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Intact mineralization of the auditory ossicles - the smallest bones in the body - is essential
for sound transmission in the middle ear, while ossicular hypomineralization is associated
with conductive hearing loss. Here, we performed a high-resolution analysis of the
ossicles in vitamin D receptor deficient mice (Vdr-/-), which are characterized by
hypocalcemia and skeletal mineralization defects, and investigated whether local
hypomineralization can be prevented by feeding a calcium-rich rescue diet (Vdr-/- res). In
Vdr-/- mice fed a regular diet (Vdr-/- reg), quantitative backscattered electron imaging (qBEI)
revealed an increased void volume (porosity, p<0.0001) along with lower mean calcium
content (CaMean, p=0.0008) and higher heterogeneity of mineralization (CaWidth,
p=0.003) compared to WT mice. Furthermore, a higher osteoid volume per bone
volume (OV/BV; p=0.0002) and a higher osteocyte lacunar area (Lc.Ar; p=0.01) were
found in histomorphometric analysis in Vdr-/- reg mice. In Vdr-/- res mice, full rescue of OV/
BV and Lc.Ar (both p>0.05 vs. WT) and partial rescue of porosity and CaWidth (p=0.02
and p=0.04 vs. WT) were observed. Compared with Hyp mice, a model of X-linked
hypophosphatemic rickets, Vdr-/- reg mice showed a lower osteoid volume in the ossicles
(p=0.0002), but similar values in the lumbar spine. These results are consistent with later
postnatal impairment of mineral homeostasis in Vdr-/- mice than in Hyp mice,
underscoring the importance of intact mineral homeostasis for ossicle mineralization
during development. In conclusion, we revealed a distinct phenotype of
hypomineralization in the auditory ossicles of Vdr-/- mice that can be partially prevented
by a rescue diet. Since a positive effect of a calcium-rich diet on ossicular mineralization
was demonstrated, our results open new treatment strategies for conductive hearing loss.
Future studies should investigate the impact of improved ossicular mineralization on
hearing function.
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INTRODUCTION

The vitamin D receptor (Vdr) is a calcitriol (1,25-dihydroxyvitamin
D3) binding nuclear receptor encoded by the Vdr gene that
regulates gene transcription by binding to a vitamin D response
element in the promoter region of certain genes (1). The Vdr
knockout mouse (Vdr-/-), a model of hereditary vitamin D-
dependent rickets type II, lacks vitamin D-dependent gene
expression, resulting in impaired mineral ion homeostasis and
related defects like rickets (2, 3). In the first 18 days of life, a non-
saturable 1,25-dihydroxyvitamin D-independent mechanism
maintains calcium absorption (4). After weaning, secondary
hyperparathyroidism compensates for the reduced intestinal
calcium absorption by PTH-mediated bone resorption; however,
the serum calcium level drops after about 4 weeks of age (3, 5). The
calcium level stabilizes 30% below that of wildtype (WT) mice,
while phosphate is increasingly eliminated via the kidney due to
secondary hyperparathyroidism, resulting in hypophosphatemia
(3, 5).

Altered calcium and phosphate metabolism lead to marked
skeletal abnormalities such as severe osteomalacia with a 30-fold
greater osteoid volume compared to control littermates, leading
to a significant reduction of biomechanical properties and
increased bone fragility (6, 7). Furthermore, the growth plates
present a marked disorganization and a significant increase in
the length of the hypertrophic chondrocyte layer (5, 6, 8). In
Vdr-/- mice fed a calcium-/phosphate-rich rescue diet from 16
days of age, normalized mineral ion homeostasis was observed
with normal osteoid and tibial bone volume, showing that
intestinal calcium absorption is a critical factor in mineral
metabolism and bone mineralization (6, 8).

