:' frontiers ‘ Frontiers in Endocrinology

ORIGINAL RESEARCH
published: 14 July 2022
doi: 10.3389/fendo.2022.900034

OPEN ACCESS

Edited by:
Marian Elizabeth Ludgate,
Cardiff University, United Kingdom

Reviewed by:

Nadlia Sawicka-Gutaj,

Poznan University of Medical
Sciences, Poland

Ewelina Szczepanek-Parulska,
Poznan University of Medical
Sciences, Poland

*Correspondence:

Ewa Szczepariska
eszczepanska@cmkp.edu.pl
Piotr Glinicki
pglinicki@cmkp.edu.pl

Specialty section:

This article was submitted to
Thyroid Endocrinology,

a section of the journal
Frontiers in Endocrinology

Received: 19 March 2022
Accepted: 20 June 2022
Published: 14 July 2022

Citation:

Szczepariska E, Glinicki P,
Zgliczyriski W, Stowirska-
Srzednicka J, Jastrzebska H and
Gietka-Czernel M (2022) FGF21 Is
Released During Increased
Lipogenesis State Following
Rapid-Onset Radioiodine-
Induced Hypothyroidism.

Front. Endocrinol. 13:900034.
doi: 10.3389/fendo.2022.900034

Check for
updates

FGF21 Is Released During
Increased Lipogenesis State
Following Rapid-Onset Radioiodine-
Induced Hypothyroidism

Ewa Szczepariska*, Piotr Glinicki*, Wojciech Zgliczyriski, Jadwiga Stowiriska-Srzednicka,
Helena Jastrzebska and Matgorzata Gietka-Czernel

Department of Endocrinology, Bielariski Hospital, Centre of Postgraduate Medical Education, Warsaw, Poland

Background: FGF21 pharmacological treatment reverses fatty liver and lowers serum
triglyceride concentration but FGF21 serum level is increased in hepatic steatosis. FGF21
secretion is induced by thyroid hormones in vitro.

Purpose: To determine the influence of thyroid hormones and metabolic changes
secondary to thyroid dysfunction on FGF21 secretion in humans.

Materials and Methods: This was a case-control study. 82 hyperthyroid and 15
hypothyroid patients were recruited together with 25 healthy controls. Of those with
hyperthyroidism, 56 received radioiodine treatment and 42 of them achieved
hypothyroidism and then euthyroidism within one year following therapy. Radioiodine-
induced hypothyroidism developed abruptly within a six week interval between clinic visits.
FGF21 serum levels were determined with an ELISA method.

Results: Serum FGF21 levels did not differ in hyper- and hypothyroid patients in
comparison to controls [median 103.25 (interquartile range, 60.90-189.48) and 86.10
(54.05-251.02) vs 85.20 (58.00-116.80) pg/mL P=0.200 and 0.503, respectively]. In
hyperthyroid patients treated with radioiodine, serum FGF21 levels increased significantly
in rapid-onset hypothyroidism in comparison to the hyperthyroid and euthyroid phase
[median 160.55 (interquartile range, 92.48 - 259.35) vs 119.55 (67.78-192.32) and
104.43 (55.93-231.93) pg/mL, P=0.034 and 0.033, respectively]. The rising serum
FGF21 level correlated positively with serum triglycerides (Spearman coefficient
rs=0.36, P=0.017) and inversely with serum SHBG (rs=-0.41, P=0.007), but did not
correlate with thyroid hormone levels.

Conclusions: There was a transient increase in FGF21 serum level during rapid-onset
hypothyroidism following radiociodine treatment. There was no association between
FGF21 serum level and thyroid hormones. In radioiodine-induced hypothyroidism, the
rising serum FGF21 concentration correlated positively with rising serum triglycerides and
negatively with faling SHBG, reflecting increased hepatic lipogenesis.
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INTRODUCTION

Thyroid hormones increase basal metabolic rate, stimulate
brown adipose tissue thermogenesis, and reduce cholesterol
and triglyceride levels. Body mass and lipid changes are
essential symptoms of thyroid dysfunction, resulting directly
from altered thyroid hormone levels, but also from cross-talk
with numerous metabolic factors. Fibroblast growth factor 21
(FGF21) is a novel potent metabolic regulator which actions have
considerable overlap with thyroid hormones. Similar to thyroid
hormones, FGF21 lowers serum lipid levels, stimulates brown
adipose tissue thermogenesis, and promotes weight loss (1-3). Its
secretion is induced by T3 in murine and human hepatic cell
culture (4, 5). However, the stimulating effect of thyroid
hormones on FGF21 release in humans is controversial, with
studies demonstrating divergent results (6, 7).

