on the specific day

of examination.

The diagnosis of “early CAN” and “definite CAN” was given

according to age-stratified thresholds (3) if one of the three

CARTs was abnormal and if two or three tests were

abnormal, respectively.
Dicarbonyls and advanced glycation
end-products

The plasma levels of AGEs were grouped according to the

main pathways of AGE formation (13) that proceed via glucose

and the reactive dicarbonyls MG, glyoxal, and 3-DG:
i. “Glycolytic dysfunction” includes the AGEs derived

from methylglyoxal: MG-H1, Ne-(carboxyethyl)-

lysine (CEL), methylglyoxal-lysine dimers (MOLD),

and argpyrimidine. As methylglyoxal comes

from glycolysis, increased methylglyoxal and

methylglyoxal-derived AGEs will represent a

dysregulation of glycolysis.

ii. “Lipid peroxidation” includes the glyoxal-derived

AGEs: glyoxal-derived hydroimidazolone 1 (G-H1)

and Ne-(carboxymethyl)-lysine (CML). Glyoxal and

glyoxal-derived AGEs derive from the degradation of

lipids, and therefore increased levels of glyoxal and

glyoxal-derived AGEs will represent increased

oxidation of lipids.

iii. “Oxidative stress” includes AGEs generated from the

direct interaction of reactive oxygen species (ROS)

with methionine: methionine sulfoxide.

iv. “Glucotoxicity” includes AGEs and dicarbonyls

derived directly from the modification of amino

acids by glucose: fructose lysine (FL), glucosepane,

and 3-DG.
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v. “Dicarbonyls”: MG, glyoxal, and 3-DG. The dicarbonyls

were also analysed separately in a fifth group:
Clinical data collection

As described previously, data on medication were extracted

from hospital electronic records, and lifestyle factors including

smoking status and weekly amount of exercise were recorded in

a questionnaire filled in by the patients.

Blood pressure and heart rate were measured after 10 min of

rest using automated oscillometric blood pressure recorders and

calculated as the mean of three consecutive measures performed

with intervals of 1 min. Height and weight were measured with

clothes on and without shoes using a fixed rigid stadiometer and

an electronic scale, respectively.
Biochemical measures

HbA1c, serum total cholesterol, serum high-density

lipoprotein (HDL) cholesterol, serum triglycerides, and plasma

creatinine were measured from non-fasting venous blood

samples and collected on the examination day. HbA1c was

analysed by high-performance liquid chromatography on a

Tosoh G7 (Tosoh Corporation, Tokyo, Japan). Triglycerides,

HDL, and total cholesterol were analysed by standard enzymatic

colorimetry techniques on a Vitros 5600 (Ortho Clinical

Diagnostics, Illkirch-Graffenstaden, France). Serum LDL

cholesterol was calculated using the Friedewald equation.

All biochemical measures were analysed in the laboratory at

Steno Diabetes Center, Denmark, except for the plasma samples

used for the analysis of AGEs and dicarbonyls. The samples were

stored at −80°C at Steno Diabetes Center and transferred on dry

ice to the laboratory at the University of Heidelberg, Germany,

for analysis.
Assessment of glycaemic
variability indices

As described previously, the continuous glucose monitoring

(CGM) sensor Enlite™ (Medtronic, Northridge, CA, USA) was

inserted into the subcutaneous tissue of the abdomen or the

upper arm and was worn for 5 days (24). The capillary finger

blood glucose was monitored four times daily for calibration. To

generate data from the sensors, the software Medtronic

Carelink™ iPro™ was used. To quantify glycaemic variability,

coefficient of variation (CV), standard deviation (SD),

continuous overall net glycaemic action, and mean amplitude
Frontiers in Endocrinology 04
of glucose excursions were used. Time spent in hypoglycaemia

(<3.0 mmol/L), euglycaemia (≥3.0; ¾10.0 mmol/L), and

hyperglycaemia (>10.0 mmol/L) were calculated and presented

in minutes and percentage.
Measurement of dicarbonyls

The dicarbonyl content in plasma was determined by isotope

dilution and tandem mass spectroscopy, following derivatization

with 1,2-diaminobenzene. Briefly, 20 µl of serum was

precipitated by addition of 10 µl of ice-cold 20% (wt/vol)

trichloroacetic acid in 0.9% (wt/vol) sodium chloride (20 µl)

and water (40 µl) (25). An aliquot (5 µl) of the internal standard

(400 nM of [13C2]-Glyoxal, [
13C3]-methylglyoxal, and [13C6]-3-

deoxyglucosone) was then added, and the samples vortex-mixed.

