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Differences in structural
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dysfunction revealed by
network-based statistic:
A diffusion tensor imaging study
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Introduction: Type 2 diabetes mellitus (T2DM) has been found to be associated

with abnormalities of the central and peripheral vascular nervous system, which

were considered to be involved in the development of cognitive impairments

and erectile dysfunction (ED). In addition, altered brain function and structure

were identified in patients with ED, especially psychological ED (pED).

However, the similarities and the differences of the central neural

mechanisms underlying pED and T2DM with ED (DM-ED) remained unclear.

Methods: Diffusion tensor imaging data were acquired from 30 T2DM, 32 ED,

and 31 DM-ED patients and 47 healthy controls (HCs). Then, whole-brain

structural networks were constructed, which were mapped by connectivity

matrices (90 × 90) representing the white matter between 90 brain regions

parcellated by the anatomical automatic labeling template. Finally, the method

of network-based statistic (NBS) was applied to assess the group differences of

the structural connectivity.

Results: Our NBS analysis demonstrated three subnetworks with reduced

structural connectivity in DM, pED, and DM-ED patients when compared to

HCs, which were predominantly located in the prefrontal and subcortical areas.

Compared with DM patients, DM-ED patients had an impaired subnetwork with

increased structural connectivity, which were primarily located in the parietal

regions. Compared with pED patients, an altered subnetwork with increased
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structural connectivity was identified in DM-ED patients, which were mainly

located in the prefrontal and cingulate areas.

Conclusion: These findings highlighted that the reduced structural

connections in the prefrontal and subcortical areas were similar mechanisms

to those associated with pED and DM-ED. However, different connectivity

patterns were found between pED and DM-ED, and the increased connectivity

in the frontal–parietal network might be due to the compensation mechanisms

that were devoted to improving erectile function.
KEYWORDS

type 2 diabetes mellitus, erectile dysfunction, diffusion tensor imaging, network-
based statistic, psychological erectile dysfunction
Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic

disorder characterized by hyperglycemia, insulin secretion

dysfunction, and insulin resistance, which can lead to

inflammation, oxidative stress, and endothelial dysfunction (1–

3). T2DM has been identified to be associated with a variety of

nervous system-related diseases and macro- and microvascular-

related complications (4–6). The population-based studies

suggested that the incidence of mild cognitive impairment in

diabetic patients was around 21.8% in China and varied from 28

to 31.5% worldwide (7–9). An epidemiological study suggested

that the prevalence of diabetes was increasing rapidly, and the

prevalence of erectile dysfunction (ED) among diabetic patients

varied from 35 to 90% (10). Compared with the general

population, patients with T2DM have a higher risk for

cognitive decline, which is one of the central nervous system

complications associated with abnormalities of brain function

and structure (11–13). In addition, T2DM patients are at higher

risk of developing male sexual dysfunction, including ED and

retrograde ejaculation, which are two common peripheral

microvascular and neurological complications associated with

oxidative stress-induced penile vascular endothelial cell injury

and peripheral neuropathy (14–17).

ED is defined, in the Diagnostic and Statistical Manual of

Mental Disorders (DSM-V) (18), as the inability to achieve and/

or maintain an adequate erection until the completion of a

sexual activity on 75% of attempts at a partnered sexual activity

for satisfactory sexual intercourse or a marked decrease in

turgidity ≥6 months with unsatisfactory sexual intercourse.

Normal penile erection and detumescence is a complex

neurovascular event that is regulated by the balance between

the contraction and relaxation of cavernous smooth muscles

(19). The etiological factors of ED can be classified as
02
organic (neurogenic, arterial/venous, hormonal, and drug-

induced) and psychological (20). Diabetes mellitus is

considered as an important cause of organic ED (21, 22),

while psychogenic ED (pED) is predominantly and exclusively

attributed to psychological or interpersonal factors, such as

performance anxiety and relat ionship stress (23) .