FGF21 together with FGF19, and FGF23 belong to the
fibroblast growth factor family with hormone-like activity. In
contrast to classical fibroblast growth factors that act in an auto-
and paracrine manner, hormone-like FGFs are released into the
bloodstream and exert endocrine action in distant tissues (8, 9).
Serum FGF21 is generated primarily in the liver (10) under
nutritional stress stimuli like starvation (11, 12) or a lipotoxic
diet (12-15), but also increased mitochondrial and endoplasmic
reticulum stress (16, 17). Specifically in the liver, it produces
essential biological action of protecting hepatocytes from
metabolic stress caused by fat overload (18). FGF21 stimulates
hepatic fatty acid oxidation instead of its conversion into
triglycerides (19). Moreover, FGF21 reduces the flow of lipids
into the liver by increased peripheral lipoprotein catabolism (20)
and reduced adipocytes lipolysis (21). Exogenous FGF21
administration reduces hepatic fat content and reverses fatty
liver (2, 21-24). Paradoxically, although some studies suggest
direct paracrine action of FGF21 in the liver (25), others
demonstrate the lack of FGF21 key receptor FGFRI1c in
hepatocytes, suggesting that the decrease in hepatic triglyceride
deposition may be mediated indirectly (26). It has been proposed
that the release of adiponectin from adipose tissue in response to
liver-derived FGF21 reduces hepatic lipid content in a feedback
manner (27). However, other research has demonstrated
adiponectin is dispensable for FGF21 action (28), or even
conversely adipokine generated in adipocytes induces FGF21
expression in the liver (29). However, this data has emerged from
in vitro and animal research, or clinical studies following
administration of FGF21 analogues, and so does not fully
reflect physiology.

Besides plasma and hepatic lipid regulation, FGF21 exerts the
critical action of controlling energy homeostasis (1, 2, 28, 30).
Serum FGF21 derives predominantly, if not only from the liver
(10) and exerts its action in the central nervous system (31, 32)
and adipose tissue (28, 33, 34). Acting in the ventromedial
hypothalamus, FGF21 diminishes sweet-taste preference that
results in simple sugar intake suppression (35). In adipose
tissue, FGF21 promotes glucose utilization and increases
energy expenditure by enhancing insulin sensitivity,
stimulating browning of white adipocytes and brown adipose
tissue thermogenesis (28, 33, 34). Therefore, FGF21 induces

weight loss by suppression of sucrose intake, and increase in
brown adipose tissue insulin sensitivity resulting in glucose
consumption for heat production instead of energy storage.
Paradoxically despite its beneficial action, FGF21 is elevated in
insulin resistance states i.e. fatty liver, obesity, and type 2 diabetes
(36-38). It is not clear if this effect results from FGF21 resistance
or compensatory increased secretion (38, 39).

The aim of the study was to investigate whether thyroid
hormones directly change FGF21 secretion in hyper- and
hypothyroidism, or whether metabolic challenge related to
considerable changes in glucose and lipid metabolism and
body composition that accompany thyroid dysfunction
indirectly affect FGF21 release. Therefore, we firstly analyzed
FGF21 serum levels in hyper-and hypothyroid subjects as
compared to the euthyroid control group. Secondly, we
analyzed circulating FGF21 in patients with Graves disease
that were treated with radioiodine (RAI), in three different
thyroid function states, namely hyperthyroidism at clinic
referral, hypothyroidism induced by RAI treatment that
developed abruptly within a six week interval between clinic
visits, and euthyroidism after l-thyroxine treatment. These
typically occur in 80% of patients within one year of
undergoing treatment. Additionally, we analyzed serum
adiponectin levels and its association with circulating FGF21 in
the different thyroid function states. These patients were chosen
because of dramatic thyroid hormone, lipid, and body
composition changes that occurred in a short period of time,
which triggers different metabolic counterregulatory pathways
e.g. possibly FGF21 secretion. Finally, we analyzed a subgroup of
thionamide-treated hyperthyroid patients pre-treatment, and
three months after euthyroidism had been established.

MATERIALS AND METHODS

Study Participants

We performed a case-control study enrolling 82 hyperthyroid
patients with Graves’ disease and 15 hypothyroid patients with
Hashimoto’s thyroiditis from the Department of Endocrinology,
Centre of Postgraduate Medical Education, Bielanski Hospital
(Warsaw, Poland), from September 2016 to September 2020. The
control group consisted of 25 healthy hospital employees. The
study protocol was approved by the Bioethical Committee of
Centre of Postgraduate Medical Education, Warsaw, Poland. All
participants provided written informed consent.

The inclusion criteria were as follows: (1) age > 18 years (2)
body mass index (BMI) < 35 (3) hyperthyroidism in the course of
Graves’ disease (4) hypothyroidism in the course of Hashimoto’s
thyroiditis. The control group was recruited from healthy
volunteers that were free of thyroid disease. The exclusion
criteria were as follows: (1) diabetes (2) cancer (3) pregnancy
and lactation (4) abnormal hepatic function tests (elevated
alanine aminotransferase (ALT) or aspartate aminotransferase
(AST) >1.5 times above reference value) (5) renal dysfunction
(defined glomerular filtration rate [GFR] <60 ml/min/1.73 kg
\m?) (6) acute cardiorespiratory or infectious disease.
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The diagnosis of hyperthyroidism in the course of Graves’
disease was established based on the typical clinical
characteristics, including decreased thyroid stimulating
hormone (TSH), elevated thyroid hormones (TH) and TSH
receptor antibody (TRAb) serum levels. Hypothyroidism in the
course of Hashimoto’s thyroiditis was diagnosed based on
clinical presentation, elevated serum TSH, decreased TH levels,
and the presence of thyroid peroxidase antibody (TPOADb).