Poor bone mineralization (i.e., rickets, osteomalacia) is
primarily characterized by skeletal complications such as
insufficiency fractures. Nonetheless, extraskeletal complications
such as dental problems or hearing loss are also recognized. In
the latter context, we and others have previously demonstrated
that the integrity and especially bone mineralization of auditory
ossicles is of decisive importance for sound transmission in the
hearing process (9–12). However, it remains unknown whether
dietary or bone-targeted treatments ameliorate ossicular
hypomineralization and conductive hearing loss. This question
remains particularly worthy of investigation considering that in
humans and mice the development and mineralization of ossicles
is normally completed shortly after birth and little ossicular
remodeling accompanied by high matrix mineralization has been
observed across species (10, 13, 14). Therefore, this study aims to
characterize the mineralization properties of the auditory ossicles
in Vdr-/- mice, also focusing on the treatment effects by a
calcium-/phosphate-rich diet.
MATERIALS AND METHODS

Animals and Experimental Design
Vdr-deficient mice (B6.129S4-Vdrtm1Mbd/J) on regular (Vdr-/- reg)
or calcium-/phosphate-rich rescue diet (Vdr-/- res) and their wild-
Frontiers in Endocrinology | www.frontiersin.org 2
type (WT) littermates were included from a previous study for
high-resolution skeletal analysis of auditory ossicles (7). All mice
were on a C57BL/6J background, maintained in a specific
pathogen-free environment with a 12-h light/dark cycle, 45–
65% relative humidity, and 20–24°C ambient temperature in
open cages with wood shavings bedding and nesting material.
Vdr-/- reg and WT mice were fed autoclaved Purina rodent chow
containing 1% calcium, 0.67% phosphate, 0% lactose, and 4.4 IU
vitamin D/g (regular diet). To normalize mineral ion levels,
Vdr-/- res mice were fed g-irradiated rescue chow (TD96348,
Teklad, Madison, WI) containing 2% calcium, 1.25% phosphate,
and 20% lactose with 2.2 IU vitamin D/g bodyweight. Both diets
were initiated after weaning on day 16. For each genotype, five
mice were analyzed at 10 weeks of age. Only male mice were
examined. For comparative purposes, we also analyzed the
auditory ossicles and lumbar vertebral bodies of four age-
matched male Hyp mice (B6.Cg-PhexHyp/J, Jackson Laboratory,
#000528, C57BL/6J background), a model of X-linked
hypophosphatemic rickets obtained in the context of a
previous study (15). All animal preparations were approved by
the “Behörde für Umwelt und Gesundheit der Hansestadt
Hamburg” (Org529, G14/68).

Sample Preparation and Quantitative
Backscattered Electron Imaging
Preparation of middle ears and isolation of auditory ossicles were
performed under a stereomicroscope. All isolated specimens
were fixed in 3.7% formaldehyde, dehydrated in an ascending
ethanol series, and embedded undecalcified in methyl
methacrylate. To analyze the bone mineral density distribution
(BMDD), the embedded auditory ossicles (malleus and stapes)
were polished to a coplanar finish, carbon coated, and
subsequently analyzed by quantitative backscattered electron
imaging (qBEI), consisting of a scanning electron microscope
(LEO 435 VP, LEO Electron Microscopy Ltd.; Cambridge,
England) with a backscattered electron detector (Type 202;
K.E. Developments Ltd.; Cambridge, UK). Polishing was
performed using a surface grinding machine (EXAKT 400 CS,
EXAKT, Norderstedt, Germany). Initially, the 1200 grit silicon
carbide wet sandpaper (Allied High Tech Products Inc., Rancho
Dominguez, USA) was used for grinding. The exact grinding
duration was adjusted to each specimen to obtain an appropriate
cross-section of the specimen. After visual confirmation of the
optimal cross-section, the specimen was now polished for 4
minutes using 4000 grit silicon carbide wet sandpaper. The
scanning electron microscope was operated at 20 kV and 680
pA at a constant working distance, as described previously (16,
17). Images were taken at 100x magnification, representing a
pixel size of 1.15 µm. The generated gray values represent the
mean calcium content (mean Ca-wt%) of the cross-sectioned
bone (18). Brightness and contrast of the qBEI images were
calibrated using carbon and aluminum standards: The gray
values assigned to carbon and aluminum were 4.8 and 222,
respectively. Image analysis was performed using ImageJ (ImageJ
1.42, National Institutes of Health, Bethesda, USA) (19) and a
custom MATLAB-based program (TheMathWorks, Inc., Natick,
June 2022 | Volume 13 | Article 901265
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USA). Gray values proportional to calcium content were used to
determine the mean calcium content (CaMean, wt%), standard
deviation (i.e., heterogeneity of mineralization, CaWidth, wt%),
and most frequent calcium content (CaPeak, wt%). Furthermore,
the void volume (i.e., porosity) as well as the osteocyte lacunar
number (N.Ot.Lc/B.Ar, 1/mm2) and area (Lc.Ar, mm2) were
assessed. Following standardized thresholding using ImageJ,
black voids within the mineralized bone with a size threshold
of 4-100 µm2 were classified as osteocyte lacunae while voids
larger than 100 µm2 were classified as porosity.

