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Maternal diabetes is associated with pregnancy complications and poses a serious health
risk to both mother and child. Growing evidence suggests that pregnancy complications
are more frequent and severe in pregnant women with pregestational type 1 diabetes
mellitus (T1DM) and type 2 diabetes mellitus (T2DM) compared to women with gestational
diabetes mellitus (GDM). Elucidating the pathophysiological mechanisms that underlie the
different types of maternal diabetes may lead to targeted strategies to prevent or reduce
pregnancy complications. In recent years, microRNAs (miRNAs), one of the most
common epigenetic mechanisms, have emerged as key players in the pathophysiology
of pregnancy-related disorders including diabetes. This review aims to provide an update
on the status of miRNA profiling in pregnancies complicated by maternal diabetes. Four
databases, Pubmed, Web of Science, EBSCOhost, and Scopus were searched to identify
studies that profiled miRNAs during maternal diabetes. A total of 1800 articles were
identified, of which 53 are included in this review. All studies profiled miRNAs during GDM,
with no studies on miRNA profiling during pregestational T1DM and T2DM identified.
Studies on GDM were mainly focused on the potential of miRNAs to serve as predictive or
diagnostic biomarkers. This review highlights the lack of miRNA profiling in pregnancies
complicated by T1DM and T2DM and identifies the need for miRNA profiling in all types of
maternal diabetes. Such studies could contribute to our understanding of the
mechanisms that link maternal diabetes type with pregnancy complications.

Keywords: microRNAs, pregnancy, type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus
INTRODUCTION

Maternal diabetes is associated with an increased risk of pregnancy complications and is a
significant cause of morbidity for both mother and child (1–3). The prevalence of diabetes
during pregnancy is increasing globally, paralleling the obesity and type 2 diabetes mellitus
(T2DM) epidemics (4). According to recent estimates, ~16.7% of live births (21.1 million) are
associated with maternal diabetes, of which 80.3% are due to gestational diabetes mellitus (GDM),
10.6% due to pre-existing type 1 diabetes mellitus (T1DM) or T2DM, and 9.1% due to T1DM and
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T2DM first detected in pregnancy (5). All types of maternal
diabetes are associated pregnancy complications, with several
studies reporting that the frequency and severity of adverse
pregnancy outcomes are related with the degree of
hyperglycaemia (6, 7). Women with pregestational T1DM and
T2DM have a higher risk of pregnancy complications including
fetal and neonatal loss, congenital malformations, preterm
delivery, macrosomia, preeclampsia and caesarean deliveries,
compared to women with GDM (8, 9). The more severe effects
of pregestational diabetes compared to GDM are most likely
attributed to the pre-conceptual hyperglycaemic environment,
longer intrauterine exposure to hyperglycaemia, and the different
pathophysiological mechanisms that underlie the different types
of maternal diabetes (10, 11).

MiRNAs are short, highly conserved, non-coding RNA
molecules that are approximately 22 nucleotides in length.
They were first identified in Caenorhabditis elegans in 1993
(12) and have emerged as powerful epigenetic mediators of
diverse biological processes including development,
proliferation, differentiation, apoptosis and metabolism (13).
To date over 2 500 miRNAs have been identified in humans
(14, 15), which together regulate ~ 60% of genes in the genome
(Zhang and Wang, 2017). MiRNAs regulate gene expression
through post-transcriptional mechanisms, by binding to the 3’
untranslated region (UTR) of messenger RNA (mRNA) and
inducing degradation or by translational repression of the
mRNA transcript (16). Furthermore, recent studies have
proposed an important role for circulating miRNAs in cell-to-
cell communication, suggesting that these extracellular miRNAs
may similarly regulate biological processes (17, 18). The
dysregulated expression of miRNAs is associated with the
development of metabolic disease and conditions including
cancer, obesity, T2DM and cardiovascular disease (19; 20).

In recent years, miRNAs have been identified as key
regulators of metabolic adaptation during pregnancy (21–23).
They regulate several biological processes that are critical during
pregnancy and may reflect the physiological state of the
pregnancy and fetal development. A growing body of evidence
have reported on the association between maternal miRNAs and
pregnancy complications, including placental weight (24),
placental abruption (25), placental previa (26), preeclampsia
and gestational hypertension (27), and intrauterine growth
restriction (28), macrosomia (29) and GDM (30). Therefore,
miRNA profiling may aid in elucidating the pathophysiological
mechanisms that underlie the different types of maternal
diabetes. This review aims to provide an update on the status
of miRNA profiling in pregnancies complicated by maternal
diabetes. Four databases, Pubmed, Web of Science, EBSCOhost,
and Scopus, were searched to identify published studies
reporting miRNA profiling during maternal diabetes between
the date of inception to January 2022. The search terms “type 1
diabetes”, “type 2 diabetes”, “gestational diabetes mellitus”,
“pregestational diabetes”, “maternal diabetes”, “microRNA”,
and “pregnancy”, including corresponding synonyms and
associated terms for each word were used. Studies were
considered eligible if they were original articles, investigated
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miRNA patterns during maternal diabetes, and if the study
was published in English. Reference lists of included studies
were also searched to identify other potentially eligible studies.
CHARACTERISTICS OF
INCLUDED STUDIES

A total of 1800 articles were identified from the search strategy,
of which 53 met the inclusion criteria and are included in
the review (Figure 1). The 53 included studies were case-
control studies on GDM conducted between 2011 and
2022 (Table 1). Studies were conducted across five continents
(Africa, Asia, Australia, Europe and North America), with
studies conducted in different countries, such as Australian
(n = 2), Canada (n = 1), China (n = 33), Estonia (n = 1),
Egypt (n = 1), Germany (n = 1), Mexico (n = 3), Iran (n = 1), Italy
(n = 2), Italy/Spain (n = 1), South Africa (n = 1), Spain (n = 1),
Turkey (n = 3), United States of America (USA) (n = 1) and
different places in Europe (n = 1). The sample size of studies
ranged from three to 204 women. Studies profiled miRNAs in
different biological sources including human umbilical vein
endothelial cells (HUVECs) (n = 2), omental adipose tissue
(n = 1), plasma (n = 10), placenta/plasma (n = 2), placenta
(n = 9), placenta/plasma exosomes/skeletal muscle tissue (n = 1),
placenta/whole blood (n = 2), placental-derived mononuclear
macrophages (n = 1), serum (n = 16), serum/placenta (n =
1), skeletal muscle tissue (n = 1), urine (n = 1) and whole blood
(n = 7). Different measurement platforms and techniques were
employed across studies. Studies profiled miRNAs using
quantitative real-time PCR (qRT-PCR) with SYBR Green (n =
FIGURE 1 | Flow diagram showing selection of studies for inclusion in the
review.
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TABLE 1 | Studies profiling microRNAs in pregnancies complicated by maternal diabetes.

