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Iodine is an essential element for the production of thyroid hormones (THs). Both
deficient and excess iodine intakes may precipitate in adverse thyroidal events.
Radioactive iodine (RI) is a common byproduct of nuclear fission processes. During
nuclear emergencies RI may be released in a plume, or cloud, contaminating the
environment. If inhaled or ingested, it may lead to internal radiation exposure and the
uptake of RI mainly by the thyroid gland that absorbs stable iodine (SI) and RI in the same
way. A dose of radiation delivered to the thyroid gland is a main risk factor for the thyroid
cancer development. The SI prophylaxis helps prevent childhood thyroid cancer. The
thyroid gland saturation with prophylactic SI ingestion, reduces the internal exposure of
the thyroid by blocking the uptake of RI and inhibiting iodide organification. However,
negative impact of inadequate SI intake must be considered. We provide an overview on
the recommended iodine intake and the impact of SI and RI on thyroid in children and
adolescents, discussing the benefits and adverse effects of the prophylactic SI for thyroid
blocking during a nuclear accident. The use of SI for protection against RI may be
recommended in cases of radiological or nuclear emergencies, moreover the
administration of iodine for prophylactic purposes should be cautious. Benefits and
risks should also be considered according to age. Adverse effects from iodine
administration cannot be excluded. Precise indications are mandatory to use the iodine
for thyroid blocking. Due to this natural adaption mechanism it’s possible to tolerate large
doses of iodine without clinical effects, however, a prolonged assumption of the iodine
when not needed can be dangerous and may precipitate in severe thyroidal and non-
thyroidal negative effects.
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INTRODUCTION

Iodine is an essential component of the thyroid hormones (THs).
From conception to adulthood, an inadequate iodine intake
causes an impairment of THs synthesis leading to functional
and developmental abnormalities of different body organs,
particularly the brain (1, 2). On the other hand, an excess of
iodine may precipitate in thyroid dysfunction, such as
hyperthyroidism, hypothyroidism, goiter, and/or thyroid
autoimmunity (3, 4).

Radioactive isotopes of iodine, such as I131, are included
in nuclear fission products. During a nuclear disaster,
radioactive iodine (RI) may be released in a plume, or cloud,
contaminating the environment (5). If inhaled or ingested, it may
lead to internal radiation exposure and the uptake of RI mainly
by the thyroid gland that absorbs stable iodine (SI) and RI in the
same way.

As reported after the Chernobyl accident in 1986, an
association between exposure to RI and increased risk of
thyroid cancer among children and adolescents is present
(6, 7); in particular papillary and follicular thyroid carcinomas
have been reported (8).

A dose of radiation delivered to the thyroid gland is a main
risk factor for the thyroid cancer development (7, 9–12). The risk
of radiation-associated thyroid cancer was also seen to be
inversely correlated with iodine deficiency (13) and levels of SI
in soil in residential areas at the time of the accident. Compared
to adults, children and adolescents are at a higher risk of
developing radiation-induced thyroid cancer due to different
physiological and behavioral factors, such as a higher uptake
rate of RI during the thyroid gland development, higher tissue
dose due to the small size of the thyroid in children and different
food intake (14).

During nuclear emergencies, the SI prophylaxis helps prevent
childhood thyroid cancer (15, 16). The thyroid gland saturation
with SI ingestion, reduces the internal exposure of the thyroid by
blocking the uptake of RI and inhibiting iodide organification
(16). However, adverse effects of SI intake, including iodine
overload hypothyroidism, hyperthyoroidism, allergies, skin
rashes, swelling of salivary glands must also be considered
when a prolonged and non-appropriate assumption of the
iodine occurs (17, 18).

We provide an overview on the iodine source and
recommended intake and the impact of SI and RI on thyroid,
focusing on children and adolescents, and discussing the benefits
and adverse effects of the prophylactic SI during a nuclear
accident. Defined indications for iodine prophylaxis may be
useful to prevent an unjustified use of SI.
METHODS

We performed a narrative review, presenting a non-systematic
summation and analysis of available literature on the topic of
iodine intake and over- or under-iodination risk in prophylactic
use during a nuclear accident (19). The most relevant original
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scientific papers, clinical trials, meta-analyses and reviews
published up to February 2022, in the English language, on a
specific topic, were reviewed. Case reports or series and letters
were excluded. The following keywords (alone or in
combination) were considered: iodine, stable iodine,
radioactive iodine, thyroid, thyroid cancer, iodine thyroid
blocking, iodine intake, iodine supplementation, nuclear
disaster, thyroid function. The electronic databases PubMed,
Scopus, EMBASE and Web of Science were used for this
research. The contributions were collected by V.R., G.M., M.G.,
P.B. and critically analyzed with V.C. and M.C. The resulting
draft was discussed by V.C. and M.C. and critically revised by
G.Z. The final version was then recirculated and approved by all.
IODINE METABOLISM AND FUNCTION IN
THE THYROID GLAND

Iodine is involved in carrying out several biological functions.
Although some studies have revealed, especially in recent years,
the antioxidant, antimicrobial and antineoplastic properties of
this element, the most important and best-known role that
iodine plays in the human metabolic pathways concerns the
physiology of the thyroid gland; in fact, iodine is necessary both
for the synthesis of THs and for the modulation of thyroid
function (20). During the first 10-12 weeks of gestation, the fetus
is entirely dependent on the maternal THs. After this period, the
fetal thyroid begins to be able to concentrate iodine and
synthesize T3 and T4, with a mechanism that becomes more
efficient starting from the 18th -20th week (2).

THs, namely 3,5,3’,5’-tetraiodo-L-thyronine (T4) and 3,5,3’-
triiodo-L-thyronine (T3), whose production is mainly regulated
by hypothalamic and pituitary hormones (Thyrotropin Releasing
Hormone and Thyroid-Stimulating Hormone, TRH and TSH),
play an essential role both for the development and for the
differentiation of the cells of different organs; they are essential
for neuronal development in central nervous system (CNS), in
particular in the fetal period, and for somatic development.

From the biochemical point of view, T3 and T4 act as
decoupling agents in the mitochondrial respiratory chain, thus
increasing the cellular basal metabolism; they are also able to
stimulate protein synthesis, mainly in the muscle tissue, and to
regulate lipid and carbohydrate metabolism. They also increase
sensitivity to catecholamines (21, 22).

Iodine is rapidly absorbed from the gastrointestinal tract,
distributed in the extracellular compartment, used for the
formation of THs and later eliminated mainly through the
kidneys; only a small part is eliminated by sweat, saliva, tears,
and bile. For this reason, the urinary iodine concentration is an
excellent parameter for assessing iodine intake (23, 24).