Study Design

In all patients with hyper- and hypothyroidism and the control
group, measurements were performed to determine: FGF21,
adiponectin, TSH, TH, sex hormone-binding globulin (SHBG),
lipids, glucose, insulin, and body composition at baseline.

Of the hyperthyroid patients, 56 were assigned to RAI
treatment according to clinical indications and patient choice,
whereas the remaining 26 were treated with thionamides. The
patients treated with RAI were observed every six weeks until
hypothyroidism and finally euthyroidism occurred following 1-
thyroxine treatment. In these patients, the above-mentioned
biochemical and body composition measurements were
performed at three time-points, namely initially during the
hyperthyroid phase, secondly at the hypothyroid phase, and
finally upon reaching euthyroidism while treated with I-
thyroxine after three months of successful replacement
therapy. Additionally, in the thionamide treated group, the
measurements were performed pre-treatment and three
months after euthyroidism had been established (Figure 1).

Anthropometric Measures and Laboratory
Analyses

Body weight was measured in the morning using an electronic
platform scale (Marsden BFA-220P, UK). Height was measured
using a wall-mounted stadiometer. Body mass index (BMI) was
calculated as body weight (kilograms) divided by height

Hyperthyroid patients
=82

Hypothyroid patients
n=15

Control group
n=25

1 ] |

Assigned to
thionamides
n=56 n=26

Assigned to
RAI

Included in analysis
n=122

Achieved
hypothyroidism
n=42

Achieved
euthyroidism
n=42

Achieved
euthyroidism
n=17

Included in analysis Included in analysis
n=42 n=17

*pregnancy

FIGURE 1 | Flow diagram of the participant in the case-control study.

(meters?). Waist circumference was measured in the midpoint
between the lowest rib and the superior margin of the iliac crest.

All patients with hyper- and hypothyroidism, and healthy
controls had blood drawn from the antecubital vein after 12h of
fasting, 8.00-9.00 AM. The blood was centrifuged, and serum
frozen at -80°C for FGF21 and adiponectin analysis.

Serum TSH was determined using chemiluminescence
immunoassay (UniCel DxI 600, Beckman Coulter, USA). Serum
fT4, fT3, insulin, SHBG, TPOADb, thyroglobulin antibodies (TGAb)
were determined using a chemiluminescence immunoassay
(Liaison®, DiaSorin, Italy). Serum TRAb was determined with
electrochemiluminescence assay (Cobas 8000, Roche
Diagnostics, Switzerland).

Serum AST, ALT, creatinine, cholesterol, HDL-cholesterol
(HDL-c), and triglycerides (TG) were determined on a
biochemical analyzer (Cobas 6000, Roche Diagnostics,
Switzerland). Plasma glucose was measured using the hexokinase
method (Cobas 6000, Roche Diagnostics, Switzerland).

LDL-cholesterol (LDL-c) was calculated using the Friedewald
equation. Insulin sensitivity was assessed using the homeostasis
model of assessment for insulin resistance (HOMA-IR) and
quantitative insulin sensitivity check index (Quicki). HOMA-
IR was calculated according to the formula: fasting insulin (uIU/
ml) x fasting plasma glucose (FPG, mmol\l)/22.5 and Quicki was
calculated as follows: 1/(log (fasting insulin pIU/ml) + log
(fasting glucose mg/dl)).

Intact serum FGF21 concentration was determined using the
ELISA kit (Epitope Diagnostics, USA, Cat# KT-879, RRID: AB_
2895552) according to the manufacturer’s instructions. The
detectable range of the assay was 1.7-2169 pg/ml. The intra-
and inter-assay coefficients of variation reported by the
manufacturer were 5.7%- 6.9% respectively. This assay is
highly specific for human intact FGF21 and do not cross react
with FGF21 fragments.

Serum adiponectin concentration was assessed using the
ELISA kit (Mediagnost, Germany, Cat# E09, RRID : AB_
2813736). The detectable range of the assay was 0.27-31000 g/1
and the intra- and inter-assay coefficients of variation reported
by the manufacturer were 5%-7.5%, respectively. This assay is
highly specific for human total adiponectin.

Body Composition Measurement

Body composition was assessed with a whole-body fan-beam
dual energy X-ray absorptiometry (DXA) scan (Lunar Prodigy
Advance, software v 11.40, GE Healthcare, USA). Body fat (BF),
lean tissue mass (LTM), and bone mineral content (BMC) were
analyzed using system software. Body regions (arms, legs, trunk,
and head) were delineated and BF of particular regions and the
total body were analyzed using system software.