Author Country Study
design

Gestational
age (weeks)

GDM diag-
nostic criteria

Sample
size

Biologicalsource Method Normalization Outcomes (GDM vs control)

(31) Egypt Case-
control

Third
trimester

NR GDM =
109
Controls =
103

serum TaqMan
qRT-PCR

cel-miR-39 ↑ miR-223 (p<0.001)

(32) Turkey Case-
control

24-28 ADA, 2010 GDM = 30
Controls =
30

plasma TaqMan
qRT-PCR
Dynamic
Array
Integrated
Fluidic
Circuits

NR ↑ miR-7-5p (p<0.05), miR-128, miR-
129-5p, miR-17-5p, miR-34c-5p, miR-
191-5p, miR-29b-3p, miR-384, miR-
143-5p, miR-1, miR-342-3p, miR-
142-3p;
↓ miR-124-3p, miR-125b-5p, miR-
137, miR-139-5p, miR-152, miR-210,
miR-24-3p, miR-375, miR-486-5p,
miR-9-5p, miR-16-1-3p, miR-26b-3p,
miR-214-3p, miR-29a-3p, miR-328,
miR-222-5p, miR-126-5p, miR-21-3p,
miR-132-3p, miR-198, miR-107, miR-
133b, miR-302b-3p, miR-182-5p,
miR-197, miR-218.

(33) China Case-
control

37-40 NR GDM =
193
Control =
202

placenta SYBR Green
qRT-PCR

U6 ↑ miR-98 (p<0.05)

(34) China Case-
control

24-28 NR GDM = 85
Controls =
72

plasma TaqMan
qRT-PCR

cel-miR-39,
cel-miR-54,
cel-miR-238

↑ miR-16-5p (p<0.01), miR-17-5p
(p<0.01), miR-20a-5p (p<0.01).
No difference
miR-19a-3p and miR-19b-3p

(35) China Case-
control

Third
trimester

IADPSG, 2010 Discovery
GDM = 8
Controls =
8
Validation
GDM = 20
Controls =
18

placenta Discovery
miRNA
sequencing,
Validation
SYBR Green
qRT-PCR

U6 ↑ miR-202-5p (p<0.01);
↓ miR-138-5p (p<0.01), miR-210-5p
(p<0.05), miR-3158-5p (p<0.01), miR-
4732-3p (p<0.05).

(36) China Case-
control

24-28 Chinese society
for Diabetes
Mellitus

GDM =12
Controls =
12

Whole blood TaqMan
qRT-PCR

U6 ↑ miR-33a-5p (p<0.01)

(37) Italy Case-
control

24-28 NR GDM = 22
Controls =
24

HUVECs SYBR Green
qRT-PCR

beta‐actin ↑ miR-101 (p<0.01)

(38) Canada Case-
control

6-15 Guidelines of
the Society of
Obstetricians
and
Gynaecologists
of Canada,
2016

GDM = 23
Controls =
46

serum SYBR Green
qRT-PCR

cel-miR-39 ↑ miR-520h (p=0.03), miR-1323
(p=0.03), miR-136-5p (p=0.03), miR-
342-3p (p=0.008), miR-29a-3p
(p=0.03), miR-29b-3p (p=0.04), miR-
122-5p (p=0.01), miR-132-3p
(p=0.03), miR-182-3p (p=0.01), miR-
210-3p (p=0.02).
No difference
miR-494-3p (p=0.10), miR-517-5p
(p=0.12), miR-517a-3p, miR-376c-5p,
miR-483-3p.

(39) China Case-
control

NR NR GDM = 20
Controls =
20

whole blood TaqMan
qRT-PCR

U6 ↓ miR-494 (p<0.01)

(40) Turkey Case-
control

33 ± 4.1 IADPSG, 2010 GDM = 19
Controls =
28

whole blood SYBR Green
qRT-PCR

U6 ↓ miR-21-3p (p = 0.008)
No difference
miR-16-5p, miR155-5p.

(41) Turkey Case-
control

33 ± 4.1 IADPSG, 2010 GDM = 14
Controls =
27

whole blood SYBR Green
qRT-PCR

U6 ↓ miR-155-5p (p=0.04)
No difference
miR-16-5p

(Continued)
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TABLE 1 | Continued

Author Country Study
design

Gestational
age (weeks)

GDM diag-
nostic criteria

Sample
size

Biologicalsource Method Normalization Outcomes (GDM vs control)

(42) Mexico Case-
control

First
trimester
(8-20)
Second
trimester
(24-28)
Third
trimester
(32-39)

WHO, 2014 GDM = 27
Controls =
34

urine TaqMan
qRT-PCR

U6 First trimester
↑ miR-16-5p (p<0.05), miR-222-3p
(p<0.05), miR-516b-5p (p<0.05), miR-
517-5p (p<0.05), miR-518-3p (p<0.05)
Second trimester
↑ miR-16-5p (p=0.009), miR-516b-5p
(p=0.043), miR-517-5p (p=0.034),
miR-518-3p (p=0.021)
No difference
miR-222-3p (p=0.387),
Third trimester
↓ miR-16-5p (p<0.01), miR-222-3p
(p<0.01), miR-516b-5p (p<0.05), miR-
517-5p (p<0.05), miR-518-3p (p<0.01)

(43) China Case-
control

24-28 IADPSG, 2010 GDM =35
Controls
=35

whole blood TB Green
qRT-PCR

U6 ↓ miR-4646 (p<0.001), miR-5196
(p<0.001), miR-3679 (p=0.009)
No difference
miR-8061

(44) China Case
control

37.54 ±
1.31-38.12 ±
1.65

IADPSG, 2010 GDM = 30
Controls =
38

Serum TaqMan
qRT-PCR

U6 ↑ miR-377-3p

(45) Mexico Case-
control

First
trimester
Second
trimester
Third
trimester

ADA, 2016 First
trimester
GDM = 13
Controls =
12
Second
trimester
GDM = 24
Controls =
24
Third
trimester
GDM = 20
Controls =
16

serum SYBR Green
qRT-PCR

cel-miR-39 First trimester
↑ miR-183-5p (p<0.002), miR-200b-
3p (p<0.009), miR-125b-5p (p<0.02),
miR-1290 (p<0.03)
Second trimester
↑ miR-183-5p (p=0.03), ↓ miR-200b-
3p (p=0.04).
Third trimester
↑ miR-183 (p<0.0001), ↓ miR-200b-3p
(P<0.001).