Iodine is introduced into the cytoplasm of thyroid follicular
cells thanks to the action of the NIS channel (Na-I Symporter),
which introduces two sodium ions into the thyroid cell together
with an Iodine molecule, via an active transport mechanism. In
order to function properly, this transport needs the presence of a
Na-K pump that maintains a higher concentration of Na ions in
May 2022 | Volume 13 | Article 901620
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the extra-cellular space. Once introduced into the cytosol, iodine
reaches the apical portion of the cell through several transporters
a passive transport system consisting of some specific proteins,
including Pendrin, regulated by the function of TSH. Here iodine
undergoes the action of the enzyme thyroperoxidase (TPO),
which causes oxidation and incorporation into thyroglobulin
(Tg), leading to the formation of mono-iodotyrosine (MIT) and
di-iodotyrosine (DIT) compounds, precursors of THs (23, 24).

The metabolism of iodine is mainly regulated by TSH, Tg and
by the concentration of iodine itself: TSH is able to stimulate the
production of Tg, TPO and NIS; moreover, TSH is able to
modulate the intracellular vesicular traffic of TPO. All this
leads to increased iodine uptake by the thyroid gland. Tg, on
the other hand, acts at the genetic level, modulating the
transcription of some genes, including those that code for NIS,
TPO and TSH-R, thus modulating the oxidation of iodine.
Uncoupled MIT or DIT residues are deiodinated by the
iodotyrosine dehalogenase, that is a transmembrane protein
localized at the apical pole of thyrocytes and involved in the
intrathyroidal recycling of iodide (25). THs are transported
outside the basolateral membrane of thyrocytes, by
monocarboxylate transporter 8 (MCT8), reaching the
bloodstream. The metabolism of iodine is mainly regulated by
TSH, Tg and by the concentration of iodine itself: iodine
deficiency stimulates TSH production, which leads to an
increase in iodine uptake; excess iodine, on the other hand,
inhibits the activity of TPO reducing the synthesis of THs
(23, 24).

TH is essential for normal development, growth, neural
differentiation, and metabolic regulation in mammals (26, 27).
THs bind to thyroid hormone receptors (TRs), TRa and TRb,
which are part of the nuclear hormone receptor superfamily.
These receptors also bind to enhancer elements in the promoters
of target genes and can regulate both positive and negative
transcription. In addition, nongenomic actions of TH that do
not involve direct regulation of transcription by TR and require a
plasma membrane receptor or nuclear receptors located in the
cytoplasm have also been recognized (28).
IODINE SOURCE AND RECOMMENDED
INTAKE

Food Sources of Iodine
The amount of iodine in foods can be variable, the causes may
include seasonal effects and changes in agricultural and
processing technologies that include iodine but not only, there
is a great variability in the iodine content and bioavailability of
soils from different regions and thus in foods. Most foods have
low native iodine intake, and they don’t contribute enough to
dietary intake.

The primary sources of iodine are salt, seafood, fish, algae,
milk and diary. Foods from the sea, particularly certain seaweeds,
are rich in iodine but their content is variable. In addition fish is
not usually consumed enough to cover the daily iodine
requirements. It is important to know that the iodine content
Frontiers in Endocrinology | www.frontiersin.org 3
in marine plants is higher than in terrestrial plants, the contents
of which depend on the type of soil where they were grown (29).

Salt can be produced from underground rock salt deposits,
natural brine or by evaporated seawater, the latter containing <
1mg iodine/Kg of salt (30). Salt is the preferred vehicle for iodine
fortification through the use of potassium iodate or potassium
iodide. The World Health Organization indicates that iodine
added to salt should be estimated on the basis of the salt
consumed by the population: 14 mg/Kg if salt intake is high
(14g/day), 65 mg/Kg when it is low (3g/day). It is important to
remember that the iodine content in the iodized salt may differ
from reported content due to exposure to humidity (30).

The level of iodine in the drinking water varies according to
geographical location, it reflects the amount of iodine in the soil,
proximity to the sea, the water table and the agricultural runoff.
The information on the content of iodine in the drinking water is
often insufficient, but drinking water typically has an iodine
content of 1-10 µg/L (31). In some regions the iodine content of
water is too low to lead to excessive intake and potential thyroid
hypertrophy, while desalinated water can cause a total loss of
iodine (30).

The iodine content in plant-based food is affected by the
proximity of growing area to sea water, the amount of iodine in
the soil, ground, irrigation water and fertilizers containing
iodine. Overall, vegetables and fruits are relatively poor sources
of iodine. Seaweeds are the exception, because they have high
concentration of iodine (32).

Eggs and dairy products represent a significant but variable
source of iodine, milk products in fact are a major contributor of
iodine but this depends on varying dairy practices. In fact their
iodine content is influenced by animal feed supplements, which
are used to ensure health and reproduction outcomes in dairy
and beef cattle (30). In addition, the concentration of iodine in
milk is closely linked to the seasons: in winter the content is
higher than in summer because the milk yield is highest in the
summer-autumn months (33).

Another source of iodine is represented by commercial baked
goods if iodized salt is used in the technological processes by the
food producer. However ionized salt is not always used in
commercially processed foods (30).

Iodine in breast milk is highly variable depending on the
maternal iodine intake. A well-established mechanism regulates
the secretion of iodine in breast milk. In fact, in addition to the
thyroid, active transport of iodide also occurs in lactating
mammary glands due to a specialized form of NIS that has
been identified in the healthy lactating mammary gland but not
in nonlactating breasts (34). During lactation, the mammary
glands concentrate iodine through an increased expression of the
sodium/iodide symporter and secretes it into the breast milk.
Iodide concentrated in the lactating mammary glands and
secreted in milk is used by the lactating infant for the
biosynthesis of thyroid hormones (34–36). High breast milk
iodine concentrations have only been reported in areas with an
excess of iodine intake (37). Infant formula milk must contain
iodine to mimic breast milk composition. Levels of added iodine
are strictly regulated: in United Europe the reference range is 15-
May 2022 | Volume 13 | Article 901620
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29 µg/100 Kcal, in the United States infant formulas contain 5-75
µg/100 kcal (38, 39).

In dietary supplements, iodine is often present as potassium
iodide or sodium iodide (40, 41). The iodine doses in many
multivitamins/mineral supplements are usually 150 mcg,
however regulat ion of die tary supplements is not
internationally uniform and sometimes the iodine content is
incorrect and it exceeds the tolerable upper intake level (42). The
Dietary Supplement Label Database, created by the National
Institutes of Health, reports the list of many dietary supplements
that contain iodine (3, 43).