Statistical Analysis

All statistical analyses were performed using the R statistic
package, version 4.0.5. (http://cran.r-project.org). Shapiro-
Wilk’s test was used to assess the normality of data
distribution, and log-transformation was applied to non-
normally distributed variables and normality retested. Levene’s
test was used to assess the equality of variances across groups, the
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chi-squared test was used to assess the equality of group sizes.
Mauchly’s sphericity test was used to assess the sphericity of
variances. All measurements are presented as means + SD for
normally distributed data or median (interquartile range) for
non-normally distributed data.

Fisher’s exact test was used to compare categorical variables
between groups. Student’s unpaired t-test was used to compare
normally distributed continuous variables and the Mann-
Whitney U-test was used to compare non-normally distributed
continuous variables. Changes in FGF21 serum levels and other
measures in pair-wise comparison after RAI treatment were
examined using a repeated measures ANOVA for normally
distributed data and Wilcoxon-signed-rank test for non-
normally distributed data even after being logarithmically
transformed. For statistically significant ANOVA analyses,
post-hoc Student’s paired t-tests were used to find individual
points of significance. A Bonferroni correction for multiple
comparisons was applied. We used a paired Student’s t-test for
normally distributed data or Wilcoxon-signed-rank test for non-
normally distributed data to compare variables in thionamide
treated group. Relationships between continuous variables were
estimated by Spearman correlation coefficient analysis, because
the majority of the datasets were not normally distributed. P <
0.05 were considered significant.

RESULTS

Baseline Characteristics of the Subjects

Baseline characteristics of the subjects are shown in Table 1. One
person from the control group and one patient with
hyperthyroidism were excluded because of the extremely high
baseline serum FGF21 values exceeding the upper range of assay
sensitivity. Studied groups and control were matched for age,
gender and BMI distribution. TSH and TH levels were different
between groups according to different thyroid functions. SHBG
serum level was higher in hyperthyroid patients compared to the
control group. Plasma glucose and serum insulin concentration,
HOMA-IR, and Quicki were comparable between patients and
controls. As expected, serum total cholesterol, and LDL-c levels
were lower in patients with hyperthyroidism, and higher
in hypothyroidism, whereas HDL-c was lower in
hyperthyroidism. Unlike cholesterol, serum TG levels in
hyperthyroid and hypothyroid patients did not differ compared
to controls. Additionally, AST was higher in hyperthyroidism
and GFR lower in hypothyroidism and higher in
hyperthyroidism compared to the control group (Table 1).
There was significantly lower LTM in hyperthyroid women
than in healthy controls, whereas other body composition
parameters in both sexes were comparable (Suppl. Tables 1, 2).

TABLE 1 | Serum FGF21 and biochemical parameters in the study groups and controls.

Controls Hyperthyroidism P Hypothyroidism Ph

N 25 82 15

Age, years 39.60 + 10.62 44.50 + 14.90 0.074 44.67 £ 14.14 0.242
Gender, female, N(%) 21 (84.0) 72 (87.8) 0.877 11 (73.3) 0.683
TSH, miU/L 1.39 (1.06-1.89) 0.00 (0.00-0.00) <0.001 97.00 (68.68-150.0) <0.001
T4, pmol/L 13.40 £ 1.82 56.57 + 29.20 <0.001 6.94 £ 2.94 <0.001
T3, pmol/L 4.51 +0.44 20.49 + 10.07 <0.001 2.84 +0.98 <0.001
SHBG, nmol/L 62.03 + 35.89 165.07 + 64.68 <0.001 47.85 + 22.33 0.137
Fasting serum insulin, mU/L 6.63 + 3.55 713 +4.57 0.577 6.15 + 3.36 0.677
Fasting plasma glucose, nmol/L 5.08 + 0,56 5.33 + 0,55 0.053 5.06 + 0.59 0.924
Quicki 0.38 + 0.03 0.37 £ 0.03 0.757 0.38 £ 0.05 0.338
HOMA-IR 1.11 (0.93-1.89) 1.31 (1.02-1.93) 0.455 1.20 (0.90-1.86) 0.817
TC, mmol/L 4.82 + 0,56 3.81 £ 0,95 <0.001 6.35 £2.13 0.020
HDL-c, mmol/L 1.66 £ 0.35 1.39 £ 0.43 0.003 1.69 + 0.46 0.796
LDL-c, mmol/L 2.69 £ 0.55 1.89 + 0.71 <0.001 412 £1.75 0.010
TG, mmol/L 1.04 £ 0,4 1.13 £ 0.46 0.318 1.16 £ 0.37 0.317
BMI, kg/m? 24.20 + 4.26 23.25 + 3.69 0.316 25.10 + 5.17 0.574
TPOADb, U/mL 0.75 (0.40-1.35) 329.20 (32.50-901.4) <0.001 739.80 (72.20-1228.5) <0.001
TGAb, U/ml 0.00 (0.00-0.43) 4.95 (0.68-46.45) <0.001 322.00 (51.90-500.00) <0.001
TRADb, U/ <0.8 18.52 + 12.68 <0.001 12.45 + 16.48 <0.001
AST, U/L 18.36 + 5.19 21.84 +6.92 0.029 23.94 + 10.89 0.086
ALT, U/L 19.92 £ 10.77 24.32 + 10.54 0.139 25.22 +12.08 0.214
Creatinine, ymol/L 65.43 + 15.03 52.17 + 15.03 0.003 76.93 + 16.8 0.071
GFR, ml/min/1,73m? 90.00 (84.79-90.00) 90.00 (90.00-90.00) 0.020 79.23 (68.49-86.50) 0.011
Adiponectin, pg/mL 9.75 £ 5.57 11.67 £7.26 0.171 13.09 £ 8.34 0.195
FGF21,pg/mL 85.20 (58.00-116.80) 103.25 (60.90-189.48) 0.200 86.10 (54.05-251.02) 0.503