(46) China Case-
control

Delivery Endocrine
Society Clinical
Practice
Guideline, 2013

Discovery
GDM = 5
Controls =
5
Validation
GDM = 10
Controls =
10

placenta Discovery
Agilent
Human
miRNA
Microarray
Validation
SYBR Green
qRT-PCR

U6 ↑ miR-508-3p (p<0.01);
↓ miR-27a (p<0.05), miR-9 (p<0.05),
miR-137 (p<0.05), miR-92a (p<0.05),
miR-33a (p<0.05), miR-30d (p<0.05),
miR-362-5p (p<0.05), miR-502-5p
(p<0.05).
No difference
miR-148b, miR-10a, miR-370, miR-
25, miR-15b.

(47) China Case-
control

NR NR Screening
GDM = 3
Controls =
3
Validation
GDM = 15
Controls =
15

placenta/
whole blood

Screening
miRCURY

LNA™

microRNA
Array
Validation
qRT-PCR

NR ↓ miR-96 (p<0.01)

(48) China Case
control

24-28 ADA, 2012 GDM =
110
Controls =
78

Serum SYBR Green
qRT-PCR

U6 ↑ miR-1323 (p<0.05)

(49) Mexico Case-
control

Second-third
trimester

IADPSG, 2010 GDM = 18
Controls =
22

serum TaqMan
qRT-PCR

miR-454 ↑ miR-9-5p (p=0.03), miR-29a
(p=0.01), miR-330 (p=0.004).
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TABLE 1 | Continued

Author Country Study
design

Gestational
age (weeks)

GDM diag-
nostic criteria

Sample
size

Biologicalsource Method Normalization Outcomes (GDM vs control)

(50) Iran Case-
control

16-19 NR GDM = 30
Controls =
30

serum SYBR Green
qRT-PCR

U6 ↑ miR-135a (p=0.001)

(51) Australia Case-
control

≥37 ADIPS, 2015
WHO, 2014

GDM = 12
Controls =
12

placenta,
plasma
exosomes,
skeletal muscle
tissue

Screening
Illumina
TrueSeq
Small RNA
kit
Validation
SYBR Green
qRT-PCR

U6 Placenta, plasma exosomes,
skeletal muscle tissue:
↑ hsa-miR-125a-3p (p<0.05), hsa-
miR-99b-5p (p<0.05), hsa-miR-197-
3p (p<0.05), hsa-miR-22-3p (p<0.05),
hsa-miR-224-5p (p<0.05), hsa-miR-
27b-3p (p<0.05), hsa-miR-200a-3p
(p<0.05), hsa-miR-141-3p (p<0.05).
Placenta: ↓ hsa-miR-133a-3p
(p=0.003)
Plasma exosomes: ↓hsa-miR-133a-
3p (p=0.003)
Skeletal muscle tissue: ↑hsa-miR-
133a-3p (p<0.05)

(52) Australia Case
control

Discovery
Early (< 18),
mid (22-28)
and late (37-
40)
Validation
24-28

Discovery
ADIPS, 2011
WHO, 2014
Validation
NDDG, 1979

Discovery
GDM= 15
Controls =
14
Validation
GDM = 8
Controls =
14

Plasma Discovery
High Output
and Illumina
NextSeq
sequencing
Validation
SYBR Green
qRT-PCR

U6 ↑ miRNA-92a-3p

(53) China Case-
control

24-28 ADA, 2010 GDM = 11
Controls =
12

plasma SYBR Green
qRT-PCR

U6 ↑ miR-137 (p<0.01)

(54) Spain Case-
control

26-30 NDDG, 1979 GDM = 31
Controls =
29

serum TaqMan
qRT-PCR

cel-miR-39 ↑ miR-330-3p (p = 0.003)
No difference
miR-224-5p, miR-103-3p, miR-206.

(55) South
Africa

Case-
control

13-31 IADPSG, 2010 GDM = 28
Controls =
53

serum SYBR Green
qRT-PCR

cel-miR-39 ↓ miR-20a-5p (2.7-fold; p=0.038),
miR-222-3p (2.6-fold; p=0.027).
No difference
miR-16-5p (1.9-fold; p=0.120), miR-
17-5p (2.5-fold; p=0.121), miR-19a-3p
(2.6-fold; p=0.056), miR-19b-3p (1.9-
fold; p=0.625),
miR-29a-3p (2.0-fold; p=0.768), miR-
132-3p (2.4-fold; p=0.070).

(56) Italy Case-
control

24-33 Italian National
Health System
guidelines,
2011

GDM = 21
Controls =
10

plasma Screening
TaqMan
microfluidics
array
Validation
TaqMan
qRT-PCR

miR-374, miR-
320

Screening group
↑ miR-330-3p (p=0.029), miR-483-5p
(2.01-fold; p=0.028).
↓ miR-548c-3p (p=0.028), miR-532-
3p (p=0.028).
Validation group
↑ miR-330-3p (p=0.01)
No difference
miR-548c-3p

(57) China Case
control

NR NR GDM = 25
Controls =
30

Serum TaqMan
qRT-PCR

U6 ↑ miR-181d

(58) China Case-
control

38-39 ADA, 2006 GDM = 13
Controls =
13

omental adipose
tissue

AFFX miRNA
expression
chips
microarrays,
TaqMan
qRT-PCR

miR-16 ↑ miR-222 (p<0.01)

(59) China Case
control

NR NR GDM = 20
Controls =
27

HUVECs SYBR Green
qRT-PCR

NR ↑ miR-34b-3p

(Continued)
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TABLE 1 | Continued

Author Country Study
design

Gestational
age (weeks)

GDM diag-
nostic criteria

Sample
size

Biologicalsource Method Normalization Outcomes (GDM vs control)

(60) Germany Case-
control

24-32 IADPSG, 2010 Screening
GDM = 8
Controls =
8
Validation
GDM = 30
Controls
30

whole blood Screening
miRNA
sequencing
Validation
SYBR Green
qRT-PCR

U6 Screening group
↑ miR-19a (p=1.48 × 10-03), miR-19b
(p=5.28 × 10-03), miR-142
(p=3.36 × 10-04), miR-143
(p=8.72 × 10-04), let-7g-5p
(p=4.32 × 10-04), miR-340
(p=7.06 × 10-04).
Validation group
↑ miR-340 (p=0.03)
No significant change
miR-19a, miR-19b, miR-142, miR-
143, let-7g-5p.