The role of goitrogens in iodine bioavailability is interesting,
goitrogens are compounds with the capacity to interfere with
iodine uptake and utilization by the thyroid gland and contribute
to goiter disorders. Dietary goitrogens are botanical foods
compounds: cassava (cyanogenic glucosides), cruciferous
vegetables (glucosinolates) and soy products (flavonoids). The
impact of goitrogen-source foods on thyroid status depends on
the iodine content of the diet and the quantity eaten, which can
be influenced by cultural practices. Nitrates, disulfides and
perchlorates constitute dietary and environmental goitrogens,
in fact these compounds could be a result of industrial
contamination, but they may also occur naturally in soil and
could therefore contaminate water and processed foods. Tobacco
smoke, rich in thiocyanate, is another important goitrogenic
factor (30).

Iodine intake also reflects changes in food consumption. For
example, homemade foods, traditionally cooked with iodized
salt, have been replaced with commercially produced foods
which are not always prepared with this kind of salt, or they
are too salty and consequently can have deleterious effects on
the cardiovascular system. Likewise specific new dietary patterns
lead to exclusion of major sources of iodine, particularly vegan,
vegetarian, low salt diets, Paleo diets and lactose intolerance (44).
The restriction of iodine-rich food sources such as dairy, eggs,
and/or fish may increase the risk of iodine deficiency (30).
Additionally, a higher consumption of soy, rich in isoflavones,
can interfere with the thyroid peroxidase function (45).

Recommended Iodine Intake
Most foods have low iodine content and diet in many regions
cannot provide adequate iodine intake. Population iodine
sufficiency is maintained through iodine salt fortification,
indeed, in 2021, salt iodization was implemented in 124
countries and 21 have legislation permitting voluntary
iodization. The consequence of this health strategy is that 88%
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of the global population uses iodized salt, and countries with an
adequate iodine intake have doubled from 2003 to 2021. Despite
this intervention on public health, 21 countries remain deficient
and 13 have excessive intake (46).

The biomarkers used to monitor iodine status are: urinary
iodine concentration (UIC), thyroglobulin concentration in
blood and goiter rate (47). UIC is used to evaluate recent
iodine intake, thyroglobulin shows thyroid activity whereas
goiter rate reflects long term iodine deficiency. As reported in
Table 1, the World Health Organization (WHO) has defined
UIC categories to denote adequate iodine nutrition. However
UIC measurements only provide information on the risk of
developing thyroid disorders and not direct information on
thyroid function (47). UIC measurements are often used to
evaluate the iodine nutritional status of a population rather
than individual iodine intake, it can be used to track iodine
status changes over time and it is considered as a biomarker for
predicting goiters among school children and is useful for
facilitating interventions to address iodine excess or
deficiency (48).

The Recommended Dietary Allowance (RDA) for iodine
intake was established by the Institute of Medicine in 2006.
Tables 2, 3 show the reference of iodine values by age. These
values include: Recommended Dietary Allowance (RDA), such
as average daily level of intake sufficient to meet the nutrient
requirements of nearly all healthy individuals (Table 2);
Adequate Intake (AI), such as Intake at this level is assumed to
ensure nutritional adequacy, established when evidence is
insufficient to develop an RDA (Table 2); Tolerable Upper
Intake Level (UL): Maximum daily intake unlikely to cause
adverse health effects (Table 3) (29, 40, 41).

The Italian Society of Human Nutrition (SINU) has carried
out a Review of Reference Nutrient and Energy Intake Levels for
the Italian population (LARN). This document provides food
indications relating to the minimum intake of energy, micro and
macronutrients, these values specifically address Italian
population. Table 4 underlines the reference of iodine values
by age for the Italian population (49).

Not least were the problems related to an excess of iodine. An
excess of iodine can be caused by the consumption overionized
salt (>15-40 ppm) (47), drinking water, animal milk, seaweeds,
dietary supplements containing iodine and/or a combination of
these foods. It is for this reason that maximum iodine intakes
have been defined. International reference values for upper
intakes of iodine are given in Table 1 (3). As previously stated,
salt iodization, if properly implemented, is a good way to meet
TABLE 1 | Urinary iodine concentration in infants and children, according to World Health Organization.

Age Urinary iodine (µg/L) Iodine intake Iodine nutrition

< 2 years < 100 µg/L Insufficient Not determined
≥ 100 µg/L Adequate Not determined

School-aged children < 20 µg/L Insufficient Severe iodine deficiency
20-49 µg/L Insufficient Moderate iodine deficiency
50-99 µg/L Insufficient Mild iodine deficiency
100-299 µg/L Adequate Optimum
>300 µg/L Excessive Risk of adverse health consequences
Ma
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the needs of all population groups to prevent iodine deficiency,
but sometimes the risk of localized excess iodine arises when salt
fortification above the recommended level is consumed (3, 50).
INADEQUATE IODINE INTAKE AND
THYROID DISORDERS

Iodine plays a central role in thyroid physiology, being both a
major constituent of THs and a regulator of thyroid gland
function. Both iodine deficiency and excess iodine intake may
cause thyroid disorders and related complications including
growth retardation and neurological and intellectual impairments.

Consequences of Iodine Deficiency
As reported in Table 5, iodine deficiency in pediatrics leads to a
dysfunction in the synthesis of THs and can lead to various
clinical conditions, according to the severity of the deficit and the
age of the patient

Until the 10th-12th week of gestation, when fetal thyroid tissue
develops, the fetus depends to maternal THs (2). In cases in which
maternal nutrition during pregnancy does not provide an adequate
intake of iodine, anomalies in the fetal thyroid function may occur
(51). The main consequences consist in impaired fetal neuronal
development, which leads after birth to intellectual disability of
varying degrees, that can be associated with other neurological and
physical alterations., such as growth retardation and signs of
hypothyroidism; this condition is called cretinism and can be
divided into two subtypes based on the prevalent clinical
manifestations (neurological vs myxedematous cretinism) (2).
Frontiers in Endocrinology | www.frontiersin.org 5
The main manifestations of neurologic cretinism are intellectual
disability, deaf mutism, gait alterations and spasticity.
Hypothyroidism is not usually present. It is believed that the
main cause of this type of cretinism is a state of maternal
hypothyroidism present in the early stages of pregnancy followed
by an adequate intake of iodine in the newborn, which therefore
leads to a state of euthyroidism after birth. Myxedematous
cretinism, on the other hand, manifests itself with intellectual
disability, short stature, and hypothyroidism. This condition is
believed to be caused by a maternal iodine deficiency in the final
stages of pregnancy that is not corrected in the newborn, thus
characterized by a state of hypothyroidism that continues after birth.