TSH, thyroid stimulating hormone; fT4, free thyroxine; fT3, free triiodothyronine; SHBG, sex hormone binding globulin; Quicki, quantitative insulin-sensitivity check index; HOMA-IR,
homeostasis model assessment of insulin resistance; TC, total cholesterol; HDL-c, high density lipoprotein cholesterol; LDL-c, low density lipoprotein cholesterol; TG, triglycerides,; BMI,
body mass index; TPOAb, thyroid peroxidase antibody; TGAb, thyroglobulin antibody;
TRADb, TSH receptor antibody; AST, aspartate aminotransferase; ALT, alanine aminotransferase: GFR, glomerular filtration rate; FGF21, fibroblast growth factor 21. Data shown are N (%)
for categorical variables and mean + SD or median (interquartile range) for continuous variables.

Pa-values are based on comparison of characteristics between hyperthyroid patients vs controls.
Pp-values are based on comparison of characteristics between hypothyroid patients vs controls.
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Serum FGF21 Levels in Hyper- and
Hypothyroidism did not Differ in
Comparison to the Control Group

Serum FGF21 levels did not differ significantly in hyperthyroid
and hypothyroid patients in comparison to healthy subjects
[median 103.25 (interquartile range, 60.90- 189.48) and 86.10
(54.05-251.02) vs 85.20 (58.00-116.80) pg/mL; P=0.200 and
0.503, respectively] (Table 1 and Figure 2). Similarly, serum
adiponectin concentrations in hyper- and hypothyroidism did
not differ as compared to controls [mean 11.67 + 7.26 and 13.09
+ 8.34 vs 9.75 £ 5.57 pg/mL; P=0.171 and 0.195, respectively]
(Table 1 and Figure 2).

Serum FGF21 Level Rose in Rapid-Onset
Hypothyroidism After RAI Treatment

From among the RAI treated hyperthyroid patients,
hypothyroidism occurred within one year following therapy in
42 cases. In these patients serum FGF21 levels were unchanged in
hyperthyroidism as compared with euthyroidism. However,
there was a significant transient increase in FGF21 serum levels
in rapid-onset hypothyroidism in comparison to hyperthyroid
and euthyroid phase [median 160.55 (interquartile range, 92.48-
259.35) vs 119.55 (67.78-192.32) and 104.43 (55.93-231.93) pg/
mL, P=0.034 and 0.033, respectively] (Table 2 and Figure 3).
Furthermore, adiponectin serum concentration in rapid-onset
hypothyroidism, hyperthyroidism and euthyroidism were
comparable [mean 15.16 + 6.75 vs 13.62 + 7.16 and 16.11 *
6.87 pg/mL, P= 0.076 and 0.913, respectively] (Table 2 and
Figure 3). Moreover, no significant differences in serum levels of
FGF21 or adiponectin occurred between the hyper- and

500 -
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FIGURE 2 | FGF21 (A) and adiponectin (B) serum levels in hyperthyroid and
hypothyroid patients in comparison to controls. FGF21, fibroblast growth
factor 21. Data presented as median (interquartile range). N.S. represents
non-statistically significant difference. P<0.05 was considered significant.

euthyroid phases in the thionamide treated group
(Suppl. Table 5).