Hyperglycemia was considered to be associated with the

development of impaired vasodilatory signaling, smooth

muscle cell hypercontractility, and veno-occlusive disorder,

which were all the mechanisms causing ED in T2DM patients

and often led to resistance to current therapy (24, 25).

Endothelial dysfunction was an important mechanism for the

development of T2DM-related ED, and chronic hyperglycemia

might lead to inflammation and contribute to the formation of

reactive oxygen species, which were related to the development

of endothelial dysfunction in T2DM-related ED (24). In

addition, pED has been found to be related to impaired

activity/functional connectivity and abnormal gray matter/

white matter of the brain in recent functional and structural

magnetic resonance imaging (MRI) studies (26–29). However,

the neural mechanisms underlying T2DM, T2DM with ED

(DM-ED), and pED remain unclear.

Diffusion tensor imaging (DTI) is a noninvasive MRI

method that can be used to detect microstructural alterations

of the white matter, which cannot be revealed by conventional

structural MRI scan (30, 31). The integrity of nerve fibers can be

measured by the parameter of fractional anisotropy (FA), which

indicates the strength and direction of water molecules’ motion

within the nerve fibers (32). Decreased FA values (values range

from 0 to 1) indicate impaired microstructural tissue integrity of

the white matter (33). A variety of white matter regions with

microstructural alterations were found in T2DM patients by the

technique of DTI (34). In addition, the structural brain networks

[two elements: nodes defined by automated anatomical labeling
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(AAL) template; edges defined by white matter] of pED were

constructed by the method of graph theory analysis, and the

topological measures were compared with healthy controls

(HCs) in our previous DTI study (26). The results showed that

white matter fiber tracts connected with the left inferior frontal

gyrus(triangular), amygdale, right inferior temporal gyrus, and

rolandic operculum exhibited decreased strength of structural

connectivity in pED patients, which was measured by FA value-

weighted edges in the structural brain network (26).

Network-based statistic (NBS) is a validated nonparametrical

statistical approach for elucidating the organization of brain

while controlling family‐wise error. It is frequently applied to

clinical applications, which can reveal altered connective

strength in the brain network. To further identify different

structural connections between pED and DM-ED, DTI data

were acquired, and the approach of NBS was used in this

study. We hypothesized that these patients would show a

different structural connectivity located in key regions for

sexual behavior regulation of the brain.
Materials and methods

Participants

In this cross-sectional study, a total of 93 patients, including

30 T2DM, 32 pED, and 31 DM-ED patients, were enrolled in

this study. In addition, 47 age- and education-matched HCs

were recruited by local advertisements. The protocol and

informed consent document were approved by the Medical

Ethics Committee of Jiangsu Province Hospital of Chinese

Medicine, Affiliated Hospital of Nanjing University of Chinese

Medicine. Written informed consents were obtained from all

individuals before their participation in this study.

The inclusion criteria for all subjects were as follows: (1) right-

handed, (2) educated for at least 9 years, and (3) aged between 20

and 60 years. The level of HbA1c was measured for the diagnosis

of T2DM, and all participants were asked to fill in the five-item

version of the international index of erectile function (IIEF-5)

questionnaire to determine the presence of ED (35). T2DM

patients met the diagnosis of T2DM according to the latest

criteria published by the American Diabetes Association (ADA)

(2014) (36): (1) fasting plasma glucose (FPG) level ≥7.0mmol/L

or (2) 2‐h oral glucose tolerance test glucose level ≥11.1mmol/L.

Patients with DM met the diagnosis of T2DM based on ADA

criteria with IIEF-5 scores >21. Patients with pED met the

diagnosis of ED based on DSM-V criteria with IIEF-5 scores

≤21 and normal erection during sleeping (normal morning

erection) or masturbation (the penis could maintain an erection

until ejaculation during masturbation) was reported by themselves

as well as normal penile hemodynamics rated by the color duplex

doppler ultrasonography combined with intracavernous injection.