(61) China Case-
control

>37 IADPSG, 2010 GDM =
204
Controls =
202

placenta TaqMan
qRT-PCR

U6 ↓ miR-29b (p<0.05)

(62) Europe Case-
control

<20 IADPSG, 2010
WHO, 2013

GDM = 82
Controls =
41

serum SYBR Green
qRT-PCR

cel-miR-39 ↑ miR-29a-3p (p=0.004), miR-134-5p
(p=0.046), miR-16-5p (p=0.008).

(63) Estonia Case-
control

23-31 IADPSG, 2010 GDM = 13
Controls =
9

plasma Screening
MiScript
miRNA PCR
array Human
T & B cell
activation
Validation
SYBR Green
qRT-PCR

cel-miR-39 ↑ let-7e-5p (p=0.03), let-7g-5p
(p=0.01), miR-100-5p (p=0.04), miR-
101-3p (p=0.03), miR-146a-5p
(p=0.03), miR-18a-5p (p=0.05), miR-
195-5p (p=0.03), miR-222-3p
(p=0.03), miR-23b-3p (p=0.02), miR-
30b-5p (p=0.04), miR-30c-5p
(p=0.02), miR-30d-5p, (p=0.03), miR-
342-3p (p=0.04), miR-423-5p
(p=0.02), miR-92a-3p (p=0.05).

(64) USA Case-
control

7-23 ADA, 2004 GDM = 36
Controls =
80

plasma SYBR Green
qRT-PCR

cel-miR-39
and miR-423-
3p

↑ miR-155-5p (p=0.028), miR-21-3p
(p=0.005), miR-146b-5p (p=0.068).
No difference
miR-517-5p, miR-126-3p, miR-210-
3p, miR-222-3p, miR-223-3p, miR-
518a-3p, miR-29a-3p.

(65) China Case-
control

NR NR GDM = 48
Controls =
46

placental-derived
mononuclear
macrophages

SYBR Green
qRT-PCR

NR ↑ miR-657 (p<0.001)

(66) China Case-
control

24-28 NR GDM =
100
Controls =
100

serum TaqMan
qRT-PCR

U6 ↑ miR-19a (4.0-fold; p=0.001), miR-
19b (4.77-fold; p=0.02).

(67) China Case-
control

37-40 NR GDM = 30
Controls =
29

placenta TaqMan
qRT-PCR

NR ↑ miR-657 (p<0.01)

(68) China Case-
control

24-28 IADPSG, 2010 GDM =
102
Controls =
102

serum SYBR Green
qRT-PCR

U6 ↑ miR-195-5p (p<0.01).

(69) China Case
control

37-40 NR GDM = 53
Controls =
46

Plasma Screening
SurePrint
human
miRNA
microarray
Validation
SYBR Green
qRT-PCR

cel-miR-39 ↓ miR-574-5p, miR-3135b

(70) China Case
control

NR NR GDM = 5
Controls =
5

placenta SYBR Green
qRT-PCR

U6 ↑ miR-190b
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TABLE 1 | Continued

Author Country Study
design

Gestational
age (weeks)

GDM diag-
nostic criteria

Sample
size

Biologicalsource Method Normalization Outcomes (GDM vs control)

(71) China Case
control

38.1±1.2-
39.4±1.2

NR GDM = 26
Controls =
23

Placenta TaqMan
qRT-PCR

NR ↓ miR-6869-5p

(72) China Case
control

29.10±2.32-
32.71±5.26

NR GDM = 32
Controls =
48

Serum Screening
miScript
miRNA array
Validation
qRT-PCR

U6 ↑ miR-520h

(73) China Case-
control

16-28 Italian National
Health System
guidelines,
2011

GDM = 30
Controls =
10

serum SYBR Green
qRT-PCR

U6 ↑ miR-330-3p (p<0.001)

(74) China Case-
control

NR NR Placenta
GDM = 3
Controls =
3
Whole
blood
GDM = 25
Controls =
25

placenta/
whole blood

Screening
miRCURY

LNA™Array
Validation
qRT-PCR

NR ↑ miR-503 (p<0.01).

(75) Italy/
Spain

Case-
control

9-12 IADPSG, 2010 GDM = 23
controls =
20

plasma Screening
NanoString
nCounter
human
miRNA
assay
Validation
TaqMan
qRT-PCR

cel-miR-39 ↑ miR-23a (p=1.92 × 10−2), miR-223
(p=1.42 × 10−7).
Validation
↑ miR-223 (p= 0.009), miR-23a
(p=0.03).

(76) China Case
control

24-28 ADA, 2014 GDM =
123
Controls =
123

Plasma/Placenta TaqMan
qRT-PCR

U6 ↓ miR-96-5p

(77) China Case
control

Placenta
37-41
Blood
plasma
26-40

IADPSG, 2010 Screening
GDM = 3
Controls =
3
Validation
GDM = 36
Controls =
37

Placenta/plasma Screening
NextSeq
sequencing
Validation
SYBR Green
qRT-PCR

U6 ↑ miRNA-144 (p < 0.001)
↓ miRNA-125b (p < 0.001)

(78) China Case
control

<37 NR GDM =
166
Controls =
196

Placenta qRT-PCR U6 ↓ miR-30d-5p

(79) China Case-
control

16-19 ADA, 2004 Discovery
sample
GDM = 24
Controls =
24
Internal
validation
GDM = 36
Controls =
36
External
validation
1
GDM = 16
Controls =
16

serum Discovery
TaqMan
Low Density
Arrays
Validation
Individual
SYBR Green
qRT-PCR

Discovery
U6
cel-miR-39
Validation
cel-miR-39

Discovery sample
↓ miR-132 (p=0.042), miR-29a
(p=0.032), miR-222 (p=0.041).
Internal validation
↓ miR-132 (p=0.034), miR-29a
(p=0.045), miR-222 (p=0.016).
External validation 1
↓ miR-29a (p=0.001), miR-222
(p=0.017).
No difference
miR-132 (p=0.235)
External validation 2
↓ miR-132 (p=0.001), miR-29a
(p=0.001), miR-222 (p=0.001).