Following centrifugation (14,000 rpm; 5 min at 4°C), 35 µl of the

supernatant was transferred to high-resolution mass

spectrometry (HPLC) vials containing a 200-µl glass interest.

An aliquot (5 µl) of 3% sodium azide (wt/vol) was then added to

each sample followed by 10 µl of 0.5 mM of DB in 200 mM of

HCl containing 0.5 mM of diethylenetriaminepentaacetic acid

(DETAPAC) in water. The samples were then incubated for 4 h

at room temperature, protected from the light. Samples were

then analysed by liquid chromatography–tandem mass

spectrometry (LC-MS/MS) using an ACQUITY™ ultra-high-

performance liquid chromatography system with a Xevo-TQS

LC-MS/MS mass spectrometer (Waters, Manchester, UK). The

column was a Waters BEH C18 (100 × 2.1 mm) and a guard

column (5 × 2.1 mm). The mobile phase was 0.1% formic acid in

water with a linear gradient of 0%–100% 0.1% formic acid in

50% acetonitrile:water over 0–10 min; the flow rate was 0.2 ml/

min, and the column temperature was 5°C. The capillary voltage

was 0.5 kV; the cone voltage was 20 V; the interscan delay time

was 100 ms; the source and desolvation gas temperatures were

150°C and 350°C, respectively; the cone gas and desolvation gas

flows were 150 and 800 L/h, respectively. Mass transitions

(parent ion > fragment ion; collision energy), retention time,

limit of detection, and recoveries were as follows: 3-

deoxyglucosone, 235.0 > 199.1; 14 eV, 4.09 min, 0.36 pmol,

95%, glyoxal, 130.9 > 77.1; 22 eV, 5.28 min, 1.15 pmol, 97%,

methylglyoxal, 145.0 > 77.1; 24 eV, 5.93 min, 0.52 pmol, 98%.

Acquisition and quantification were completed with MassLynx

4.1 and TargetLynx 2.7 (Waters®).
Measurement of protein-free advanced
glycation end-products

Protein-free AGEs in the plasma were determined by isotope

dilution and tandem mass spectroscopy, as previously
frontiersin.org
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described (26). Briefly, an aliquot of plasma (20 µl) was diluted to

500 µl with water and filtered by microspin ultrafiltration (10 kDa

cutoff) at 14,000 rpm for 30 min at 4°C. The ultrafiltrate was then

retained for the free adduct analysis. An aliquot of the sample (ca.

30 µl) was spiked with an equal volume of 0.2% trifluoroacetic acid

(TFA) in water containing the isotopic standards (5–25 pmol).

Normal and isotopic standards were either purchased (Cambridge

Isotope, Polypeptide Laboratories, Iris Biotech) or prepared in-

house, as described previously. Samples were then analysed by LC-

MS/MS using an ACQUITY ultra-high-performance liquid

chromatography system with a Xevo-TQS LC-MS/MS

spectrometer (Waters). Two 5-µm Hypercarb™ columns

(Thermo Scientific, Waltham, MA, USA) in series were used: 2.1

× 50 mm, fitted with a 5 × 2.1 mm pre-column, and 2.1 × 250 mm.

