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Bone marrow adipocytes (BMAs) represent 10% of the total fat mass of the human body
and serve as an energy reservoir for the skeletal niche. They function as an endocrine
organ by actively secreting fatty acids, cytokines, and adipokines. The volume of BMAs
increases along with age, osteoporosis and/or obesity. With the rapid development of
multi-omic analysis and the advance in in vivo imaging technology, further distinct
characteristics and functions of BMAs have been revealed. There is accumulating
evidence that BMAs are metabolically, biologically and functionally unique from white,
brown, beige and pink adipocytes. Bone metastatic disease is an uncurable complication
in cancer patients, where primary cancer cells spread from their original site into the bone
marrow. Recent publications have highlighted those BMAs could also serve as a rich lipid
source of fatty acids that can be utilized by the cancer cells during bone metastasis,
particularly for breast, prostate, lung, ovarian and pancreatic cancer as well as melanoma.
In this review, we summarize the novel progressions in BMAs metabolism, especially with
multi-omic analysis and in vivo imaging technology. We also update the metabolic role of
BMAs in bone metastasis, and their potential new avenues for diagnosis and therapies
against metastatic cancers.

Keywords: bone marrow adipocytes, lineage-tracing, metabolism, bone metastasis, multi-omic analysis
INTRODUCTION

Several types of cancer cells evade clinical treatment by niching into the bone, such as cancer of the
breat, prostate, lung and melanoma. Additionally, the bone marrow is a depot for fat-storing
adipocytes, which poses a highly dynamic and metabolically active organ. Therefore, the role of
bone marrow adipocytes (BMAs) and their effect on niching tumor cells and subsequent tumor
growth are of clinical interest. Several studies have demonstrated that BMAs could function as an
energy reservoir for the skeletal niche and serve as an endocrine organ secreting fatty acids,
cytokines, and adipokines, supporting cancer cells to niche and grow within the bone marrow
microenvironment. Because BMAs are deeply embedded in the bone marrow niche, the isolation of
sufficient numbers of BMAs from rodent or human bone marrow remains a challenge. In contrast to
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white adipose tissues embedded in a matrix consisting of
collagen, fibronectin and laminin, BMAs are distributed as
single cells or patches in the bone marrow (1). Moreover, their
large size and buoyancy do not facilitate their isolation by
pelleting or cell sorting. The previous histomorphometric
methods could only supply limited descriptions about these
cells at the cellular level, such as alterations in structure and
organelles, but no further information about molecular changes.
Therefore, the characterization of BMA functions in bone
metastasis is currently challenging.

Nevertheless, these gaps in understanding the underlying
mechanisms have been largely filled in the recent decade due
to the rapid development of multi-omic analysis and in vivo
imaging. Technologies as RNA-seq, single-cell RNA-seq
(scRNA-seq), gas chromatography-mass spectrometry (GC-
MS), or liquid chromatography-mass spectrometry (LC-MS),
gave insights into the transcriptomic, proteomic, and metabolic
depth of BMAs. Using lineage tracing, fate mapping technologies
and positron emission tomography-computed tomography
(PET/CT) with 18F-fluorodeoxyglucose ([18F]FDG), distinct
characteristics and functions of BMAs have been revealed in
both rodents and humans. Recent findings demonstrate the
importance of BMAs as metabolically, biologically, and
functionally unique adipocyte subsets distinct from white,
brown, beige and pink adipocytes. Here, we summarize the
novel research on BMAs, especially the unique metabolic
specificity and their potential function in supporting
bone metastasis.
ANATOMY

In the human body, BMAs are mainly located in the arms, legs,
and sternum but rarely in the clavicle, ribs, and vertebrae (2).
Meanwhile BMAs can also be observed in caudal (tail) vertebrae
but not in thoracic or lumbar vertebrae (3). Interestingly, in
human adults, BMAs represent around 10% of the total adipose
tissue mass (4). By the age of 25 years, around 70% of the bone
marrow volume in healthy adults is filled with BMAs (5). These
cells can mainly be found in long bones in early adulthood.
However, around 60 years of age and over, BMAs display age-
associated increases in the axial skeleton (6). In long bones,
BMAs dwell among the trabecular bone of the epiphysis and
metaphysis or close to the endosteal surface of the diaphysis (7).
BMAs have been historically overlooked and were considered
“fillers” of the inert space for a long time (7). However, with the
increasing interest in immunometabolism, they have raised more
attention, especially for their distinct metabolic process and the
consequent functional alterations.