Elevated Serum FGF21 in Rapid-Onset
Hypothyroidism After RAl Treatment
Correlated Positively With Triglycerides,
and Negatively With SHBG

There was no significant correlation between FGF21 serum levels
and TH in any of the thyroid function states. Furthermore, there
were no significant correlations found between serum FGF21 levels
and lipids, as well as glucose metabolism parameters in patients with
hyperthyroidism (Suppl. Table 8). On the contrary, during rapid-
onset hypothyroidism following RAI treatment, rising serum FGF21
levels correlated significantly and positively with rising serum
triglycerides (Spearman coefficient rs=0.36, P=0.017) and inversely
with falling serum SHBG (rs=-0.41, P=0.007) (Figure 4 and Suppl.
Table 9). The correlation disappeared during the subsequent
euthyroid phase (Suppl. Table 10). Additionally, there were no
relationships found of serum FGF21 levels and cholesterol, as well as
glucose metabolism parameters during RAI-induced
hypothyroidism (Suppl. Table 9). Furthermore, serum FGF21
levels did not show any significant correlation with the estimated
variables in the euthyroid phase (Suppl. Table 10). Moreover, there
were no significant correlations observed between serum FGF21
concentration and body composition parameters in women and
men in any of the thyroid function states (Suppl. Tables 11-16).

There Was no Significant Correlation
Between Serum FGF21 and Adiponectin
We did not observe correlations between FGF21 and adiponectin
in any of the thyroid function states. Unlike FGF21, there was no
correlation found of serum adiponectin, and TG, as well as
SHBG concentrations in rapid-onset hypothyroidism after RAI
treatment. In hyper- and hypothyroidism, adiponectin correlated
positively with age (rs=0.26, P=0.020 and rs=0.43, P=0.004,
respectively), although this relationship disappeared in the
euthyroid phase. There was significant positive correlation with
HDL-c in hyper-, hypo- and euthyroidism (rs=0.49, P<0.001,
rs=0.44, P=0.003, rs=0.49, P=0.001, respectively), with total
cholesterol in hyperthyroidism (rs=0.32, P=0.004) and with
total cholesterol and LDL-c in hypothyroidism (rs=0.48,
P=0.001 and rs=0.35, P=0.020, respectively). Moreover,
adiponectin correlated inversely with BMI in the euthyroid
phase (rs=-0.33, P=0.039) which was not seen in hyper- and
hypothyroidism (Suppl Tables 8-10). In hyper and hypothyroid
females, adiponectin correlated negatively with BMC (rs=-0.30,
P=0.012 and rs=-0.49, P=0.002, respectively), whereas in the
euthyroid phase the inverse correlation between adiponectin and
both BMC (rs=-0.46, P=0.007) and LTM (rs=-0.37, P=0.036)
occurred (Suppl Tables 11-16).

DISCUSSION

To the best of our knowledge, this study is the first to examine
TH influence on FGF21 secretion in a pairwise comparison of
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TABLE 2 | Serum FGF21 and biochemical parameters after RAI treatment in hyper-, hypo-, and euthyroid phase.

Hyper- Hypo- Eu- P* Hypo vs. Hyper Eu vs. Hyper Eu vs. Hypo
thyroidism thyroidism thyroidism
MD (95% CI) P MD (95% CI) P MD (95% CI) P
N 42 42 42
FGF21, pg/mL 119.55 (67.78-  160.55 (92.48- 104.43 (55.93- - 41.00 (4.75- 0.084 -15.12(-65.85- >0.999 -56.12(-83.30- 0.033
192.32) 259.35) 231.93) 112.60) 33.80) 2.90)
Adiponectin, pug/mL 13.62 £ 7.16 156.16 £ 6.75 16.11 £ 6.87  0.033 1.55 (-0.22- 0.076 2.50 (-0.47- 0.051 0.95 (-0.96- 0.913
3.18) 4.53) 2.99)
TSH, miU/L 0.00 (0.00-0.00)  32.05 (18.71- 1.10 (0.43- - 32.04 (25.80-  <0.001 1.10 (0.15-  <0.001 -30.95 (-38.40- <0.001
49.37) 4.48) 41.20) 4.95) 21.85)
T4, pmol/L 57.11 + 28.66 517 £2.73 16.07 = 4.01 <0.001 -51.94 (-62.33- <0.001 -41.04 (-51.91- <0.001 10.90 (9.09-  <0.001
45.12) 33.86) 12.22)
T3, pmol/L 20.86 + 10.29 2.02 £1.10 40+053 <0.001 -18.83(-21.1- <0.001 -16.76(-19.86- <0.001 2.07 (1.67-  <0.001
15.28) 13.62) 2.36)
SHBG, nmol/L 160.65 (109.53-  38.60 (28.73- 66.40 (50.40- - -122.0 <0.001 -94.25(-135.2- <0.001 27.80 (21.60- <0.001
187.55) 52.18) 99.00) (-141.20-88.60) 49.90) 35.90)
Fasting serum insulin, 7.73 +4.83 7.06 + 3.60 6.66 + 4.04 0.242
mu/L
Fasting plasma 525+04 4.88 + 0.6 511 +0.51 <0.001 -0.37 (-0.59-  <0.001 -0.14 (-0.3- 0.051 0.23 (0.08- 0.014
glucose, nmol/L 0.21) 0.03) 0.39)
Quicki 0.37 £ 0.04 0.37 £ 0.04 0.37 £0.04  0.456
HOMA-IR 1.75+1.10 1.55 +0.82 1.55+1.03 0518
TC, mmol/L 3.98 + 0.95 7.19 +1.59 529+ 1.09 <0.001 8.19(2.84-3.49) <0.001 1.29 (1.02- <0.001 -1.90 (-2.21-  <0.001
1.68) 1.49)
HDL-c, mmol/L 1.48 + 0.47 2.26 £ 0.56 1.79+0.46 <0.001 0.78 (0.68-0.96) <0.001 0.30 (0.21-  <0.001 -0.47 (-0.59-  <0.001
0.47) 0.36)
LDL-c, mmol/L 1.96 +0.72 4.05+1.26 2.86£0.94 <0.001 2.08(1.71-2.3) <0.001 0.89 (0.62- <0.001 -1.19(-1.46- <0.001
1.23) 0.77)
TG, mmol/L 1.04 (0.84-1.34) 1.87 (1.32- 1.16 (0.85- 0.82 (0.47-0.89) <0.001  0.11 (-0.05- 0.663  -0.71(-0.80- <0.001
2.55) 1.45) 0.22) 0.37)
BMI, kg/m? 22.76 + 3.89 2448 +369 2450 +4.40 <0.001 1.73(1.26-2.28) <0.001  1.75(1.02- <0.001 0.02 (-0.38-  >0.999
2.43) 0.44)