The mobile phases were 0.1% TFA in water and 0.1% TFA in 50%

water. The column temperature and flow rates were 30°C and 0.2

ml/min, respectively. Analytes were eluted using a two-step

gradient, and the columns were washed after each sample with

0.1% TFA in 50% tetrahydrofuran (THF), as described previously

(26). AGEs, including oxidation and nitration markers, were

detected by electrospray positive ionization with multiple reaction

monitoring (MRM). The ionization source temperature was 150°C,

and the desolvation temperature was 500°C. The cone gas and

desolvation gas flows were 150 and 1,000, L/h, respectively. The

capillary voltage was 0.5 kV. Molecular ion and fragment ion

masses, as well as cone voltage and collision energy, were

optimized to ±0.1 Da and ±1 eV for MRM detection of the

analytes. Acquisition and quantification were completed with

MassLynx 4.1 and TargetLynx 2.7 (Waters®).
Statistical analysis

Patient characteristics are represented as means with SD for

normally distributed continuous data, as medians with

interquartile range (IQR) for skewed distributed data, and as

numbers (%) for categorical data.

A standardized z-score was calculated for each of the

following groups of AGEs and dicarbonyls and was examined

as a determinant for neuropathy: i) “glycolytic dysfunction”

(MG-H1, CEL, and MOLD), ii) “lipid peroxidation” (G-H1

and CML), iii) “oxidative stress” (methionine sulfoxide),

iv) “glucotoxicity” (FL, glucosepane, and 3-DG), and

v) “dicarbonyls” (MG, glyoxal, and 3-DG).

Outcomes were all continuous, assessed using linear

regression analyses, and presented as estimates of a one-unit

difference in z-score with 95% CI.

Three models of adjustments were applied: model 1 was

adjusted for age and gender, model 2 was adjusted as model 1 +

for diabetes duration and HbA1c, and model 3 was adjusted as

model 2 + for current smoking, total cholesterol, triglycerides,

systolic blood pressure, and the use of beta blockers.
Frontiers in Endocrinology 05
All analyses used two-sided p = 0.05 as statistically

significant and were adjusted for multiple tests by the

Benjamini–Hochberg procedure (27).

Statistical analyses were performed in SAS 9.4 (SAS Institute,

Cary, NC, USA).
Results

Patient characteristics

The study population included 151 patients (42.4% men)

with a mean age of 22 years (SD 1.6). The mean diabetes

duration was 11 years (SD 5.1), and HbA1c was 66.5 mmol/

mol (IQR 58.0; 77.0). Seventy-two patients (47.7%) were treated

with continuous subcutaneous insulin infusion (CSII), and the

rest were treated with multiple-dose injections (MDIs). All

patients were on insulin (Table 1).

Previously, we investigated the association between

glycaemic variability and diabetic neuropathy in the same

study population (24). Of the included patients, 133 had

CGM. During the 5-day CGM monitoring, mean (SD) CV was

40% (10), median (IQR) SD was 3.9 mmol/L, and time spent on

hypoglycaemia was 35 min (0, 120)/1.0% [0.0; 4.0].

The prevalence of subclinical and possible DSPN was 54.3%

and 3.3%, respectively. DSPN was diagnosed in 2.7%, and none

met the criteria for probable DSPN. The prevalence of CAN and

early CAN was 8.7% and 28.4%, respectively.

The characteristics of the study population are shown

in Table 1.
Dicarbonyls and advanced glycation
end-products

The mean plasma level of MG, glyoxal, and 3-DG was 116.3

nmol/L (111.3; 127.6), 215.7 nmol/L (186.1; 253.4), and 57.8

nmol/L (54.3; 62.6), respectively.

The associations between groups of AGEs and measures of

CAN and DSPN are presented in Figures 1–5 with forest plots as

estimates and 95% CI.

Cardiovascular autonomic
neuropathy measures

A higher z-score of “glycolytic dysfunction” was associated

with a higher E/I also when adjusted in model 3 (0.03% (95% CI

0.01; 0.05), p = 0.005) (Figure 1).