(Continued)
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29), Taqman probes (n = 20), TB Green (n = 1) and qRT-PCR
not referenced (NR) (n = 3), for the validation groups. Other
studies also used techniques such as miRNA sequencing (n = 5),
Taqman Low Density Arrays (n = 1), miRCURY LNA™ Array
(n = 2), miScript Array T & B cell activation (n = 1), miScript
miRNA Array (n = 2), Dynamic Array Integrated Fluidic
Circuits (n = 1), Agilent miRNA Microarrays (n = 1), TaqMan
Microarray (n = 2), SurePrint human miRNA Microarray (n =
1), AFFX chip Microarrays (n = 1), NanoString nCounter human
miRNA assay (n = 1) and NR (n = 35) for the screening groups.
Gestational age at the time of miRNA profiling ranged between
6-40 weeks. Studies used different normalization controls, with
the majority using U6 (n = 30) and C. elegans miR-39 (n = 12)
for circulating miRNAs.
QUALITATIVE SYNTHESIS OF STUDIES

All the included studies profiled miRNAs during GDM with no
studies on pregestational T1DM and T2DM identified. A total of
32 miRNAs were assessed in two or more studies and are
discussed below. These included miR-9 (n = 3), miR-16 (n =
7), miR-17 (n = 4), miR-19a (n = 5), miR-19b (n = 5), miR-20a
(n = 3), miR-21 (n = 3), miR-29a (n = 7), miR-29b (n = 3), miR-
30d (n = 3), miR-92a (n = 3), miR-96 (n = 2), miR-125b (n = 2),
miR-132 (n = 5), miR-137 (n = 3), miR-142 (n = 2), miR-143
(n = 2), miR-155 (n = 3), miR-195 (n = 2), miR-197 (n = 2), miR-
210 (n = 4), miR-222 (n = 7), miR-223 (n = 3), miR-330 (n = 4),
miR-342 (n = 3), miR-483 (n = 2), miR-494 (n = 2), miR-517
Frontiers in Endocrinology | www.frontiersin.org 8
(n = 3), miR-520h (n = 2), miR-657 (n = 2), miR-1323 (n = 2)
and let-7g (n = 2).

Three studies that reported on the expression of miR-9. Of the
three studies, one study reported higher levels of miR-9 in the
serum of Mexican women with GDM compared to controls (49).
In contrast, two studies profiling miRNAs in placental tissue of
Chinese women (46) and in plasma samples of Turkish women
(32) reported lower expression of miR-9 in women with GDM
compared to controls. Of the seven studies reporting on miR-16,
three studies demonstrated higher expression in serum and
plasma samples of Chinese and European women with GDM
compared to controls (34, 62, 83). In contrast, Herrera et al. (42)
reported lower expression of miR-16 in urine samples of
Mexican women with GDM compared to controls in the third
trimester, and higher expression in the first and second
trimesters (42). Three studies conducted in Turkey and South
Africa reported no difference in miR-16 expression in women
with GDM compared to controls (40, 41, 55). Four studies
investigated miR-17 during GDM. Of these, three studies
reported that miR-17 expression was higher in plasma samples
of Chinese and Turkish women with GDM compared to controls
(32, 34, 83). In contrast, Pheiffer et al. (55) showed no significant
difference in miR-17 expression in the serum of South African
women with GDM compared to controls (55). Five studies
profiled miR-19a and miR-19b during GDM. Two studies
reported that miR-19a and miR-19b expression was higher in
serum and plasma samples of Chinese women with GDM
compared to pregnant women without GDM (66, 83).
However, two studies reported that miR-19a and miR-19b
TABLE 1 | Continued

Author Country Study
design

Gestational
age (weeks)

GDM diag-
nostic criteria

Sample
size

Biologicalsource Method Normalization Outcomes (GDM vs control)

External
validation
2
GDM = 16
Controls =
16

(80) China Case-
control

37-40 NR GDM = 40
Controls =
40

placenta TaqMan
qRT-PCR

U6 ↑ miR-518d (p<0.01)

(81) China Case-
control

NR NR GDM = 30
Controls =
30

whole blood SYBR Green
qRT-PCR

U6 ↑ miR-770-5p (p<0.01)

(82) China Case-
control

24-28 ADA, 2012 GDM =
108
Controls =
50

serum/
placenta

SYBR Green
qRT-PCR

U6 ↓ miR-132 (p<0.001)

(83) China Case-
control

16-19 ADA, 2011 GDM = 10
Controls =
10

plasma Screening
MiRNA
sequencing
Validation
SYBR Green
qRT-PCR

miR-221 ↑ miR-16-5p (p=5.36 × 10-11), miR-17-
5p (p=1.10 × 10-10), miR-19a-3p
(p=6.57 × 10-43), miR-19b-3p
(p=1.73 × 10-74), miR-20a-5p
(p=5.27 × 10-37).
J

↑– up-regulation; ↓ – down-regulation; p value and fold regulation reported if given in article; ADA – American Diabetes Association; ADIPS – Australasian Diabetes in Pregnancy Society;
GDM – gestational diabetes mellitus; IADPSG – International Association of Diabetes in Pregnancy Study Group; NDD – National Diabetes Data Group; NR – not reported; qRT-PCR –

quantitative reverse transcription PCR; WHO –World Health Organisation; Chinese society for Diabetes Mellitus (year not specified); TB Green -Premix Ex TaqII (Tli RNase H Plus); HUVECs
– Human umbilical vein endothelial cells.
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expression did not differ in plasma and serum samples of women
with GDM compared to controls (34, 55). Stirm et al. (60)
demonstrated higher expression of miR-19a and miR-19b in
the whole blood of German women with GDM compared to
controls in the screening group, however, this difference was not
validated in a larger sample (60).