FGF21, fibroblast growth factor 21; TSH, thyroid stimulating hormone; fT4, free thyroxine; fT3, free triiodothyronine; SHBG, sex hormone binding globulin; Quicki, quantitative insulin-
sensitivity check index; HOMA-IR, homeostasis model assessment of insulin resistance; TC, total cholesterol; HDL-c, high density lipoprotein cholesterol; LDL-c, low density lipoprotein
cholesterol; TG, triglycerides; BMI, body mass index. Data shown are mean + SD and median (interquartile range). MD values are mean/median differences between characteristics in

different thyroid function phases with 95% confidence interval (Cl).
Pa-values are based on results of repeated measures ANOVA.

P-values are based on comparison of characteristics between thyroid function phases with post-hoc test for ANOVA or Wilcoxon paired test.

three different thyroid functions, namely hyper-, hypo-, and
euthyroidism. In our group of RAl-treated patients, dramatic
thyroid and metabolic changes occurred in a short period of
time, which constitutes a favorable model of FGF21 regulatory
pathways. Moreover, because of the wide interindividual
variation in FGF21 serum levels in the general population,
pairwise comparison represents a more reliable method of
FGF21 assessment than intercohort comparison (40). However,
even in these favorable settings, we did not demonstrate a
stimulatory effect of TH on FGF21 release. Furthermore, we
did not observe any correlation between FGF21 and TH in
hyper-, hypo-, and euthyroidism.

Our results stay in agreement with studies by Bonde and
colleagues, in which neither reduction in FGF21 serum level in
20 hyperthyroid patients after achieving euthyroidism was seen,
nor treatment of 14 healthy subjects with liver-specific beta
thyroid receptor analog eprotirome cause any change in FGF21
serum level (6). On the contrary, Xiao and colleagues
demonstrated elevated FGF21 serum levels in 119 Graves’
disease hyperthyroid patients compared to healthy controls. In
a subset of 41 patients from among this group, circulating FGF21
concentration declined by 59% after three months of thionamide

treatment when euthyroidism had been established (7). In both
studies, there was no correlation between FGF21 and T3 in
hyperthyroidism, which suggests no cause-and-effect
relationship and is consistent with our results.

Interestingly, both animal and cell culture studies
demonstrate interrelation between TH and FGF21 secretion. It
has been confirmed that T3 induces transcription of the Fgf21
gene in mouse liver and human HepG2-TRp hepatocyte culture
(4). This effect is mediated through thyroid hormone receptor-3
activation (TRP) (5). However, expression of most hepatic T3-
regulated genes is induced independently of FGF21 and ensues
equally in both wild-type and a mouse strain with targeted
deletion of Fgf2I gene (5). This leads to the conclusion that
FGF21 is dispensable for the majority of TH action in the liver.

Although we did not find a relationship between
hyperthyroidism and FGF21 secretion, we have observed a
transient FGF21 rise during rapid-onset hypothyroidism after RAI
treatment. In this setting, FGF21 serum level positively correlated
with rising serum triglycerides, and negatively with SHBG, which
was typically reduced in hypothyroidism. Additionally, no
correlation was found between serum FGF21 levels and TH.
Because FGF21 strongly induces hepatic FFA oxidation (19), we
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FIGURE 3 | Serum FGF21 (A) and adiponectin (B) levels after RAI treatment in
hyper-, hypo-, and euthyroid phase. FGF21, fibroblast growth factor 21. Data
presented as median (interquartile range). P<0.05 was considered significant.

hypothesized that sudden B-oxidation breakdown due to TH
decline triggers FGF21 release as a compensatory reaction.