DM-ED patients met the diagnosis of T2DM (within 2 years) with
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the presence of ED (IIEF-5 scores ≤21; abnormal erection during

sleeping and masturbation without obvious psychological factors,

such as depression, anxiety, etc.). HCs were defined as individuals

with normal FPG (<7.0mmol/L), HbA1c (<6.5) level, and IIEF-5

scores >21.

The exclusion criteria for all individuals were as follows: (1)

other types of diabetes, (2) history of severe hyperglycemia

coma and hypoglycemia, (3) major medical illnesses or

complications, such as severe liver, kidney, or cardiovascular

disease or tumors, (4) psychiatric or neurologic disorders, (5)

alcohol or other substance abuse, (6) organic brain lesions, such

as brain injury, cerebrovascular lesions, or tumors, and (7) any

MRI contraindication.
MRI data acquisition

The MRI data were obtained with a 3.0-T MRI scanner

(Siemens, Germany). All participants were instructed to relax

with their eyes closed, keeping their heads still an avoid

deliberate thinking and falling asleep during scanning. High-

resolution sagittal three-dimensional T1-weighted images and

DTI images were acquired with the parameters that have been

described in our previous studies (37–40).
Data preprocessing and network
construction

T1-weighted and DTI data were preprocessed using the

diffusion toolbox of Functional MRI of the Brain software

library (41). Then, whole-brain tractography was performed

for the definition of edges in the brain network using the

software of Diffusion Toolkit. In addition, the AAL template

was used to define the nodes of the brain network (42). The

detailed steps of preprocessing and construction of the whole-

brain white matter network were performed (Figure 1) as

reported in our previous studies (37–40).
NBS analysis

NBS is a statistical method based on the graph theory and is

often used to explore differences of the structural connectivity in

the brain white matter network, which may be related to the

diagnostic statue (43). NBS analysis is usually conducted to

identify subnetworks comprising pairs of nodes and connections

for which the strength of structural connectivity is significantly

different between groups (44, 45). Firstly, two-sample t-tests were

performed for all pairs (90 × 89/2 = 4,005) of nodes to test the null

hypothesis of equality between groups in mean structural

connectivity with respect to the size of interconnected

subnetwork/component of edges rather than individually at
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each connection. Among the structural connections exceeding 2.5

(test–statistic threshold), the search was performed to identify any

connected subnetwork, including a collection of regions and a set

of suprathreshold connections. The size of the identified

subnetwork was determined by the number of suprathreshold

connections it comprised. Secondly, permutation tests were

conducted to calculate the corrected P-value for each network.

The size of the largest subnetwork was recorded, and the null

distribution was generated for calculating the family-wise error-

corrected statistical threshold across the set of all connections.

Finally, the corrected P-value for the identified subnetwork (size =

K) in the un-permuted/actual data was computed as the

proportion of permutations for which the size of the

subnetwork was equal or greater than K. Therefore, NBS is a

statistical approach that controls the family-wise error rate across

all connections of the brain network, which offers more power

than the method of false discovery rate.
Statistical analysis

The group differences of demographic and clinical variables

were compared by using the SPSS software package (IBM, USA).

The data normality was evaluated by Kolmogorov–Smirnov test,
Frontiers in Endocrinology 04
and the variance homogeneity was measured by Levene’s test.

The one-way ANOVA was used to detect demographic and

clinical differences among the three groups, while two sample t-

test was performed to reveal differences of variables between two

groups. The statistical significance threshold was set at P <0.05.

One-way ANOVA and post-hoc analysis with two-sample t-test

were applied to identify the group differences of structural

connectivity in the white matter brain network by the method of

NBS. The connected subnetworks were considered to be significantly

different if the corrected P <0.05 at the whole-network level with the

preliminary statistic threshold 2.5 (50,000 permutations).
Results

Demographic and clinical characteristics

The demographic and clinical characteristics of the three

groups are presented in Table 1. No significant differences were

found in the age and educational level. Patients with pED and

DM-ED had decreased IIEF-5 scores when compared to those

with DM and HCs. In addition, there were no significant

differences in the level of HbA1c between patients with DM

and DM-ED.
TABLE 1 Demographic and clinical characteristics.