“Lipid peroxidation” was associated with a higher

LF/HF ratio. Further adjustment in model 3 did not

affect the association (37.72% (95% CI 1.12; 87.57),

p = 0.044) (Figure 2).
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A higher z-score of “glucotoxicity” was associated with lower

values of the HRV indices SDNN, RMSSD, LF, HF, and total

power in model 1 (Figure 3). Only for SDNN did significance

remain after further adjustment in model 3 (−4.20% (95% CI

−8.14; −0.09), p = 0.047). “Dicarbonyls” was also associated with

lower values of the HRV indices. However, significance was lost

in models 2 and 3 (Figure 4). In addition, higher z-scores of

“glucotoxicity” and “dicarbonyls” were both associated with

higher HR when fully adjusted in model 3 (1.31% (95% CI

0.16; 2.47), p = 0.027) and 1.51% (95% CI 0.54; 2.47), p =

0.003), respectively).

When applying the Benjamini–Hochberg procedure to account

for multiple testing, all associations found between the groups of

AGEs and dicarbonyls and measures of CAN lost significance.

No associations were found between measures of “oxidative

stress” and any measures of cardiovascular autonomic

neuropathy (Figure 5).
Peripheral neuropathy measures

A higher z-score of “glycolytic dysfunction” was associated

with a higher VPT in all three models (4.14% (95% CI 1.31;

7.04), p = 0.004) (Figure 1), but not when correcting for multiple

tests. “Lipid peroxidation” was also associated with a higher VPT

in models 1 and 2, but not when fully adjusted in model 3

(12.90% (95% CI −2.30; 30.45), p = 0.102) (Figure 2).

A higher z-score of “glucotoxicity” was associated with

higher SNCV. However, the associations lost significance after

adjustment in models 2 and 3 (Figure 3).

No associations were found between measures of peripheral

neuropathy and “oxidative stress” or “dicarbonyls”.
Discussion

In this cross-sectional study of 151 young adults with type 1

diabetes, we found that a number of pathways leading to AGE

formation are activated in diabetic neuropathy. However, the

relative contribution of glucose- and lipid-derived AGEs varied

between the different measures of diabetic neuropathy, suggesting

that both CAN and DSPN represent multiple symptoms involving

more than one dysfunctional pathway. We found that increased

levels of methylglyoxal- and glyoxal-derived AGEs representing

changes in glycolytic function and lipid peroxidation, respectively,

were associated with higher vibration perception thresholds. For

CAN measures, we found that increased “glucotoxicity”,
TABLE 1 Characteristics of the study population.

Clinical characteristics Mean (SD)/median (IQR)/N
(%)

N 151

Age (years) 22 (1.6)

Male (%) 64 (42.4)

Diabetes duration (years) 11.3 (5.1)

CSII treatment (%) 72 (47.7)

Current smoker (%) 33 (21.9)

Systolic blood pressure (mmHg) 125.3 (11.5)

HbA1c (mmol/mol) 67.0 (58.0;77.0)

HbA1c (%) 8.3 (7.4; 9.2)

Cholesterol (mmol/L) 4.5 (1.2)

Triglycerides (mmol/L) 1.1 (0.8; 1.6)

LDL (mmol/L) 2.6 (0.9)

Urine albumin/creatinine ratio (mg/
g)

6 (4.0; 14.0)

eGFR (ml/min/1.73 m3) 123.9 (116.6; 129.3)

Medication

Insulin (%) 151 (100)

Metformin (%) 1 (0.7)

Other glucose-lowering drugs (%) 1 (0.7)

Antihypertensive treatment (%) 6 (4.0)

Beta-blocker treatment n (%) 2 (1.3)

Lipid-lowering treatment (%) 2 (1.3)

Psychotropics (%) 6 (4.0)

CAN measures

Definite CAN (%) 13 (8.7)

Early CAN (%) 42 (28.4)

DSPN measures

Confirmed DSPN (%) 4 (2.7)

Subclinical DSPN (%) 82 (54.3)

Probable DSPN (%) 0 (0)

Possible DSPN (%) 5 (3.3)

BPI questionnaire

Painful neuropathy (% answered
yes)

3 (2.0)

MNSI questionnaire

MNSI neuropathy (score ≥ 7 points) 0 (0)

Serum dicarbonyls levels

Methylglyoxal (nmol/L) 116.3 (111.3; 127.6)