Histology and Histomorphometry
The samples were cut into 4 µm sections using a rotation
microtome (CVT 4060E, microTec, Walldorf, Germany) and
subsequently stained with von Kossa-van Gieson and toluidine
blue according to previously described protocols (20).
Histomorphometric analysis was performed according to
ASBMR guidelines (21) using a bright- field light microscope
(Axioskop 40, Carl Zeiss Vision GmbH, Germany) equipped
with Osteomeasure Software (OsteoMetrics Inc., Atlanta, USA).
The bone volume per tissue volume (BV/TV, %) and the osteoid
volume per bone volume (OV/BV, %) were analyzed during
histological analysis.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
(version 9.0, GraphPad Software, La Jolla, USA). Continuous
variables are expressed as absolute values or the mean ± standard
deviation (SD). Shapiro–Wilk test was used to evaluate the
normal distribution of the data. For comparison of normally
distributed data among the three groups, one-way ANOVA and
repeated measures with Holm-Sidak correction was applied, and
for non- parametric data, the Kruskal–Wallis test with Dunn’s
multiple comparison test was performed. For comparison
between two groups, Student’s t-test was used for normally
distributed data and Mann-Whitney U-test for nonparametric
data. The level of significance was defined as p<0.05.
RESULTS

Partial Rescue of Hypomineralization in
the Auditory Ossicles of Vdr-/- Mice
High-resolution imaging of the malleus by qBEI (Figure 1A)
indicated markedly impaired bone mineralization as well as
higher porosity in Vdr-/- reg mice compared to WT mice (19.42
± 4.65% vs. 3.48 ± 1.09%; p<0.0001; Figure 1B). In Vdr-/- resmice,
the porosity (10.23 ± 3.61%) was significantly lower than in
Vdr-/- reg mice (p=0.003) but remained significantly higher than
in WT mice (p=0.02). The mean calcium content (CaMean) was
significantly higher in WT mice (30.27 ± 0.50%; Figure 1C)
compared to both Vdr-/- reg (28.53 ± 0.70%; p=0.0008) and Vdr-/- res

mice (28.73 ± 0.41%; p=0.002), with similar values in Vdr-/- reg

and Vdr-/- res mice (p=0.83). However, significantly lower
mineralization heterogeneity was detected in Vdr-/- res than in
Vdr-/- reg mice (CaWidth, 4.61 ± 0.11% vs. 5.07 ± 4.16%; p=0.04;
Frontiers in Endocrinology | www.frontiersin.org 3
Figure 1D). The highest mineralization homogeneity was found in
WT mice (4.14 ± 0.14%), significantly differing from Vdr-/- reg

(p=0.003) andVdr-/- resmice (p=0.04). The CaPeak remained lower
in Vdr-/- res compared to WT mice (30.94 ± 0.51% vs. 31.81 ±
0.55%; p=0.04; Figure 1E). BMDD histograms indicated a
rightward shift and a narrower calcium distribution curve in WT
compared to both Vdr-/- reg and Vdr-/- res mice (Figure 1F),
reflecting the overall higher andmore homogeneous mineralization.

In the stapes (Figure 2A), qBEI revealed a significantly lower
CaMean in Vdr-/- reg (26.69 ± 0.42%) than the WT littermates
(27.89 ± 0.26%; p=0.003; Figure 2B), with no differences in
CaMean between WT and Vdr-/- res mice (27.18 ± 0.46%,
p=0.17). Further, no differences between the groups were
observed in CaWidth (Figure 2C) and CaPeak (Figure 2D).

Prevention of Hyperosteoidosis in the
Malleus and Comparison With Vertebrae
Histological analysis of the malleus (Figure 3A) revealed full
reversibility of the strongly increased osteoid levels in Vdr-/- res

compared to Vdr-/- reg mice. Specifically, the malleus in Vdr-/- reg

mice presented a significantly higher OV/BV compared to
WT mice (14.38 ± 5.56% vs. 0.0 ± 0.0%; p=0.0002) and to
Vdr-/- res mice (2.78 ± 1.74%; p=0.0008). BV/TV was equal in all
groups (Figure 3B). In comparison, the vertebral bodies of Vdr-/-
reg mice also exhibited a significantly higher OV/BV compared to
WT mice (55.3 ± 8.32% vs. 2.1 ± 0.67%; p<0.0001; Figure 3C),
but OV/BV was fully corrected in Vdr-/- res mice with
significantly lower values than in Vdr-/- reg mice (1.88 ± 0.99%;
p<0.0001) but without differences compared to WT
mice (p>0.05).