As early as 1976, Tavassoli has discovered two distinct
populations of BMAs in the bone marrow: the performic acid-
Schiff (PFAS) – positively stained BMAs in red marrow and the
PFAS-negatively stained BMAs in yellow marrow. The two
populations also respond differently during the expansion of
hematopoiesis (8). In 2015, using the osmium tetroxide
staining, Scheller et al. defined for the first time regulated bone
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marrow adipocytes (rBMAs or red marrow BMAs) and
constitutive bone marrow adipocytes (cBMAs or yellow marrow
BMAs) (9). cBMAs develop after birth, are large in size and
localized in close proximity to each other with a lack of
hematopoietic cells in between (10). Their lipid storages mainly
contain unsaturated fatty acids. In contrast, the smaller rBMAs
develop throughout life and contain mostly saturated fatty acids.
In steady state, rBMAs are single cells distributed within areas of
active hematopoiesis.

Several environmental factors have been reported to promote
the dynamic changes of BMAs. In several publications and our
own data, high-calorie feeding such as high-fat diet increases
number and size of BMAs. Here, mostly rBMAs localized in the
metaphysis of the proximal tibia expand as response to changes
in diet and diseases (11, 12). The special location of fat induced
expansion of BMAs was confirmed in humans suffering from
obesity, diabetes and/or osteoporosis (13, 14). In mice,
irradiation and activation of the adipocyte differentiation
pathway Peroxisome proliferator-activated receptor gamma
(PPARg) leads to a steady induction of BMA expansion (15).
Additionally, expansion of BMAs can be observed in murine
models of aging or ovariectomy-induced osteoporosis similar to
the observations in patients (16, 17). Intriguingly, caloric
deprivation in patients also increases the number of BMAs
with gender difference regarding their localization, in L4
vertebra for men and at the femoral metaphysis for women
(13). In addition, the psychiatric disease anorexia nervosa
paradoxically leads to expanded bone marrow adipose tissue,
while other fat depots in the body are reduced in size (18).
ORIGIN

The origin of BMAs has been investigated for decades and is still
updating thanks to the development of advanced technologies. In
1976, BMAs were first depicted as derived from a unique
progenitor distinct from white adipocytes (19). Nevertheless,
due to the limited technical conditions, the differences between
BMAs and their extramedullary counterpart were only described
roughly according to their morphology. Nowadays, lineage
tracing reporter mice and the large-scale, single-cell RNA-
sequencing (scRNA-seq) have helped to delineate their features
in more details.

BMAs are thought to be derived from Sca1+ CD45− CD31− or
LepR+ CD45− CD31− mesenchymal stem cells (MSCs) in the
bone marrow (20, 21). Using in vivo cell lineage tracing of the
dTomato+ in Vav1-Cre: mT/mG mice, BMAs are further
confirmed to be originated from MSCs but not hematopoietic
stem cells (HSCs) (22, 23). Pathway enrichment analysis also
displayed that BMAs are closer to bone marrow mesenchymal
stem cells (BMSCs) than to white adipocytes (24). Moreover, in
contrast to brown adipocytes, BMAs are all dTomato- in Myf5-
Cre: mT/mG mice (25, 26). This indicates that BMAs do not
share the same progenitors as brown adipocytes. Further studies
demonstrated that BMA progenitors can express Prx1 and Osx1,
two markers labelling mesenchymal-osteogenic cells, while white
June 2022 | Volume 13 | Article 902033
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and brown adipocytes cannot be traced in Osx1-Cre reporter
mice (27, 28). In another study, using the lineage tracing of
AdipoqCre+/mTmG+ and UCP1Cre+/mTmG+ mice, BMAs were
demonstrated to not express UCP1 during development or
upon the stimulation of b3-adrenergic agonist CL316,243 (29).
These results indicate that BMAs derive from a mesenchymal-
osteogenic lineage, and are genetically distinct from white, beige
or brown adipocytes. Most recently, with the help of AdipoqCre
+/DTA+/mTmG+ triple mutant mice, a defined cluster of
adiponectin-negative stromal progenitors has been shown in
the bone marrow of fat-free mice. This population was able to
differentiate into ectopic BMAs with age and metabolic diseases.
These BMAs have increased lipid storage and are not
thermogenic as they are unresponsive to cold stress or b3-
adrenergic stimulation (30). Despite that adiponectin is an
essential adipocyte specific cytokine, the discovery of
adiponectin-independent BMA subsets allows to speculate that
further origins of BMAs remain to be revealed. Indeed, Zhong et
al. have already defined a new population in the bone marrow
from their scRNA-seq data, termed marrow adipogenic lineage
precursors (MALPs) (31). This subpopulation expresses typical
adipocyte markers as Pparg, Cebpa, Adipoq, Apoe, and Lpl, but
not Plin1, thus containing no lipid droplets. They are not
proliferative precursors for adipocytes but are essential for
Frontiers in Endocrinology | www.frontiersin.org 3
maintaining marrow vasculature and promoting pathologic
bone loss in a RANKL-dependent manner (32, 33). Together,
these data have vastly enriched the framework between MSCs
and mature adipocytes, bringing more directions for
future investigations.