Glyoxal (nmol/L) 215.7 (186.1; 253.4)

3-Deoxyglucosone (nmol/L) 57.8 (54.3; 62.6)
Data are given in means (SD), medians (IQR), or proportions %.
SD, standard deviation; IQR, interquartile range; CSII, continuous subcutaneous insulin
infusion; LDL, low-density lipoproteins; eGFR, estimated glomerular filtration rate; CAN,
cardiovascular autonomic neuropathy; DSPN, distal symmetric polyneuropathy; BPI,
Brief Pain Inventory; MNSI, Michigan Neuropathy Screening Instrument.
frontiersin.org

https://doi.org/10.3389/fendo.2022.891442
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Al-Saoudi et al. 10.3389/fendo.2022.891442
representing glucose-derived AGEs, was associated with higher

HR and lower SDNN. “Dicarbonyls” was also associated with

higher HR. However, after adjustments for multiple testing, no

significant associations remained.

Previous studies in experimental models of diabetes as well

as in diabetic humans have emphasized the importance of AGEs

and their precursors, the reactive dicarbonyls, for the

development of diabetic complications (13, 28). In diabetic

neuropathy, disturbances in metabolic pathways caused by

hyperglycaemia are believed to play a causative role. The

higher glucose flux leads to increased formation of dicarbonyls

mainly from glycolysis intermediates and lipid peroxidation

(13). The formation and accumulation of reactive dicarbonyls

are expected to be higher in neuronal tissue, as its primary

source of energy is glucose (28). Moreover, increased formation

of reactive oxygen species (ROS) leading to oxidative stress may
Frontiers in Endocrinology 07
contribute to neuronal dysfunction as ROS indirectly inhibits

glyoxalase 1 (GLO-1) activity, which plays a role in the

metabolization of dicarbonyl species (28).

In type 2 diabetes, studies have not presented uniform

results when investigating the association between the reactive

dicarbonyl, methylglyoxal, and diabetic neuropathy. Increased

levels of plasma methylglyoxal have been associated with

diabetic painful peripheral neuropathy by modifications of the

voltage-gated nociceptor-specific sodium channel Nav1.8, which

is associated with enhanced electrical excitability and facilitates

firing of nociceptive neurons, thereby resulting in hyperalgesia

(16). A recent prospective observational study of 1,256 new-

onset type 2 diabetes patients found that higher levels of

methylglyoxal are a risk factor for the development of diabetic

polyneuropathy as assessed by the MNSI questionnaire (29).

However, no association between serum methylglyoxal and
FIGURE 1

Forest plot of the associations between “glycolytic dysfunction” and measures of diabetic neuropathy. Results are presented as estimates and
95% confidence intervals. Estimates show the percentage change in the outcomes for an increase of one unit of “glycolytic dysfunction”.
Studies with confidence interval crossing the vertical line are inconclusive. Model 1 adjusted for age and gender, model 2 adjusted as model 1 +
diabetes duration and HbA1c, and model 3 adjusted as model 2 + current smoking, total cholesterol, triglycerides, systolic blood pressure, and
the use of beta blockers. CAN, cardiovascular autonomic neuropathy; HR, heart rate; 30:15, lying-to-standing test; E:I, deep breathing test; VM,
Valsalva Manoeuvre; SDNN, standard deviation of normal-to-normal intervals; RMSSD, root mean square of the sum of the squares of
differences between consecutive R-R intervals; LF, low-frequency power; HF, high-frequency power; DSPN, distal symmetric polyneuropathy;
VPT, vibration perception threshold; SNAP, sural nerve amplitude potential; SNCV, sural nerve conduction velocity; ESC, electrochemical skin
conduction. *p < 0.05.
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diabetic autonomic and peripheral neuropathy was found in the

cross-sectional study at the 6-year follow-up in the same cohort

(30). Thus, increased methylglyoxal levels may play a causal role

in painful neuropathy but not necessarily the other symptoms of

diabetic neuropathy.

In our study, “dicarbonyls” were only associated with

higher HR, but no other measures of CAN or DSPN.