Variables DM (n = 30) pED (n = 32) DM-ED (n = 31) HCs (n = 47) F/t P
Age (years) 44.30 ± 8.03 42.69 ± 3.95 43.55 ± 9.82 43.19 ± 7.34 0.25 0.86

Education level (years) 14.80 ± 2.68 14.47 ± 2.51 14.48 ± 2.68 14.45 ± 1.60 0.17 0.92

IIEF-5 scores 23.53 ± 1.11 10.56 ± 5.07 15.23 ± 3.15 22.72 ± 0.68 153.63 <0.00

HbA1c (%) 8.24 ± 2.61 – 9.52 ± 2.52 – -1.94 0.06
frontiersi
P <0.05 was considered to be statistically significant.
DM, diabetes mellitus; pED, psychological erectile dysfunction; DM-ED, diabetic erectile dysfunction; HCs, healthy controls; IIEF, international index of erectile function.
FIGURE 1

Brief flow chart showing MRI data acquisition, preprocessing, construction of structural brain network, and network-based statistical analysis
between groups.
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Differences of structural connectivity
revealed by NBS analysis

As shown in Table 2 and Figure 2, the subnetworks that

showed significant differences between groups were identified.

Compared to HCs, DM patients showed significantly decreased

structural connectivity in a subnetwork comprising four brain

regions (four right and zero left) and three connections (zero

interhemispheric and three intrahemispheric). This subnetwork

involved right middle frontal gyrus (orbital part), thalamus,

putamen, and caudate nucleus. A subnetwork comprising five

brain regions (four right and one left) and four reduced

structural connections (one interhemispheric and three

intrahemispheric) was identified in patients with pED when

compared with HCs. In this subnetwork, the five well-connected

brain regions were the left superior frontal gyrus (medial orbital)

and right superior frontal gyrus (orbital part), inferior frontal

gyrus (orbital part), middle frontal gyrus (orbital part), and
Frontiers in Endocrinology 05
putamen. The NBS analysis also revealed that a subnetwork was

significantly different between DM-ED patients and HCs.

The subnetwork consisted of four brain regions, including

the right middle frontal gyrus (orbital part), thalamus,

putamen, pallidum (four right and zero left) and four reduced

structural connect ions (zero interhemispheric and

four intrahemispheric).

In addition, the DM-ED patients demonstrated a

subnetwork with five brain regions (five right and zero left)

and four increased connections (zero interhemispheric and four

intrahemispheric) when compared with DM patients. The

regions of this subnetwork were located in the right superior

parietal gyrus, inferior parietal gyrus, postcentral gyrus, angular

gyrus, and superior occipital gyrus. Moreover, DM-ED patients

had a different subnetwork comprising five brain regions (two

right and three left) and four increased connections (one

interhemispheric and three intrahemispheric) when compared

with pED patients. The subnetwork consisted of the left middle
TABLE 2 Subnetworks identified to be significantly different among the DM, pED, DM-ED, and HC groups using network-based statistical analysis.

Subnetwork Edge t P

Node 1 Node 2

DM < HCs Right middle frontal gyrus (orbital part) Right thalamus 2.76 <0.05

Right middle frontal gyrus (orbital part) Right putamen 3.43 <0.05

Right middle frontal gyrus (orbital part) Right caudate nucleus 3.30 <0.05

DM > HCs No significant edge was found

pED < HCs Left superior frontal gyrus (medial orbital) Right superior frontal gyrus (orbital part) 2.53 <0.05

Right superior frontal gyrus (orbital part) Right inferior frontal gyrus (orbital part) 3.21 <0.05

Right inferior frontal gyrus (orbital part) Right middle frontal gyrus (orbital part) 4.22 <0.05