Three studies profiled miR-20a, of which two studies reported
higher expression of miR-20a in Chinese women with GDM
when compared to controls (34, 83), while Pheiffer et al. (55)
reported lower expression of miR-20a in South African women
during GDM compared to controls (55). For miR-21, Wander et
al. (64) reported higher expression in plasma samples of
American women with GDM compared to controls (64), while
two studies reported lower expression of miR-21 in whole blood
and plasma samples of Turkish women with GDM compared to
controls (32, 40). MiR-29a was investigated in seven studies. Of
these, three studies showed higher serum expression of miR-29a
during GDM in women from Canada, Mexico, and different
regions in Europe (38, 49, 62). Two studies reported lower levels
of miR-29a in serum and plasma of Chinese and Turkish women
with GDM compared to controls (32, 79), and two studies
reported no difference in miR-29a expression in serum and
plasma samples of American and South African women with
GDM compared to controls (55, 64). Of the three studies that
reported on miR-29b expression during GDM, two studies
reported higher expression in serum and plasma samples of
Canadian and Turkish women with GDM compared to controls
(32, 38), while Sun etal. (61) reported lower expression of miR-
29b in Chinese women with GDM compared to controls (61).

Three studies investigated miR-30d during GDM. Of these,
two studies reported higher expression of miR-30d in plasma and
placenta of Estonian and Chinese women with GDM compared
to controls (63, 78), while one study reported lower expression in
placenta samples of Chinese women with GDM compared to
controls (46). Three studies reported on miR-92a during GDM.
Of these, two studies reported higher expression in plasma of
miR-92a during GDM (52, 63), while Lie at al. (46) reported
lower expression in the placenta of Chinese women with GDM
compared to controls (46). The two studies that investigated
miR-96, both reported lower expression in plasma/placenta/
whole blood of Chinese women with GDM compared to
controls (47, 76). Two studies reported contradicting results
for miR-125b. Lamadrid-Romero et al. (45) reported higher
expression of miR-125b in serum samples of Mexican women
with GDM compared to controls (45), while Balci et al. (32)
reported lower expression in plasma samples of Turkish women
with GDM compared to controls. Of the five studies, only one
study reported a higher expression of miR-132 in the serum
samples of Canadian women (38). Contradictingly, three studies
reported a lower expression of miR-132 in serum and plasma
samples of Chinese and Turkish women with GDM (32, 79, 82).
However, Pheiffer et al. (55) observed no significant change in
expression of miR-132 in serum samples of South African
women with GDM when compared to controls (55).. All three
studies that investigated miR-137 reported lower expression in
plasma and placenta samples of Chinese and Turkish women
Frontiers in Endocrinology | www.frontiersin.org 9
with GDM compared to controls. (32, 46, 53). Two studies
reported on the expression of miR-142 and miR-143 during
GDM. One study reported higher expression of miR-142 and
miR-143 in plasma of Turkish women with GDM compared to
controls (32). Stirm et al. (60) reported higher expression of miR-
142 and miR-143 in the whole blood of German women with
GDM in the screening group, however, these findings were not
validated in a larger sample. Of the three studies that investigated
miR-155, one study reported higher expression in plasma
samples of American women with GDM compared to controls
(64). Hocaoglu et al. (40) reported no change in the expression of
miR-155 in whole blood of Turkish women with GDM
compared to controls (40). However, a more recent study by
the same authors reported lower expression of miR-155 in whole
blood of Turkish women with GDM compared to controls (41).
Both studies that investigated miR-195 reported higher
expression in plasma samples of Estonian and Chinese women
with GDM compared to controls (63, 68). Contradicting results
were reported for the expression miR-197. Nair et al. (51)
reported higher expression of miR-197 in placenta, exosomes
and skeletal muscle tissue samples of Australian women with
GDM compared to controls (51), while Balci et al. (32) reported
lower expression of miR-197 in plasma samples of Turkish
women with GDM compared to controls (32).

Four studies reported on the expression of miR-210. Of these,
one study reported higher levels of miR-210 in serum samples of
Canadian women with GDM compared to controls (38), while
lower levels of miR-210 was observed in placental and plasma
samples of Chinese and Turkish women with GDM (32, 35).
Wander at al. observed no difference in miR-210 expression in
plasma samples of American women with GDM compared to
controls (64). Of the seven studies that reported on miR-222
expression during GDM, two reported higher expression of miR-
222 in omental adipose tissue and plasma of Chinese women
with GDM compared to controls (58, 63), while three studies
observed lower expression of miR-222 in serum of Chinese,
South African and Turkish women with GDM compared to
controls (32, 55, 79). Wander et al. (64) observed no difference in
the expression of miR-222 in plasma of American women with
GDM compared to controls (64). Herrera-Van Oostdam et al.
(42) demonstrated higher expression of miR-222 in urine
samples of Mexican women with GDM compared to controls
in the first trimester and observed no significant difference in the
second trimester and lower expression in the third trimester (42).
Two studies reported increased levels of miR-223 in serum and
plasma of women during GDM from Italy/Spain and Egypt (31,
75), however, Wander et al. (64) reported no difference in the
expression of miR-223 in plasma of American women with
GDM compared to controls (64).

All four of the studies that profiled miR-330 reported higher
levels in serum and plasma of Italian, Mexican, Spanish and
Turkish women with GDM compared to controls (49, 54, 56, 74).
All three studies that profiled miR-342 demonstrated higher
expression in serum and plasma of Estonian, Canadian and
Turkish women with GDM compared to controls (32, 38, 63).
Sebastiani et al. (56) reported higher expression of miR-483 in
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plasma of Italian women with GDM compared to controls (56),
while Gillet et al. (38) showed no difference in expression of miR-
483 in serum samples of Canadian women with GDM compared
to controls (38). He et al. (39) reported lower expression of miR-
494 in whole blood samples of Chinese women with GDM
compared to controls (38), while Gillet et al . (39)
demonstrated no difference in the expression of miR-494 in
serum samples of Canadian women with GDM compared to
controls (38). Of the three studies that investigated miR-517,
Herrera-Van Oostdam et al. (42) demonstrated higher
expression in women with GDM compared to controls in the
first and second trimesters but lower expression in the third
trimester (42). The other study that profiled miR-517 showed no
difference in expression in serum of women with GDM
compared to controls (35, 64). Both studies that profiled miR-
520h reported higher expression in serum of Canadian and
Chinese women with GDM compared to controls (38, 72).
Two studies investigated miR-657 during GDM, and both
studies reported higher expression in placental and placental-
derived mononuclear macrophages of Chinese women with
GDM compared to controls (65, 67). Both studies reporting on
miR-1323 observed higher levels in the serum of Canadian and
Chinese women with GDM compared to controls (38, 48). Two
studies reported on the expression of let-7g. Tagoma et al. (63)
reported higher expression of let-7g in plasma samples of
Estonian women with GDM compared to controls (57). Stirm
et al. (60) reported conflicting results on the expression of let-7g.
These authors reported higher expression of let-7g in the
screening group, however, no difference was observed in the
validation group in whole blood samples of German women with
GDM compared to controls in the screening group (60)
Frontiers in Endocrinology | www.frontiersin.org 10
Other articles included in this review reported differential
miRNA expression, yet these miRNAs were identified in single
studies only (36, 37, 43, 44, 48, 50, 57, 59, 69, 71, 74, 76, 77,
80, 81).
DISCUSSION