However, plasma levels of dicarbonyls might not represent

dicarbonyl levels in nervous tissue, as it is shown in animal

models that the activity of GLO-1 is low in nervous tissue

compared to others (28). In addition, AGEs derived from

methylglyoxal as well as other dicarbonyl species might play

a major role. In line with this, we found that increased “lipid

peroxidation”, although not statistically significant when fully

adjusted, and “glycolytic dysfunction” representing glyoxal-

and methylglyoxal-derived AGEs, respectively, were positively
Frontiers in Endocrinology 08
associated with worse vibration perception threshold. Previous

clinical studies support the role of methylglyoxal-derived AGEs

in diabetic neuropathy. A prospective cohort study of 216

humans with type 1 diabetes found that skin levels of AGEs

were associated with the progression of diabetic complications

including neuropathy (17, 19). The correlation of MG-H1 with

diabetic neuropathy remained strongly associated when

adjusted for all other risk factors. In addition, increased

serum levels of MG-H1 have been associated with foot heat

and pain detection threshold in patients with long-standing

type 1 diabetes (18). Furthermore, increased serum levels of the

glyoxal-derived AGE, CML, were associated with the

development of small-fibre dysfunction. Despite studies

supporting the role of methylglyoxal- and glyoxal-derived

AGEs in diabetic neuropathy (17–19), it remains unknown

which pathway is causing which symptom, and it does not
FIGURE 2

Forest plot of the associations between “lipid peroxidation” and measures of diabetic neuropathy. Results are presented as estimates and 95%
confidence intervals. Estimates show the percentage change in the outcomes for an increase of one unit of “lipid peroxidation”. Studies with
confidence interval crossing the vertical line are inconclusive. Model 1 adjusted for age and gender, model 2 adjusted as model 1 + diabetes
duration and HbA1c, and model 3 adjusted as model 2 + current smoking, total cholesterol, triglycerides, systolic blood pressure, and the use of
beta blockers. CAN, cardiovascular autonomic neuropathy; HR, heart rate; 30:15, lying-to-standing test; E:I, deep breathing test; VM, Valsalva
Manoeuvre; SDNN, standard deviation of normal-to-normal intervals; RMSSD, root mean square of the sum of the squares of differences
between consecutive R-R intervals; LF, low-frequency power; HF, high-frequency power; DSPN, distal symmetric polyneuropathy; VPT,
vibration perception threshold; SNAP, sural nerve amplitude potential; SNCV, sural nerve conduction velocity; ESC, electrochemical skin
conduction. *p < 0.05.
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explain why one symptom of neuropathy is more distinct than

the others in patients with diabetes, as the studies do not

discriminate the pathways involved; thus, the differences

observed may be spurious.

In our study, “glucotoxicity” was inversely associated with

several HRV indices, indicating autonomic dysfunction. However,

most associations disappeared once adjusted for relevant

confounders. Only a significant and consistent association

between lower SDNN and higher resting HR remained. Also,

“dicarbonyls” was associated with higher resting HR, while “lipid

peroxidation” was associated with a higher LF/HF ratio. These

findings support our hypothesis that a number of dysfunctional

pathways are involved in CAN and implicate that the reactive

metabolites are detrimental to the autonomic nervous system.

However, all the associations were insignificant when adjusted for

multiple testing.

Thus, our study indicates that AGE formation involving

different dysfunctional pathways seems to play a diverse role in
Frontiers in Endocrinology 09
the pathogeneses of early diabetic neuropathy in young adults

with type 1 diabetes in line with the relatively few previous

studies in both type 1 and type 2 diabetes. This supports the

hypothesis that metabolic derangements, rather than

hyperglycaemia per se, may be the main cause contributing to

diabetic complications.
Strengths and limitations

A limitation of this study is the relatively low prevalence of

definite CAN and DSPN in this population of young adults with

type 1 diabetes, which might affect the ability to detect

associations between AGEs and measures of neuropathy.