Right middle frontal gyrus (orbital part) Right putamen 2.52 <0.05

pED > HCs No significant edge was found

DM-ED < HCs Right middle frontal gyrus (orbital part) Right thalamus 2.81 <0.05

Right middle frontal gyrus (orbital part) Right putamen 3.78 <0.05

Right thalamus Right putamen 3.74 <0.05

Right thalamus Right pallidum 3.12 <0.05

DM-ED > HCs No significant edge was found

DM < DM-ED Right superior parietal gyrus Right inferior parietal gyrus 3.26 <0.05

Right inferior parietal gyrus Right postcentral gyrus 3.16 <0.05

Right superior parietal gyrus Right angular gyrus 3.18 <0.05

Right superior parietal gyrus Right superior occipital gyrus 2.91 <0.05

DM > DM-ED No significant edge was found

pED < DM-ED Left middle frontal gyrus Left caudate nucleus 4.21 <0.05

Left middle frontal gyrus Left anterior cingulate gyrus 3.16 <0.05

Left anterior cingulate gyrus Right median cingulate gyrus 2.70 <0.05

Right median cingulate gyrus Right postcentral gyrus 2.90 <0.05

pED > DM-ED No significant edge was found
frontiersi
To identify the significance of each subnetwork, nonparametric permutation statistic (test statistic threshold = 2.5; 5,000 permutations; P < 0.05) was performed with network-based
statistical correction, and network size was measured with intensity.
DM, diabetes mellitus; pED, psychological erectile dysfunction; DM-ED, diabetic erectile dysfunction; HC, healthy controls.
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frontal gyrus, anterior cingulate gyrus, caudate nucleus, right

median cingulate gyrus, and postcentral gyrus.
Discussion

To the best of our knowledge, this is the first study to explore

the differences of structural connectivity between patients with

pED and DM-ED by the method of NBS analysis. The findings

demonstrated that decreased structural connectivity was found

in patients with DM, pED, and DM-ED when compared with

HCs. The abnormal brain regions were mainly distributed in the

prefrontal and subcortical areas. In addition, DM-ED patients

presented increased subnetworks consisting of parietal regions

and prefrontal–cingulate areas when compared with DM

patients and pED patients, respectively. These findings

highlighted the importance of structural network analysis in

understanding the different central neural mechanisms

underlying diabetic and psychological ED.

In this study, we used DTI data to investigate the different

topological properties of brain network between pED and DM-

ED. Abnormal structural connectivity of white matter in the

brain network were found in DM, pED, and DM-ED patients.

The microstructural changes of white matter were speculated to

be caused by the compromise of myelin sheath and the

impairment or decrement of axons, which might lead to

decreased neuronal signal transmission (34). The measure of

FA, representing white matter integrity, is more sensitive than

structural MRI metrics (33). DTI can detect and quantify subtle

abnormalities of white matter before those are detectable by

conventional structural MRI scans (30). Therefore, these

findings might serve as imaging biomarkers for early

diagnosis, monitoring disease progression, and response to

therapy of brain disorders (46–48).
Frontiers in Endocrinology 06
In recent years, DTI has been actively used in the

investigation of brain structural connectivity alterations in

sexual dysfunction patients including ED and premature

ejaculation to understand the neuropathophysiology of these

two disorders related to some psychological factors (26, 40). Our

previous study showed that pED patients had damaged white

matter in the left prefrontal and limbic cortex by the method of

graph theoretical analysis (26). In addition, white matter

microstructural changes were also found in pED patients by

the method of tract-based spatial statistics based on DTI data

(49). In this study, both pED and DM-ED patients showed lower

structural connectivity in the prefrontal and subcortical areas

when compared with HCs. Reduced structural connectivity was

identified in the left superior frontal gyrus, right frontal regions,

and putamen in pED patients, while DM-ED patients exhibited

decreased structural connectivity in the right middle frontal

gyrus, thalamus, putamen, and pallidum. This finding suggested

that pED patients had more impairments in the frontal regions;

however, DM-ED patients had more abnormalities in the

subcortical areas. Previous studies demonstrated that the

subcortical areas and, in particular, the thalamus seemed to be

susceptible to T2DM. In addition, pED, owing predominantly to

psychological factors including anxiety, depression, and

introversion, was found to be more vulnerable to structural

and functional changes in the prefrontal regions (26, 27, 38).