Severe maternal and fetal iodine deficiency has been
associated with increased rates of stillbirth, abortion,
congenital anomaly, and neonatal infant mortality. This effect
can be reduced by up to 50 percent with iodine supplementation
before conception or during pregnancy (52, 53). A study
published in the Lancet in 1997 conducted in the Chinese
province of Xinjiang, in an area heavily deficient in iodine and
with a high infant mortality, showed that the addition of iodine
in irrigation water for a period of 2-4 weeks was able to reduce
the infant mortality rate from 47-106/100,000 births to 19-57/
100,000 births. Similar results were obtained for neonatal
mortality rate and iodine treatment with relative duration were
independent predictors of infant mortality (52, 54).

A lot of studies in the literature describe how iodine
deficiency is associated with varying degrees of intellectual
disability. In particular, a meta-analysis conducted in this
regard on several studies correlating iodine deficiency with
cognitive development described how moderate-severe chronic
iodine deficiency was associated with an average reduction in IQ
of about 13.5 points. The consequences of mild iodine
deficiencies are instead more difficult to quantify; some studies
in this regard describe the presence of mild neurological
developmental deficits in mildly iodine-deficient children, such
as executive function, intelligence quotient (IQ) scores, reading
ability, school performance, cognitive scores and language skills
(1, 55–58); the correction of the intake could improve cognitive
development (1). However, a recent systematic review conducted
on the most recent published data on the effects of iodine
TABLE 2 | Reference of iodine values by age, according to Institute of Medicine
recommendation (29, 40, 41).

Age Recommended Dietary Allowances Adequate Intake

0-6 months 100 µg/day 110 µg/day
7-12 months 130 µg/day 130 µg/day
1-5 years 90 µg/day Not determined
5-12 years 120 µg/day Not determined
>12 years 150 µg/day Not determined
TABLE 3 | Recommended upper intake levels for iodine according to different institution (3, 49).

WHO IOM SCF LARN

Premature infants 100 µg/Kg/day Not determined Not determined Not determined
0-6 months 150 µg/Kg/day Not determined Not determined Not determined
7-12 months 140 µg/Kg/day Not determined Not determined Not determined
1-3 years 50 µg/Kg/day 200 µg/day 200 µg/day 200 µg/day
4-6 years Not determined 300 µg/day

(4-8 Years)
250 µg/day 250 µg/day

7-10 years 50 µg/Kg/day
(7-12 Years)

600 µg/day
(9-13 Years)

300 µg/day 300 µg/day

11-14 years 30 µg/Kg/day
(>13 Years)

Not determined 450 µg/day 450 µg/day

15-17 years Not determined 900 µg/day
(14-18 Years)

500 µg/day 500 µg/day
May 2022 | Volume 13
WHO, the World Health Organization; IOM, the United States Institute of Medicine; SCF, the European Union Scientific Committee on Foods; LARN, Reference intake levels for the
Italian population.
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supplementation in mildly-to-moderately deficient pregnant
women concluded that there is neither evidence of a certain
association with cognitive or neuromotor alterations, nor is there
evidence that justifies iodine supplementation in pregnancy in
this context (59).

During childhood, reduced intake of iodine leads to a reduced
production of THs and an increase in the production of TSH by
the pituitary gland. This hormone causes an increase in the size
of the thyroid gland through a mechanism of thyroid cell
hyperplasia, leading to a condition called goiter, which can
present either as a diffuse goiter (more common in children)
or as a multinodular goiter (60). Chronic TSH stimulation can
lead in rare cases to gain of function mutations and therefore to
hyperthyroidism conditions, more frequently in areas where
there is an endemic iodine deficiency and in adult patients
(61). In most cases the goiter does not reach a size that causes
obstructive symptoms. In the rare cases where growth is
exaggerated, signs of compression of the trachea and
esophagus may occur (2).

Individuals with iodine deficiency typically have normal or
reduced T3 levels, reduced T4 levels, and variably elevated TSH
levels. This situation typically occurs for daily iodine intakes
below 50 ug per day (2). Symptoms of iodine deficiency
hypothyroidism are similar to those of hypothyroidism caused
by different etiology and vary widely according to the age of the
patient. In the first weeks of life, the newborn with
hypothyroidism may present with lethargy, sucking disorders,
bulky and bulging eyes, macroglossia, prolonged jaundice,
distended abdomen, umbilical hernia, thick skin folds,
significant psychomotor disability, constipation. After a few
months of life, growth retardation becomes evident and a
generalized picture of myxedema may rarely occur (2, 62).
During childhood and adolescence myxedema, decreased
growth rate, delayed bone and dental maturation, trunk-limb
disproportion, lethargy, hypotonia, hyporeflexia, depressed
mood, difficulties in concentration and memory, intolerance to
cold, dry and pale skin, hair loss, constipation, bradycardia and
changes in pubertal development may occur.
Frontiers in Endocrinology | www.frontiersin.org 6
Consequences of Iodine Excess
Iodine overdose causes less severe disability in terms of symptoms,
moreover the excess intake of iodinemay induce a wide spectrum of
harmful consequences on thyroid function. Extrathyroidal negative
effects after prolonged assumption of SI and/or acute iodine toxicity
more rarely occur and are thus less discussed.

Generally, an ingestion or exposure above the limit threshold is
well tolerated in healthy individuals but may cause physiological
changes in vulnerable groups. Main sources of iodine in most
countries exposed to high dose derived from diet (over-iodization of
salt, milk, some seaweeds) but occurs also through use of iodinated
contrast agents in radiologic studies and certain medications like
amiodarone and povidone (iodine skin disinfectant) (3, 63).

Indeed, an acute or chronic exposure may result in
hypothyroidism, hyperthyroidism, autoimmunity thyroid and
goiter especially in people with preexisting thyroid disease or
those previously exposed to iodine deficiency, infants and
pregnant women.

When the thyroid is exposed to high dose of iodine, thyroid
hormone production is temporarily suspended through synthesis
of inhibitory substances acting on thyroid peroxidase activity.
This condition is known as the acute Wolff-Chaikoff effect.