Full Rescue of Osteocyte
Lacunar Enlargement
Since osteocytes are known to mediate bone remodeling and
bone mineralization, and the osteocyte’s function is highly
influenced by its morphology, we next analyzed the osteocytes’
lacunar characteristics by qBEI (Figure 4A). We found no
significant differences regarding the number of osteocyte
lacunae (N.Ot.Lc/B.Ar, p>0.05 for all comparisons)
(Figure 4B). Nonetheless, evaluating the lacunar area (Lc.Ar),
Vdr-/- reg mice (22.84 ± 2.48 µm2) exhibited a significantly higher
osteocyte lacunar area compared to WT mice (19.41 ± 0.35 µm2;
p=0.01), while Vdr-/- res mice (19.62 ± 0.93 µm2) showed a full
rescue in Lc.Ar (p=0.02) (Figure 4C).

Peculiarities of Ossicular Mineralization
Demonstrated by Comparative Analysis of
Hyp Mice
Comparing the osteoid levels of Vdr-/- reg and Hyp mice in the
lumbar spine (Figure 5A), a non-significantly higher OV/BV was
observed in the vertebral bodies of Vdr-/- reg compared to Hypmice
(55.30 ± 8.32% vs. 42.25 ± 4.42%; p=0.06) (Figure 5B). In the
malleus, this pattern was reversed with a markedly lower amount of
osteoid in Vdr-/- reg compared to Hyp mice, reflected by a
significantly higher OV/BV ratio between ossicles and vertebrae
in Hyp mice (1.29 ± 0.21 vs. 0.26 ± 0.10; p=0.0001) (Figure 5C).
June 2022 | Volume 13 | Article 901265
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DISCUSSION

In this study, we aimed to investigate the micro-morphological
characteristics of the auditory ossicles in Vdr-/- mice, focusing on
the bone mineral density distribution and its changes by feeding
a calcium-/phosphate-rich diet. In Vdr-/- reg mice, qBEI revealed
significantly increased porosity of the malleus along with a
reduced and more heterogeneous mineralization, while
histological analysis showed increased osteoid volume and
higher osteocyte lacunar area compared to WT littermates. In
Vdr-/- res mice, complete correction of osteoid volume and
lacunar area and partial correction of porosity and
Frontiers in Endocrinology | www.frontiersin.org 4
mineralization heterogeneity could be observed in the malleus,
while the mean calcium content remained unchanged. Overall,
the calcium-/phosphate-rich diet resulted in distinct
improvements of the pre-existing ossicular hypomineralization
towards physiological conditions, demonstrating for the first
time that a bone-targeted diet improves the bone quality of
auditory ossicles.

Interestingly, the osteoid volume in the auditory ossicles of
Vdr-/- reg mice was considerably lower than in the lumbar spine,
while the rescue effect appeared to be relatively attenuated. This
phenomenon is likely due to a combination of rapid postnatal
ossicular development with little remodeling after the first few
A