MiRNA profiling in pregnancies complicated by diabetes may
aid in elucidating the pathophysiological mechanisms that
underlie T1DM, T2DM, and GDM (21–23, 84). This review
provides an update on the status of miRNA profiling in
pregnancies complicated by maternal diabetes. The main
finding of this review is the lack of studies that have profiled
miRNAs in pregnant women with pregestational T1DM and
T2DM. All the included studies investigated GDM only. Of
these, six miRNAs [miR-195 (n = 2), miR-330 (n = 4), miR-
342 (n = 3), miR-520h (n = 2), miR-657 (n = 2) and miR-1323 (n
= 2)] were similarly differentially expressed in pregnant women
with GDM compared to controls in two or more studies
(Table 2). The consistency of expression of these miRNAs
across diverse populations and gestational ages and using
different methodologies and measuring platforms support their
candidacy as biomarkers of GDM.

Despite our search identifying 53 articles on miRNA profiling
during maternal diabetes, none investigated pregestational
T1DM and T2DM. Previously, Collares et al. (89) profiled
miRNAs in non-pregnant individuals with T1DM and T2DM,
and in women with GDM (89). These authors identified several
miRNAs that were unique to each diabetes type. Eleven miRNAs,
let-7f, let-7g, miR-103, miR-1260, miR-1274a, miR-1274b, miR-
TABLE 2 | MicroRNAs upregulated during GDM in two or more studies.

MiRNA Authors Country GA
(weeks)

Biologicalsource Method Control Biological mechanisms Pregnancy
Outcomes

miR-195 63;
68; *85

China
Estonia

23 - 31 serum plasma miScript miRNA PCR
Human T and B cell
activation
SYBR green qRT-PCR

Cel-miR-39
U6

Fatty acid biosynthesis and
metabolism
Insulin signaling
Glycogen synthesis

Obesity
*T2DM

miR-330 56;
49;
54;
73

Italy Mexico
Spain China

16 - 30 serum plasma TaqMan microarray
SYBR green qRT-PCR

miR-374
miR-320
miR-454
cel-miR-39
U6

b-cell function
Glucose homeostasis
Insulin secretion

Caesarean
delivery

miR-342 63;
32, 38;
*86

Estonia
Canada
Turkey

6 - 31 serum plasma TaqMan qRT-PCR Dynamic
Arrays
MiScript miRNA PCR array
Human T & B cell activation
SYBR green qRT-PCR

cel-miR-39 Fatty acid biosynthesis and
metabolism
Insulin secretion
b-cell development

Obesity
*Cardiovascular
disease

miR-
520h

38, 72;
*28

Canada
China

6 - 40 serum miScript miRNA array
SYBR green qRT-PCR

cel-miR-39
U6

Insulin secretion
Inhibit cell viability
Promote apoptosis

*Preeclampsia

miR-657 65, 67;
*87

China 37 - 40 placental-derived
mononuclear macrophages
placenta

SYBR green qRT-PCR
TaqMan qRT-PCR

NR Macrophage proliferation,
migration, and polarization

*T2DM

miR-
1323

48, 65;
*88

Canada
China

6 - 40 serum SYBR green qRT-PCR cel-miR-39
U6

Insulin secretion
Trophoblast function

*Preeclampsia
July 2022 | Volume 13
GDM – gestational diabetes mellitus; T2DM – type 2 diabetes mellitus; NR – not reported; qRT-PCR – quantitative reverse transcription PCR; b-cell- beta cell; GA – gestational weeks
*Pregnancy outcomes were not reference in these articles, however they were discussed in other articles.
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130a, miR-150, miR-20b, miR-21 and miR-720 were unique to
T1DM. Five miRNAs, miR-140-3p, miR-199a-3p, miR-222,
miR-30e and miR-451 were unique to T2DM. Ten miRNAs,
miR-101, miR-1180, miR-1268, miR-181a, miR-181d, miR-26a,
miR-29a, miR-29c, miR-30b and miR-595 were unique to GDM
(89). Specific miRNAs may represent biological markers for each
type of diabetes, warranting further investigation as potential
mechanisms that underlie the different diabetes types. Collares
et al. (89) assessed miRNA expression in both females and males,
and included non-pregnant individuals, thus their results do not
reflec t p l acen ta l -de r ived miRNAs and pregnancy
pathophysiology. Ibarra et al. (90) profiled miRNAs during
pregestational T1DM and T2DM (90). This research was
reported as a conference abstract only and was not included in
this review. Data from the abstract report that miR-19a, miR-
125b, miR-20a and a miRNA on Chr11-134 were unique to
placenta samples of women with T1DM and were not expressed
in pregnant women with T2DM (90). Our review highlights the
lack of studies profiling miRNAs in pregnancies complicated by
pregestational T1DM and T2DM.We propose that future studies
on miRNA profiling include all types of maternal diabetes, which
may contribute to elucidating the different pathophysiological
mechanisms that underlie pregestational T1DM and T2DM,
and GDM.