The proposed mechanism for the Wolff-Chaikoff effect is that
iodopeptides are formed that have a temporary inhibitory effect on
the synthesis of TPO mRNA and protein and, thus, on
thyroglobulin iodination (64). Such an effect persists for a few
days, and then intrathyroidal iodide organification is resumed and
normal T4 and T3 synthesis is restored (defined as escape from the
Wolff-Chaikoff effect). This is achieved by reducing the
intrathyroidal concentration of inorganic iodine via down-
regulation of NIS and thus, allows the TPO-H202 system to
resume normal activity (64). However, thyroid has a natural
adaption mechanism to escape from this effect recovering thyroid
function in a few days by downregulation expression of the sodium-
iodide symporter (NIS) thus reducing the absorption of the iodine
form circulation to the thyroid and consequently the formation of
iodinated inhibitory compounds.

Therefore, due to this natural adaption mechanism it’s possible
to tolerate large doses of iodine without clinical effects.

As previously said people with predispositions, such as
autoimmune thyroiditis, previous subtotal thyroidectomy,
postpartum or subacute thyroiditis, patients treated with
radioactive medication and/or iodine and some medications
which interfere with iodine organification of tyrosine residues
may have a defective thyroid function control mechanism
resulting in an overt iodine-induced hypothyroidism (65).

Fetal and neonatal life represent a critical and susceptible period
due to the immaturity of the endocrine axis and of the ability to
avoid an acute Wolff-Chaikoff effect. Thus, excessive maternal
iodine intake may induce goiter and hypothyroidism but the real
consequences of iodine excess during pregnancy are still unclear.
During infancy the principal source of iodine consumption is breast
milk both exclusively breastfed infants and those being fed
complementary foods (37). So, the excess iodine exposure during
lactation may not only enhance the maternal susceptibility to
thyroid dysfunction, but also induce subclinical and clinical
TABLE 5 | Clinical manifestations of iodine-deficiency disorder; adapted from
reference (2).

Fetus Abortion, Stillbirth, Increased risk of perinatal death, Cretinism
Neonate-
Infant

Goiter, Hypothyroidism, Intellectual impairment

Child,
Adolescent

Goiter, Hypothyroidism, Intellectual impairment, Impaired
physical development
TABLE 4 | Reference of iodine values by age for Italian population (49).

Age Upper Intake Level Adequate Intake

6-12 months Not determined 70 µg/day
1-3 years 200 µg/day 100 µg/day
4-6 years 250 µg/day 100 µg/day
7-10 years 300 µg/day 100 µg/day
11-14 years 450 µg/day 130 µg/day
15-17 years 500 µg/day 130 µg/day
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hypothyroidism in their infants. During childhood however there
are many controversies concerning whether a long-term iodine
excess exposure may alter thyroid function and consequently the
normal growth and an adequate neurological development.

Goiter is typical not only in regions characterized by iodine
deficiency but also in those exposed to excessive quantities due to
failure of the thyroid adaptationmechanism. Excessive iodine intake
has been widely described as a risk factor for the development of
thyroid autoimmunity and postpartum thyroiditis (3). The last
occurs within the first year postpartum in women who were
euthyroid before pregnancy, or a new occurrence of thyroid
autoimmunity. Commonly, there is a hyperthyroid phase followed
by a hypothyroid phase, with return to a normal thyroid function
within the following year. In other cases manifestations may
encompass isolated thyrotoxicosis or hypothyroxinemia (66).

Some individuals who ingest excessive amounts of iodine may
develop iodine-induced hyperthyroidism, also known as the Jod-
Basedow phenomenon. This is more common in patients with long-
standing nodular goiters and is frequently observed following iodine
supplementation in areas of a very low iodine intake. As a
consequence of an increase in iodine exposure, people with
thyroid nodules can elude the control of TSH and produce
autonomously thyroid hormones causing hyperthyroidism. Graves’
disease is the most common cause of hyperthyroidism in iodine
sufficient regions. However, several studies have evidenced that the
incidence of this condition may be influenced by iodine intake but
more research is required to establish whether excess iodine exposure
is involved during the onset of autoimmunity of Graves’ disease (3).

Another likely consequence to consider, is that an excess
iodine condition seems to increase oxidative DNA damage
resulting in a major risk of developing thyroid cancer (67, 68).
However, to date, it’s considered as a weak promoter and more
studies are necessary to support this potential relationship.

In addition to the thyroidal effects due to excessive iodine
ingestion, extrathyroidal negative effects from reiterated high
level iodine intakes has also been reported, among others, on
salivary glands. The salivary glands, like thyroid, are able to
concentrate iodide. This glandular critical ability could cause
damage, like cellular infiltration, in this extrathyroidal tissue
leading to sialoadinitis (69).

Dermatological problems, such as skin rashes, acneiform
eruptions and dermatitis have rarely been reported. In most
cases, these adverse effects have been observed in susceptible
patients, for example those with dermatitis herpetiformis or
hypocomplementemic vasculitis or with preexisting thyroid
disorders (69).

Acute iodine toxicity rarely occurs and clinical features from
oral iodine ingestion can range from mild to severe. Mild
symptoms consist of GI upset, nausea, vomiting, and diarrhea,
which may progress to delirium, stupor, and shock (69).
RADIOACTIVE IODINE AND THYROID

Following nuclear power plant (NPP) accidents, explosions expel
fission products and fuel elements into the external environment,
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which tend to accumulate in a cloud. The most abundantly
released materials are volatile elements, such as iodine isotopes,
which were the ones that affected areas of Belarus,
Ukraine, Russia, Poland the most after the Chernobyl NPP
accident (12, 15). Indeed, iodine is one of the products of
nuclear fission, which is released from NPPs operations and
during nuclear weapon detonation. There are several isotopes
that are released following nuclear catastrophes: I131 has a longer
half-life, the other radioactive isotopes, present with higher core
inventories, have shorter half-life, then they are important
primarily in first days after NPP accident, and near the reactor.
Therefore, during accidents in NPPs, one consequence is the
release of radioactive iodine, compromising the health of the
exposed population.

The first major example documenting the harmful action
carried out by the massive release of radioiodine is the Chernobyl
reactor accident of April 1986. Specifically, in the event of a
nuclear accident, radioactive iodine can be released in a plume,
or cloud, that contaminates the environment (air, water, soil,
surfaces, plants, etc.), resulting in external exposure. Subsequent
inhalation of contaminated air and ingestion of contaminated
food and potable water can lead to internal radiation exposure
and absorption of radioactive iodine, which primarily concerns
the thyroid gland, being responsible of increased risk of thyroid
alterations (70). Thus, there is no doubt that the thyroid gland is
one of the most sensitive organs to, and at the highest risk of,
cancer from ionizing radiation. As observed in medically
irradiated patients, atomic bomb survivors, and persons
involved in the Chernobyl reactor accident, radiation exposure
in childhood can cause thyroid cancer and benign thyroid
nodules later in life (71, 72). Autoimmune reactions involving
the thyroid, thyroid atrophy, hypo- and hyperthyroidism may
also be induced by radiation exposure (73).