B C

E F

D

FIGURE 1 | Partial reversibility of porosity and bone mineral density distribution (BMDD) in the malleus evaluated by qBEI. (A) Representative, pseudo-colored
images of the qBEI analysis of the orbicular apophysis of the malleus in WT, Vdr-/- reg and Vdr-/- res mice. The evaluation was based on the quantification of the
(B) porosity, (C) mean calcium content (CaMean), (D) mineralization heterogeneity (CaWidth), and (E) peak of the calcium distribution (CaPeak). (F) Bone mineral
density distribution (BMDD) histograms of the malleus of WT (Blue curve), Vdr-/- reg (red curve), Vdr-/- res mice (green curve). ANOVA and repeated measures with
Holm-Sidak correction was performed in panels B-E. *p<0.05; **p<0.01, ***p<0.001, ****p<0.0001.
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postnatal weeks (10), and unaffected mineral homeostasis until
the third week in Vdr-/- mice (3). Specifically, in the auditory
ossicles, bone development is completed more rapidly than in
other bones (10, 22, 23). The longitudinal growth is already
completed after 20 days and the endochondral ossification
between 6-12 weeks after birth (10, 22). During endochondral
ossification, large capillary loops lined with endothelial cells can
be seen in the ossicles immediately after birth, which becomes
mineralized by specific type I and type II collagen-producing
auditory osteoblasts (24, 25). Impaired mineral homeostasis may
prevent unmineralized bone (i.e., osteoid) from undergoing
regular mineralization. However, since impaired mineral
homeostasis in Vdr-/- mice manifests not after weaning on
postnatal day 16 (3, 5, 6), a large proportion of the
mineralization process in the auditory ossicles may already be
completed. Furthermore, in both mice and humans, rapid
development is usually followed by a markedly lower bone
remodeling rate in the ossicles compared to other bones (13).
Therefore, the remineralization of the auditory ossicles in Vdr-/-
res mice likely does not occur to the same extent as in the
remaining skeleton. Together, considering the early completion
of bone development and the overall low bone remodeling rate in
the ossicles, the observed differences in mineralization in the
ossicles compared to the spine of Vdr-/- mice might be explained.

Further evidence of the unique mineralization mechanisms of
the ossicles is derived from a comparative analysis of Hyp mice.
Frontiers in Endocrinology | www.frontiersin.org 5
Vdr-/- reg mice presented a similar amount of osteoid in the
lumbar spine but significantly lower amounts in the malleus
compared with Hyp mice. In this regard, it is important to
consider that the mineralization defect in Hyp mice manifests
immediately postnatally, due to an early onset of impaired
mineral homeostasis caused by increased renal phosphate
wasting (26). Therefore, the mineralization processes of the
ossicles in the first days of life cannot proceed in a regular
manner in theHypmice, whereas they still take place normally in
the Vdr-/- regmice during the weaning period (3, 5, 6), resulting in
a more sufficient mineralization of the ossicles in Vdr-/- reg mice.
These results are contrasted by the findings in the spine, where
development and mineralization take place beyond day 16,
which is why vertebral hypomineralization is as severely
affected in Vdr-/- mice as in Hyp mice.

Regarding osteocyte lacunar characteristics, it is noteworthy
that a full correction of increased lacunar area in the malleus was
noted in Vdr-/- res compared to Vdr-/- reg mice. These results
support the concept of osteocyte perilacunar remodeling (i.e.,
osteocytic osteolysis) previously observed in other bones of Vdr-/-

mice, Hyp mice (27), and particularly in lactating mice (28).
Although perilacunar remodeling was not further evaluated in
this study, the complete correction of osteocyte lacunar area
detected here argues for the dynamic role of osteocytes in the
process of controlling matrix mineralization (29). In the context
of auditory function, osteocytes could thus be assigned an
A

B C D

FIGURE 2 | BMDD characteristics of the stapes analyzed by qBEI. (A) Representative images of qBEI analysis of the stapes in WT, Vdr-/- reg and Vdr-/- res mice.
Mineralization characteristics were evaluated by analyzing the (B) mean calcium content (CaMean), (C) mineralization heterogeneity (CaWidth) and (D) peak of the
calcium distribution (CaPeak). ANOVA and repeated measures with Holm-Sidak correction was performed in panels (B–D). *p<0.05.
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indirect role via their control of matrix mineralization. The full
correction is contrary to the low remodeling rates and argues for
enough viability to ensure remineralization.

To interpret the clinical relevance of our findings in the context
of hearing function, it is useful to acknowledge the auditory ossicles
as a dynamic, functional unit, which is essential for sound
transmission during the hearing process. In addition to pure
Frontiers in Endocrinology | www.frontiersin.org 6
sound transmission, the auditory ossicles play a crucial role in
acoustic impedance matching and amplifying sound to ensure the
transmission from the air-filled middle ear to the fluid-filled inner
ear (i.e., cochlea) (30). Since a significant correlation between
hearing capacity and the bone mineral density has been reported
in humans (31), the physiological bone composition of the ossicles
appears to provide an optimal mix of stability and elasticity that
A