Studies on miRNA profiling during GDMwere mainly related
to biomarker discovery. These studies identified six miRNAs that
were consistently expressed at higher levels in serum, plasma,
placenta and placental-derived mononuclear macrophages in
women with GDM compared to controls in different
populations, using different methodologies and measurement
platforms, and during different gestational ages. These include
miR-195 (n = 2), miR-330 (n = 4), miR-342 (n = 3), miR-520h
(n = 2), miR-657 (n = 2) and miR-1323 (n = 2) (Table 2). MiR-
195 levels were reported to be consistently higher in the serum
and plasma samples of women with GDM compared to controls
across two studies conducted in China and Estonia using
miScript miRNA PCR Human T and B cell activation, and
SYBR green qRT-PCR (63, 68). Previous studies observed high
levels of miR‐195 associated with fatty acid biosynthesis and
metabolism, insulin signaling cascade and glycogen synthesis
(63, 85), suggestive of miR-195 candidacy as a biomarker for
GDM. Furthermore, upregulation of miR-195 in women with
GDM was shown to be associated with the development of
T2DM (85) and obesity (63, 68). Interestingly, circulating
levels of miR-330 was consistently higher in the serum
and plasma samples of women with GDM compared to
controls across four studies conducted in Italy, Mexico, Spain
and China using TaqMan microarray, TaqMan and SYBR green
qRT-PCR (49, 54, 56, 73). MiR-330 regulates genes involved in
beta-cell (b-cell) function and glucose homeostasis, suggesting
that increased miR-330 expression may lead to impaired b-cell
proliferation and insulin secretion (56). Furthermore,
upregulation of miR-330 was shown to be associated with
caesarean delivery in women with GDM (54, 56). MiR-342
levels were reported to be higher in serum and plasma of
Estonian, Canadian and Turkish women with GDM compared
Frontiers in Endocrinology | www.frontiersin.org 11
to controls using TaqMan qRT-PCR, MiScript miRNA PCR
array Human T & B cell activation and SYBR green qRT-PCR
(32, 38, 63). MiR-342 has been associated with the regulation of
fatty acid biosynthesis and metabolism (63), impaired insulin
secretion (38) and b-cell development (32). Furthermore,
upregulation of miR-342 in women with GDM was shown to
be associated with obesity (63) and cardiovascular disease in
children born to mothers with GDM (86). MiR-520h levels were
reported to be higher in serum of Canadian and Chinese women
with GDM compared to controls using miScript miRNA array
and SYBR green qRT-PCR (38, 72). MiR-520h is implicated in
impaired insulin secretion in pancreatic b-cells (38), and has
been demonstrated to inhibit cell viability and promote apoptosis
(72). Furthermore, the upregulation of plasma miR-520h during
the first trimester was associated with the onset of preeclampsia
(28). MiR-657 levels were reported to be higher in placental-
derived mononuclear macrophages and placenta samples of
women with GDM in a Chinese population using SYBR green
qRT-PCR and TaqMan qRT-PCR (65, 67). MiR-657 regulates
inflammation via targeting Interleukin-37/Nuclear factor-kB
signalling axis, that is responsible for the regulation of
inflammatory responses (65). Furthermore, the upregulation of
miR-657 was associated with the pathogenesis of T2DM (87).
MiR-1323 was expressed at higher levels in serum samples of
women with GDM compared to controls in studies conducted in
Canada and China using SYBR green qRT-PCR (38, 48). MiR-
1323 regulates insulin secretion (38) and trophoblast cell activity
crucial for placental cell development (48). MiR-1323 was
implicated in patients with preeclampsia (88). MiRNAs that
are commonly expressed across diverse populations and
gestational ages, biological samples and using different
measurement platforms present opportunities as biomarkers
for GDM. Although it could be argued that miRNAs offer little
advantage over measurement of glucose concentrations, the oral
glucose tolerance test, the gold standard for GDM diagnosis, is
associated with several disadvantages which include the
requirement for fasting, multiple blood draws, and association
with nausea, vomiting and bloating, lead to decreased patient
compliance (30). Furthermore, as discussed above, these
miRNAs have been reported to be associated with adverse
pregnancy outcomes, supporting their use as biomarkers to
predict pregnancy outcomes.

Findings from this review show heterogenous miRNA
expression across studies with a general lack of reproducibility.
MiRNA heterogeneity may be attributed to factors such as diet,
physical activity, medication use, population differences such as
ethnicity, socioeconomic status, environmental factors and viral
infections (91–95), and differing gestational ages between women
(42). Furthermore, different GDM diagnostic criteria and glucose
cut-off values across studies may have also contributed to miRNA
variability. Pre-analytical and analytical factors such as sample
collection and storage, miRNA isolation procedures, measurement
platform, and normalisation methods (96–98) affect miRNA
expression analysis. The development of optimized protocols for
standardizing sample collection, transport, and storage, as well as
miRNA isolation procedures and data analysis for the diversity of
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technological methods used are important to improve
reproducibility across studies. Importantly, the non-specificity of
miRNAs is another factor that may limit its clinical applicability.
MiRNAs are able to regulate multiple genes across different
biological pathways in different diseases (99, 100), therefore,
miRNA signatures based on a pool of miRNAs may have more
clinical applicability than individual miRNAs. Although rapid
technological advances could facilitate the use of miRNAs as
inexpensive, point-of-care biomarkers in the future, at present,
miRNA profiling during GDM remains inconclusive, largely due
to poor reproducibility between studies. Many pre-analytical,
analytical and biological challenges must be addressed before
miRNAs can become clinically applicable. Although it could be
argued that miRNAs offer little advantage over measurement of
glucose concentrations, the oral glucose tolerance test, the gold
standard for GDM diagnosis, is associated with several
disadvantages which include the requirement for fasting, multiple
blood draws, and association with nausea, vomiting and bloating,
which leads to decreased patient compliance (30). Furthermore, as
discussed above, these miRNAs have been reported to be associated
with adverse pregnancy outcomes, supporting their use as
biomarkers to predict pregnancy outcomes.
CONCLUSION AND FUTURE
PERSPECTIVES

This review highlights the lack of studies profiling miRNA
expression in pregnancies complicated by pregestational T1DM
and T2DM. Future studies should prioritise miRNA profiling in
all types of maternal diabetes, which may aid in identifying the
Frontiers in Endocrinology | www.frontiersin.org 12
mechanisms that underlie the different types of diabetes during
pregnancy. Such studies could contribute to unravelling the link
between diabetes type and pregnancy outcomes. Furthermore,
this review confirms the growing evidence supporting the
potential of miRNAs to serve as biomarkers of GDM. Six
miRNAs with similar expression in women with GDM
compared to controls in two or more studies, across different
populations and gestational ages, using different methodologies
and measuring platforms are highlighted. These six miRNAs
represent candidates as future GDM biomarkers and should be
prioritized in future studies.
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