A large amount of I131 accumulated in the thyroid leads to the
development of hypothyroidism because of radiation-induced
permanent destruction of thyroid cells. Goldsmith et al. (74)
conducted regarding massive releases of I131 in 1945 from the
Hanford plutonium production plant, which showed that, over
the next 20 years, an epidemic of juvenile hypothyroidism was
experienced among children living in the nearby areas.
Nevertheless, it must be noted that the considered group of
Hanford juveniles is not a representative sample of the general
population. In fact, most of the cases of juvenile hypothyroidism
found in the Hanford group were diagnosed from 1945 to 1970
(74). However, comparing the reported cases and the population
under 20 years of age, it appears that juvenile hypothyroidism
was associated with radioiodine exposure. In addition, this is a
self-reported study and this aspect does not enable performing
measurements on the general population (74).

Even in later studies (70), for example in the population
affected by radioiodine emissions after the Chernobyl NPP
accident, it has been suggested that for any community with
large radioiodine exposure, hypothyroidism in children is a likely
event, and if found, can easily be treated. Therefore, it is useful to
implement targeted screening tests for such populations.
Precisely for this reason, in cases where there is a smaller
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amount of vulnerable thyroid cells remaining, even large doses of
I131 radiation are less likely to cause thyroid tumors.
Nevertheless, it has been observed that large numbers of
children exposed to a relatively low dose of radiation (less than
300 mGy) from I131 and perhaps other shorter-lived iodine
isotopes after the 1986 Chernobyl accident developed thyroid
cancer within a few years.

There has been very little research on hyperthyroidism
following environmental exposure to I131. Some investigations
in pediatric patients exposed to I131 from the Chernobyl fallout
have focused on hypothyroidism, which is a much more
common form of thyroid dysfunction, and notably two studies
have reported positive results (74, 75). A recent publication based
on Hiroshima and Nagasaki atomic bomb survivors who
participated in a thyroid screening study (71) reported non-
significant risk for developing hyperthyroidism in children
exposed to external radioiodine radiation. Therefore, Hatch
et al. (76) found no clear evidence of a dose-response
relationship between I131 and the prevalence of hyperthyroidism.

Overall, exposure to ionizing radiation is a known cause
responsible for the development of cancer in the human body.
Especially, the accident occurred at the Chernobyl Nuclear
Power Plant (NPP), which released large amounts of
radioactive materials into the environment, caused an excess of
thyroid cancer cases, mainly affecting children who lived in the
surrounding areas of the Chernobyl NPP (77–79). Four to five
years after the accident, an increase in cases of thyroid cancer was
observed, particularly among younger children, aged 0-5 years at
the time of exposure, while no such dramatic increase was
observed in adults. Indeed, fetuses, infants, and children are at
increased risk of developing radiation-induced thyroid cancer
than adults because of a number of physiological and behavioral
factors. On the one hand, there is a higher rate of radioiodine
uptake during thyroid gland development in childhood and
adolescence, and a higher tissue dose because of the small size
of the thyroid gland in children (80). In addition, younger
children consume a bigger amount of milk consumed than
adults. In particular, after the Chernobyl accident, milk was a
major source of radioiodine exposure, and its use was not
immediately restricted. This was one of the leading causes for
children to be disproportionately affected. The route of exposure
for fetuses is placental, through the mother-child circulation; on
the other hand, maternal breastfed infants are exposed to iodine
that is shed in breast milk (81, 82). Several epidemiologic studies
have shown evidence of a dose-dependent induction of thyroid
cancers, confirming that radiation exposure is the major cause of
thyroid cancer induction (83, 84). Additionally, in case of iodine
deficiency, thyroid uptake of radioactive iodine is high, resulting
in high doses of radiation to the thyroid. Moreover, this
condition, can also increase thyroid cell proliferation rate, and
consequently facilitate the occurrence of thyroid tumors (9).
Hence, relationship between internal radiation exposure (beta
and gamma rays) from I131 and the thyroid cancer risk was
shown to be dose-dependent (8, 85, 86) and the risk seemed to
increase linearly with the doses in the investigated range. Thus,
there is strong evidence that radiation exposure is a causal factor
Frontiers in Endocrinology | www.frontiersin.org 8
associated with childhood thyroid cancer. Papillary and follicular
carcinomas (PTCs and FTCs, respectively) in both children and
adults are the most prevalent types of thyroid cancer (8). After
the Chernobyl accident, almost all childhood thyroid cancers
were PTCs (83, 87). Previously, a large proportion of PTCs were
of solid subtype, which was a unique feature observed after the
Chernobyl accident (8, 83). Subsequently, the growth pattern
shifted into the classic subtype, which is less aggressive and
metastatic and is quite common in sporadic childhood PTC (8,
83, 87, 88)

Thyroid cancers that resulted from exposure to ionizing
radiation have provided examples revealing molecular
mechanisms underlying radiation-induced carcinogenesis.
Indeed, because sporadic childhood thyroid cancers found in
the affected areas were quite rare, most of the cancer cases
diagnosed after the Chernobyl accident could be attributable to
radiation exposure. Therefore, molecular analyses were
performed to understand the radiation signatures associated
with malignant conversion of normal thyroid follicular cells (89).

Molecular analysis in early childhood thyroid cancer cases
demonstrated a very high prevalence of genome-wide
rearrangements between the RET gene and the PTC3 and PTC1
genes, all located on the same chromosome 10, producing the
RET/PTC3 or RET/PTC1 rearrangements (90). RET/PTC
rearrangements, produced by paracentric (intrachromosomal)
inversion within the long arm of chromosome 10, are now
recognized as predominant driver mutations in childhood
papillary thyroid cancers, both radiation-related and sporadic
(91–93). This process gives rise to the fusion genes between the
thyrosine kinase domain of the RET gene and the amino terminal
region of the PTC gene. The product of these gene rearrangements,
namely RET/PTC fusion proteins, are persistently active and
stimulate the mitogen-activated protein kinase (MAPK) pathway
and other signaling cascades in a ligand-independent manner (93–
96). It was thought that this type of gene rearrangement (RET/
PTC) represented the signature of ionizing radiation, since other
types of mutations related to the development of PTC, such as the
one in the BRAF gene, occurred especially in adult cases, and its
prevalence in PTCs cases in childhood after the Chernobyl NPP
accident was below 10% on average (8, 97). Albeit literature data
reported that RET/PTC rearrangements were induced by radiation
exposure, in vitro studies are unable to assess what the
spontaneous incidence of RET/PTC rearrangements really is,
because their frequency, in the absence of genotoxic stimuli, is
too low. Numerous independent groups have assessed the
prevalence of RET/PTC rearrangements in childhood thyroid
cancers after the Chernobyl accident, but only a few studies have
made comparisons with the frequency of RET/PTC
rearrangements in sporadic childhood PTCs (98–100). The data
collected seem to show that the frequency of rearrangements,
particularly that of the RET/PTC1 rearrangement, was comparable
between the two groups of patients with radiation-induced and
sporadic tumors (97, 101–103). This suggests that RET/PTC
rearrangements in radiation-related cases might not be the
signature of radiation, but rather, radiation exposure might
unveil RET/PTC rearrangements that occurred spontaneously
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(89). In fact, considering that thyroid cancers in children started to
occur 4-5 years after the Chernobyl accident, it would be
reasonable to assume that thyroid follicular cells with RET/PTC
rearrangements already existed, and radiation exposure could
provide a chance for cells with such tumor signatures to
proliferate (89).