However, objective measures of neuropathy assessed by novel

and established methods of detecting CAN and DSPN have been

applied, which is a strength of our study, as we have detected

early stages of neuropathy. Further, we have grouped the AGEs
frontiersin.org
FIGURE 3

Forest plot of the associations between “glucotoxicity” and measures of diabetic neuropathy. Results are presented as estimates and 95%
confidence intervals. Estimates show the percentage change in the outcomes for an increase of one unit of “glucotoxicity”. Studies with
confidence interval crossing the vertical line are inconclusive. Model 1 adjusted for age and gender, model 2 adjusted as model 1 + diabetes
duration and HbA1c, and model 3 adjusted as model 2 + current smoking, total cholesterol, triglycerides, systolic blood pressure, and the use of
beta blockers. CAN, cardiovascular autonomic neuropathy; HR, heart rate; 30:15, lying-to-standing test; E:I, deep breathing test; VM, Valsalva
Manoeuvre; SDNN, standard deviation of normal-to-normal intervals; RMSSD, root mean square of the sum of the squares of differences
between consecutive R-R intervals; LF, low-frequency power; HF, high-frequency power; DSPN, distal symmetric polyneuropathy; VPT,
vibration perception threshold; SNAP, sural nerve amplitude potential; SNCV, sural nerve conduction velocity; ESC, electrochemical skin
conduction. *p < 0.05.
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with respect to their main precursors and thereby being able to

specify potential pathways involved in the pathogeneses of

neuropathy. Causal conclusions are, however, difficult to make

due to the cross-sectional design of our study. The small sample

size is another limitation and might affect the power of our

study, thereby not making it generalizable. In addition, the

significance of associations was lost when adjusting for

multiple testing, indicating that the population size limited the

power of analyses. Also, a healthy control group in our study

would have enabled a comparison with age- and gender-

matched non-diabetic young adults. However, this was not in

the scheme of the study.

It is also recommended that participants avoid smoking,

several drugs, and meals before the CARTs and HRV test, but we

did not meet these recommendations, which may therefore affect

CAN measures.
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Conclusion

In young adults with type 1 diabetes, we found that

“glycolyt ic dysfunction” , “ l ipid peroxidation” , and

“glucotoxicity”, all pathways leading to AGE formation,

are involved in both CAN and DSPN. However, the

involvement of the pathways varied between measures of

CAN and DSPN, which reflects the diverse nature of both

types of neuropathy. Thus, our study indicates that AGEs

mainly derived from changes in glycolytic function and lipid

peroxidation may contribute to decreased vibration

sensation, while AGEs derived from glucose are related to

autonomic dysfunction.

Despite the lost associations after adjustments for multiple

testing, our results indicate a possible association between some

AGEs and different measures of neuropathy in a relatively young
FIGURE 4

Forest plot of the associations between “dicarbonyls” and measures of diabetic neuropathy. Results are presented as estimates and 95%
confidence intervals. Estimates show the percentage change in the outcomes for an increase of one unit of “dicarbonyls”. Studies with
confidence interval crossing the vertical line are inconclusive. Model 1 adjusted for age and gender, model 2 adjusted as model 1 + diabetes
duration and HbA1c, and model 3 adjusted as model 2 + current smoking, total cholesterol, triglycerides, systolic blood pressure, and the use of
beta blockers. CAN, cardiovascular autonomic neuropathy; HR, heart rate; 30:15, lying-to-standing test; E:I, deep breathing test; VM, Valsalva
Manoeuvre; SDNN, standard deviation of normal-to-normal intervals; RMSSD, root mean square of the sum of the squares of differences
between consecutive R-R intervals; LF, low-frequency power; HF, high-frequency power; DSPN, distal symmetric polyneuropathy; VPT,
vibration perception threshold; SNAP, sural nerve amplitude potential; SNCV, sural nerve conduction velocity; ESC, electrochemical skin
conduction. *p < 0.05.
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population with a modest prevalence of neuropathy. This

suggests that AGEs even in the early stages of diabetes may

play a diverse role in the pathogeneses of different types of

diabetic neuropathy.
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