Therefore, our findings were in agreement with the central

neural mechanisms of pED and DM in previous neuroimaging

studies (11, 38, 50).

The putamen was a key subcortical region receiving inputs

from the prefrontal regions and projecting to other portions of

the subcortical areas (51). The putamen, a critical component of

the reward network, was considered to facilitate the integration

of information from different brain areas and played an

important role in reward-related behaviors (52). Sexual
FIGURE 2

Subnetworks showing differences among the DM, pED, DM-ED, and HC groups using network-based statistical analysis. L, left; R, right; DM,
diabetes mellitus; pED, psychogenic erectile dysfunction; DM-ED, diabetic erectile dysfunction; HCs, healthy controls.
frontiersin.org
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behavior was a subjectively pleasurable experience and activity

which, in the putamen, could be triggered by visual sexual

stimuli, which acted like rewarding stimuli (53–55). In previous

neuroimaging studies, activation in the putamen was found to be

associated with male sexual arousal and penile turgidity (56, 57).

The interactions between the prefrontal and putamen were

known to be important for reward and sexual behavior (58,

59). Impaired gray matter of the putamen was found in pED

patients (60). The structural connectivity between the prefrontal

and putamen might be abnormal and associated with the

underlying neural mechanisms of pED. With the exception of

the putamen, more subcortical regions, including thalamus and

pallidum, were found to have reduced structural connectivity in

DM-ED patients. The thalamus was considered as an integration

center for different brain regions, and it was found to be a critical

structure for cognitive dysfunction in T2DM patients (61, 62).

Decreased FA value was found in the thalamus in diabetes

mellitus patients when compared with HCs, and the decreased

FA was associated with worse neurocognitive performance of

patients (63). Both the putamen and pallidum were two

important components of the striatum, which played a key role

in various brain functions, including cognitive function and

reward, through the cortico-striato-thalamo-cortical pathway

(64–66). T2DM was often accompanied with ED, which might

be also associated with the structural abnormalities in the brain as

manifested by decreased structural connectivity in the striato-

thalamo-frontal circuit.

In this study, increased structural connectivity was found in

the frontal–parietal network of DM-EDwhen compared with DM

and pED. The frontal–parietal network played a vital role in

cognitive function, including attention, executive function, and

working memory, and it was often activated by executive

function-related tasks (67). In previous studies, the inferior

parietal lobule was activated in response to visual sexual stimuli,

and the regional cerebral blood flow of this region was found to be

positively correlated with the level of penile tumescence (56, 68).

The initiation and level of penile tumescence in response to visual

sexual stimuli was controlled by the frontal–network (69). In

addition, increased activation was found in the frontal–parietal

network in youth with type 1 diabetes when compared with HCs

(70). Therefore, the increased structural connectivity in the

frontal–parietal network might indicate compensatory changes

for DM-ED patients. However, the complex mechanisms

underlying the compensatory changes needed to be explored in

further studies with a larger sample size.

In addition, several limitations should be taken into

consideration in this study. Firstly, the relatively small sample

size and cross-sectional study might limit the generalizability of

these findings. Secondly, more demographic and clinical

characteristics should be obtained, and their relationships with

altered structural connectivity in the brain network should also

be explored in our future studies. Finally, future studies entailing

longitudinal studies with treatment were needed to evaluate the
Frontiers in Endocrinology 07
alterations in brain structural connectivity under treatment and

might provide new insight into the treatment strategy of ED.
Conclusion

In summary, this might be the first study to investigate the

differences of structural connectivity between diabetic and

psychological ED by the method of NBS analysis based on DTI

data. Our results showed that both DM-ED and pED had decreased

structural connectivity in the frontal-subcortical regions. In

addition, DM-ED patients presented increased structural

connectivity in the frontal–parietal network, which might be a

compensatory mechanism. These findings provided the first

evidence of the common and different central neural mechanisms

between diabetic and psychological factors related ED.
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