In Figure 1, RI effects on thyroid damage are schematized.
USE OF IODINE FOR THYROID BLOCKING
IN THE NUCLEAR DISASTER: BENEFITS
AND RISKS

Because the thyroid uses iodine to produce THs, iodine is an
organic compound that is found in high concentrations in the
thyroid gland, which, however, cannot discern between
radioactive and stable iodine (5). Hence, following a nuclear
accident and the release of large amounts of radioactive iodine, if
this is inhaled or ingested, the thyroid will absorb it in just the
same way as stable iodine.

Blocking thyroid by oral administration of potassium iodide
(KI) is considered a practical and successful protective measure
for the general population in an emergency (11, 15, 104, 105).
Stable oral iodine saturates (‘blocks’) the thyroid and prevents
the uptake of radioactive iodine isotopes. Based on this,
administration of stable iodine before or at the beginning of
exposure to radioactive iodine will block the uptake of
radioactive iodine by the thyroid because that gland has
already been saturated by stable iodine (5). Thus, internal
exposure of the thyroid is effectively reduced, Figure 2.

Nauman and Wolff (15) estimated a 40-62% radiation dose
decrease to the thyroid when KI is administered 1-4 d after the
beginning of exposure. Jang et al. (105) calculated a protective
Frontiers in Endocrinology | www.frontiersin.org 9
effect of KI of 78.9 or 39.1% when KI is administered within 2 h
or at 8 h after I131 intake, respectively. As a result of iodine
blockage of the thyroid gland, also known as ITB, or iodine
prophylaxis, the risk of developing thyroid cancer is decreased.
To date, it has been established that ITB is effective in reducing
the uptake of radioactive iodine by the thyroid gland and thus the
subsequent risk of thyroid cancer. In addition, ITB may also
reduce the risk of deterministic effects e.g. hypothyroidism
caused by tissue damage.

Regardless of chemical form being used, I- iodide ion is the
active chemical entity. The iodide ion, for example in the form of
KI, acts on the thyroid and prevents radioiodine binding through
five different mechanisms, but two are the main ones, namely
isotopic dilution by acting as a substrate and diluting circulating
radioiodine in the body available for uptake by the thyroid; and
saturation of active iodine transport mediated by the NIS located
on the surface of thyroid cells (16). Other mechanisms include
inhibition of iodide organification, which is potentially
responsible for decreased THs synthesis and possible
hypothyroidism; this effect is usually short-lived, but the fetus
and neonate may be affected; generation of an organic iodine
compound that inhibits I131 binding; and finally, inhibition of
iodine organification secretion by the thyroid. Overall, strategies
that can be adopted to reduce the risk of adverse health outcomes
in people exposed to an accidental release of radioactive iodine
include oral administration of stable iodine and control of food
and drinking water. The Chernobyl nuclear reactor accident in
1986 caused a large release of I131. Studies in atomic bomb
survivors show how thyroid cancers can develop after external
exposure to ionizing radiation (106, 107). Higher rates of thyroid
cancer have been observed in individuals living in contaminated
areas of Belarus, Ukraine, and the western part of the
Russian Federation.
FIGURE 1 | Radioiodine impact on the thyroid disorders (created by using Biorender).
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Thyroid cancer risk from radioiodine exposure is closely
related to the ages of the exposed subjects. The younger the
individual exposed at the time of radioiodine contamination, the
greater the replicative activity of thyroid cells and the more
immature the thyroid regulatory system, the greater the risk of
developing thyroid cancer (5, 84). It was also reported that iodine
deficiency has been associated with an increased risk of
radiation-induced thyroid cancer in populations involved in
the Chernobyl accident (13). Specifically, in the case of
nutritional iodine deficiency, the thyroid is “iodine-starved”
and absorbs more radioactive iodine than it would if there was
adequate nutritional iodine intake. Consequently, blocking the
thyroid with iodine in countries characterized by iodine
deficiency is of paramount significance.

The use of iodine thyroid blockage (ITB) as an urgent
protective action in response to radioiodine release was first
described in the 1960s and 1970s (108) and addressed in detail in
the World Health Organization (WHO) guidelines for iodine
prophylaxis following nuclear accidents published in 1989 and
revised in 1999 in light of new knowledge regarding the risk of
childhood thyroid cancer following the 1986 Chernobyl accident
(5). Current guidelines (109) support the general criterion for the
use of ITB for an equivalent projected dose to the thyroid of 50
mSv for the first seven days after the onset of exposure. The
accident at the Fukushima Daiichi nuclear power plant raised the
issue regarding the use of ITB as an urgent protective action. In
this case, the 2015 IAEA report on Fukushima (110), highlights
the need to standardize the use of the ITB (111). ITB is a
defensive measure that is performed only in the urgent phase
Frontiers in Endocrinology | www.frontiersin.org 10
(hours to a day after the onset of the emergency). Regarding the
earliest phase (days to weeks), an effective way to limit
radioiodine ingestion (as demonstrated by the Fukushima
experience) and the main way to limit thyroid doses, especially
to children, is to limit consumption of contaminated food,
drinking water, and fresh milk from grass-fed cows.
Regulations for ITB implementation must be carefully
deliberated in the preparation phase and should include
recommendations for: chemical form, packaging, dosage,
timing of administration, stocking, distribution and pre-
distribution, and identification of appropriate places (e.g.,
health care facilities, households, schools, workplaces, and
daycares). KI is most used to make ITB and thus protect the
thyroid from absorbing radioactive iodine. KI is a chemical
compound containing iodine which can be administered to
protect the thyroid gland from potential damage from
radioiodine, which is released during nuclear accidents. KI
works by reducing the amount of radioiodine that is
concentrated in the thyroid after it is inhaled or ingested
through contaminated milk and other foods.