TH are a key player in FFA metabolism. The mainstay of this
action is the induction of carnitine palmitoyltransferase- Io. (CPT-
Iot), which is the rate-limiting enzyme in the hepatic B-oxidation
pathway (41, 42). CPT-Io. converts long-chain fatty acyl-CoAs to
acylcarnitines for transport across the mitochondrial membrane for
B-oxidation (43). We hypothesized, that in rapid-onset

hypothyroidism, CPT-Io. activity suddenly declines with a
subsequent inhibition of FFA oxidation and increased hepatic
lipogenesis. In this setting, the rise in serum triglycerides is a
marker of intrahepatic mitochondrial B-oxidation breakdown and
induction of lipogenesis. Moreover, sudden SHBG reduction in the
hypothyroid state may favor hepatic lipid accretion. It has been
demonstrated that enhanced de novo lipogenesis in the liver, a
process consisting of conversion of acetyl-coenzyme A to free fatty
acids, is crucial for NAFLD development and can down regulate
SHBG synthesis (44, 45). Additionally, in human liver biopsy
samples, enhanced TG accumulation and acetyl-coenzyme A
carboxylase (ACC) mRNA expression, being the rate limiting
enzyme controlling de novo lipogenesis, correlates negatively with
SHBG mRNA and protein levels. Furthermore, SHBG
overexpression decreases ACC expression induced by high-
glucose culture conditions in HepG2 cells (46).. This implicates a
protective function of SHBG in a fatty liver formation and is
consistent with our results, where falling SHBG serum
concentration associated with FGF21 release.

It had been shown previously that exogenous administration of
FGF21 significantly lowers circulating and intrahepatic triglycerides,
reverses fatty liver, and reduces signs of NASH and hepatic fibrosis
(23). Administration of the FGF21 analogue pegbelfermin in
humans with NASH causes at least a 30% relative reduction in
hepatic fat content assessed in magnetic resonance imaging-proton
density fat fraction in over half of the patients and a significant
reduction of serum triglyceride levels (23). FGF21 increases fatty
acid oxidation in the liver but also reduces lipid flux into the liver by
promoting triglyceride-rich lipoproteins catabolism in adipose
tissue and suppression of white adipose tissue postprandial
lipolysis (19-21). However, these data emerge from animal
experiments or human studies after exogenous administration of
FGF21 analogues, which do not fully reflect physiology. In our
study, we confirmed the physiological endogenous rise of FGF21
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FIGURE 4 | Scatter plots showing FGF21 and fT3, adiponectin, triglycerides, and SHBG serum levels in hypothyroidism after RAI treatment. Relationship between
serum FGF21 levels and fT3 (A) adiponectin (B) triglycerides (C) and SHBG (D). FGF21, fibroblast growth factor 21; fT3, free triiodothyronine; TG, triglycerides;
SHBG, sex hormone binding globulin. rs represents Spearman correlation coefficient. P<0.05 was considered significant.
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secretion accompanying sudden lipid overload, demonstrating its
protective function against mitochondrial stress. Indeed, hepatic
transcription of fgf21 gene in mice is triggered by endoplasmic
reticulum (17) and oxidative stress (16) resulting from obesity and
NAFLD as a compensatory reaction. On the other hand, FGF21
resistance due to attenuated receptor signaling and consequently
impaired induction of target genes in diet-induced obesity (DIO)
mice has also been described (38). It leads to the conclusion that
both mechanisms can be involved and increased FGF21 serum
levels in obesity related comorbidities may be a concert of
compensatory increased secretion and receptor resistance.

In our study, we did not observe the link between FGF21 and
adiponectin. In rapid-onset hypothyroidism after RAI treatment,
rising FGF21 serum concentration was not accompanied by
augmented adiponectin secretion. Moreover, adiponectin did
not correlate with rising FGF21 serum levels. Therefore, we
have not confirmed the hypothesis that the hepatic action of
FGF21 is mediated indirectly via increased adiponectin secretion
(27), a result that is consistent with other studies demonstrating
adiponectin is dispensable for FGF21 action (28).

One limitation of our study was the relatively small sample
size and inequality of sex distribution, reducing the strength of
the sex-specific body composition assessment.

In conclusion, this study did not exhibit interdependency
between TH and FGF21 secretion. Serum FGF21 concentrations
in hyper- and hypothyroidism did not differ in comparison to the
control group. Furthermore no correlation between FGF21 and
T3 has been demonstrated.

Instead, we observed a significant rise of FGF21 serum level in
conditions of metabolic challenge of rapid-onset hypothyroidism
after RAI treatment. This rise demonstrated a significant positive
correlation with rising serum triglyceride and negative
correlation with falling SHBG concentration. We conclude that
FGF21 induction in physiological conditions of increased hepatic
lipogenesis suggests a compensatory reaction protecting the liver
against excessive triglyceride accumulation.
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