B C

FIGURE 3 | Undecalcified histology identifies partial reversibility of hyperosteoidosis in the malleus as opposed to the lumbar spine. (A) Representative histological
images of toluidine blue (upper panel) and von Kossa-van Gieson (middle panel) stained orbicular apophysis of the malleus in 10-weeks old WT, Vdr-/- reg and Vdr-/- res

mice. Histological images of the lumbar vertebral bodies in von Kossa-van Gieson staining (lower panel). (B) Histomorphometric evaluation including osteoid volume per
bone volume (OV/BV) and bone volume fraction (BV/TV) in the malleus and (C) OV/BV in the vertebral body. ANOVA and repeated measures with Holm-Sidak correction
was performed in panels (B–C). *p<0.05; **p<0.01.
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ensures functionality. In this context, it is also interesting that a high
prevalence of hearing loss has been reported in a variety of genetic
bone diseases, including X-linked hypophosphatemic rickets (XLH)
and osteogenesis imperfecta (32, 33). Our findings are also relevant
to the clinical observation that vitamin D deficiency has been
identified as a risk factor for hearing loss in both children and the
elderly (34, 35), with hypocalcemia being an additional independent
risk factor in children (34).

Hearing loss has also been demonstrated in mouse models that
recapitulate genetic bone diseases, such as in osteoprotegerin (Opg)-
deficient mice (Opg-/-), a decoy receptor for receptor activator of
nuclear factor k-b-ligand (RANKL), which is associated with
markedly activated osteoclast activity (12). Normalization of
resorption activity in Opg-/- mice with bisphosphonate therapy
resulted in an improvement in hearing (9). A correlation between
poor bone quality and hearing ability was also shown for other
mouse models. In FGF23-deficient mice suffering from
hyperphosphatemia and hypercalcemia with resulting defective
bone mineralization (36), a mixed conductive and sensorineural
hearing loss was reported (11), whereas in Hyp mice with FGF23
overexpression and consecutive hypophosphatemia and
mineralization impairment, a predominant conductive hearing
loss was present (10). In Vdr-/- mice, sensorineural hearing loss
associated with loss of spiral ganglion cells in the basal turn has been
previously reported, however, conductive hearing loss had not been
investigated in this model (37).

The limitations of our study include the relatively small sample
size and the fact that we did not perform hearing tests inVdr-/-mice.
Nonetheless, it seems likely that Vdr-/- mice exhibit conductive
hearing loss due to hypomineralization of auditory ossicles. While
we evidenced the beneficial effects of a therapeutic intervention on
Frontiers in Endocrinology | www.frontiersin.org 7
ossicular mineralization, the question whether conductive hearing
loss can be counteracted by a specific diet or bone-targeted
treatments needs to be investigated in future studies.

In conclusion, we here demonstrated a distinct mineralization
defect in the auditory ossicles of Vdr-/- mice, which was partially
reversed by a calcium-/phosphate-rich rescue diet. Since adequate
mineralization in the middle ear is associated with functional sound
conduction, the positive effects of a calcium-/phosphate-rich diet on
ossicular mineralization open new treatment strategies for
conductive hearing loss, which is commonly observed in patients
with genetic bone diseases. Our results further highlight the
importance of adequate mineral supply during early postnatal
development to ensure sufficient ossicle quality.
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FIGURE 4 | Osteocyte lacunar characteristics of the malleus analyzed by
qBEI. (A) Representative qBEI images showing osteocyte lacunae in the
malleus of WT, Vdr-/- reg and Vdr-/- res mice. (B) Quantification of the
osteocyte lacunar number (N.Ot.Lc/B.Ar) and (C) mean osteocyte lacunar
area (Lc.Ar). ANOVA and repeated measures with Holm-Sidak correction was
performed in panels (B) and (C) *p<0.05.
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FIGURE 5 | Comparative analysis of osteoid accumulation in the lumbar
spine and malleus in Vdr-/- reg and Hyp mice reflects peculiarities in ossicular
mineralization. (A) Representative images of bone trabeculae in the vertebral
bodies (von Kossa-van Gieson staining, upper panel) and of the malleus
(toluidine blue staining, lower panel) in Vdr-/- reg mice compared to Hyp mice.
Osteoid is stained pink (von Kossa-van Gieson) or light blue (toluidine blue)
(B) Quantification of osteoid volume per bone volume (OV/BV) in the
vertebrae. (C) OV/BV ratio between malleus and vertebrae. Student’s t-test
was used in panels (B) and (C) ***p<0.001.
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