The timing of use is a potential limitation: KI is highly
effective in blocking radioiodine uptake if taken shortly before
or shortly after exposure. On the positive side, side effects after
short-term use have been minimal. However, other chemical
forms, such as potassium iodate (KIO3), are equally valid, as long
as the dosage is adjusted to contain the same amount of iodine.
There is no decisive difference in shelf life between KI and KIO3.
Under appropriate storage conditions, packaged tablets retain
their iodine content for at least five years. On the other hand, the
FIGURE 2 | Blocking thyroid with oral iodine to prevent uptake of radioactive iodine isotopes (created by using Biorender).
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shelf life is more limited if the stable iodine is in powder or an
aqueous solution (5).

UK guidelines state that ITB should be performed if the
adsorbed dose to the unblocked thyroid is greater than 50 mGy
(112). A stable iodine dosing regime is expressed as either total
KI or iodide alone (I-): 130 mg of KI is equivalent to 100 mg of
iodide. In normal adults, an oral dose of about 100 mg of iodine
reduces thyroid uptake to less than 1% of the normal uptake.
Giving a higher, single dose is beneficial because it provides a
high level of iodide in the blood, which saturates the iodine pool
and is directly related to both blocking efficacy and longer
duration of effect.

A single administration of SI is usually sufficient. WHO and
FDA have recommended 100 mg of iodine (130 mg of KI) as the
standard adult dose for thyroid blockage, which is indicated for
pregnant and breastfeeding women too (5, 113). The
recommended dose for children 3 to 18 years of age is 65 mg
of KI (15). In infants (over 1 month through 3 years of age) the
dose should not exceed 32 mg, and from birth to 1 month it
should not exceed 16 mg. Nevertheless, adolescents approaching
adult size (70 kg and over) should receive the full adult dose (130
mg of KI).

The timing of KI versus radioiodine exposure is critical in
determining the efficacy of blockage. Nevertheless, the greatest
protection coincides with radioiodine exposure. The
recommended timing of SI administration is less than 24 hours
prior to, and up to two hours after, the expected onset of
exposure. In the case of prolonged (beyond 24 hours) or
repeated exposure, unavoidable ingestion of contaminated food
and drinking water, and where evacuation is not feasible,
repeated administration of SI should be considered daily. The
repeated administration is not recommended in neonates,
pregnant and breastfeeding women and older adults).

The use of KI after exposure to I131 still offers an 80%
protective effect, and this has important implications in the
event of a nuclear accident.

Stable iodine side effects are rare and include iodine-induced
transient hyper- or hypothyroidism, nonthyroidal adverse
effects, and allergic reactions (16, 18). The severity of these
effects varies according to age, situation, and habitual iodine
intake (16). In Poland, Nauman and Wolff (15) conducted a
large-scale survey regarding the use of KI in Poland following the
Chernobyl accident. Specifically, the doses of KI used were as
follows: 15 mg for infants, 50 mg for children aged 5 years or less,
and 70 mg for children older than 5 years and for pregnant and
lactating women (for adults, iodine prophylaxis was not
mandatory) as a single administration. Overall, few adverse
events were noted. Notably, no differences in thyroid effects
were found between children receiving KI compared with
children not receiving KI.

Only Nauman and Wolff (15) and Todd et al. (114), in
another study, described extrathyroidal effects evident after
intake of large iodine doses for prolonged periods, such as
headache, abdominal pain, diarrhea, vomiting, dyspnea, and
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eczema. More rarely, dermatologic and other effects such as
acneiform eruptions and dermatitis, fever, and arthralgias have
been highlighted and reported (115). Reactions due to iodide
hypersensitivity include minor skin rashes, facial and glottic
oedema, eczema, and psoriasis exacerbations. Subjects with
preexisting thyroid disorders and hypersensitivity to iodine are
considered at risk for such reactions (17, 116). While in Nauman
and Wolff’s study (15), 0.2% of the population was estimated to
have medically significant adverse effects, conversely, an adverse
effect frequency of 5/10000 was estimated by the Food and Drug
Administration of the U.S. Department of Health and Human
Services. Another point reported in the literature is that KI
adverse effects are more likely to occur in iodine-deficient
regions where iodine administration may lead to “imbalance”
of preexisting functional autonomy and hyperthyroidism, but the
available data is poor.

Overall, the risk of developing adverse effects secondary to KI
prophylaxis should be related to the characteristics of the
population receiving KI, their risk of developing thyroid
cancer, and the dose of KI. Benefits and risks should also be
considered according to age. The target population is infants,
young children, pregnant and breastfeeding women because they
are particularly vulnerable to radioactive iodine isotopes (17).
However, it is also this segment of the population that most
frequently experiences adverse effects from KI, although still at a
low rate. Therefore, administration of iodine for prophylactic
purposes should be cautious.

In Table 6, we reassumed the indications, benefits and risk for
a prophylactic use of iodine for thyroid blocking in the event of a
nuclear disaster.
CONCLUSION

Iodine is an essential element in the production of THs. Both
deficient and excess SI intakes may precipitate in adverse
thyroidal events in children, leading to functional and
developmental abnormalities of different body organs,
particularly the brain. Therefore, the appropriateness of iodine
intake is critical to thyroid health. RI is a common a byproduct of
nuclear fission processes, and exposure to ionizing radiation is a
known cause responsible for the development of cancer in the
human body. As the thyroid gland cannot discern between RI
and SI, in the case of a nuclear disaster RI absorption occurs,
leading to gland damage and the aforementioned cancer risk.

The use of SI is a means for protection against radioactive iodine
and the primary goal is to protect against thyroid cancer.
Considering the growth and metabolism of the thyroid gland, age
is a significant factor, and children may be a priority target for the
administration of stable iodine from the viewpoint of radiation
exposure prevention. Precise indications are mandatory to use the
iodine for thyroid blocking. The main principle of emergency
prophylactic use of SI is a single dose as early as possible,
associated with the prompt evacuation from contaminated areas
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and avoidance of inhalation and ingestion of contaminated
materials. Due to this natural adaption mechanism it’s possible to
tolerate large doses of iodine without clinical effects. However, a
prolonged iodine assumption when not needed can be dangerous
and may precipitate in severe thyroidal and, less frequently, non-
thyroidal negative effects. In the event of a nuclear disaster,
comprehensive measures should be taken both in medical
treatment and in support from public health and policy perspectives.
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