The differentiation fate of BMAs from MSCs is also rigorously
regulated by transcriptional cascades (34) (Figure 1). The
transcription factors CCAAT/enhancer-binding protein CEBPb
and d are induced primarily during early adipogenesis. Then they
activate the expression of two critical adipogenic transcription
factors: PPARg and CEBPa (37). Expression of Cepba and Cebpb
are selectively elevated in cBMAs of rats compared to rBMAs and
subcutaneous white adipocytes (9). In addition, the tug-of-war
between adipocytes and osteoblast differentiation in the bone
marrow is also determined by many pathways such as
Wnt/b-catenin and Leptin/LepR signaling. Wnt/b-catenin
signaling promotes a cell fate shift from adipocytes to pre-
osteoblasts (35, 36), while Leptin/LepR signaling facilitates
adipogenesis and inhibits osteogenesis (21) (Figure 1).

In addition to the rigorous regulation of transcription cascades
of BMA differentiation, the dynamic and complex bone marrow
microenvironment could also be an essential contributor.
Osteocyte-derived sclerostin, a glycoprotein encoded by SOst
gene, could promote the expression of the adipogenic
FIGURE 1 | BMAs arise from BMSCs and can differentiate via osteogenic or adipogenic progenitors into rBMAs or cBMAs. (A) BMAs or osteoblasts originate from
Sca1+ BMSCs modulated by the Leptin/LeptinR or Wnt/b-catenin signaling pathways (20–23, 35, 36). (B) MALPs are a newly defined primarily adipogenic sub-
population that arises from adiponectin+ progenitors. Factors like acute injury and aging can trigger osteogenic differentiation of MALPs (30, 31). (C) Adiponectin-

progenitors are predominantly of the osteogenic lineage, but are also able to differentiate into BMAs in metabolic disorders or in aging adults. This population elicits
similar properties as cBMAs (30). BMSC, bone mesenchymal stem cells; rBMA, regulated bone marrow adipocyte; cBMA, constitutive bone marrow adipocyte;
MALP, marrow adipogenic lineage precursor; C/EBP, CCAAT/enhancer-binding protein; FA, fatty acid; PPARg, peroxisome proliferator-activated receptor gamma.
Red arrows indicate transcription factors and signaling pathways. Dark arrows represent the consecutive stage of differentiation. The dashed arrow emphasizes
similarities in cBMAs and adiponectin- progenitor-derived BMAs. Designed by Biorender.
June 2022 | Volume 13 | Article 902033
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transcription factors Pparg and Cebpa in primary MSCs from both
humans and mice in vitro. As a consequence, the adipocyte
differentiation via inhibition of the canonical Wnt signaling
pathway was enhanced. In vivo studies also found decreased
BMA formation in both sclerostin knock-out mouse models and
wild-type mice treated with a sclerostin neutralizing antibody (38–
40). These studies demonstrated a role for SOst and osteocyte-
derived sclerostin in regulating fate determination of BMA
progenitors. Bone morphogenetic proteins (BMPs) could also
promote adipogenesis by promoting the expression of Pparg and
Cebpa (41). Bajaj and colleagues reported that BMP4 was highly
expressed and secreted especially by T cells and stromal cells in
response to irradiation. Thereby, the adipogenic commitment of the
M2-10B4 cell line and primary murine MSCs were promoted. This
could probably be one of the causes of marrow adipogenesis post-
myelosuppression (42). These extrinsic factors generated by the
marrow microenvironment may contribute to the distinct
metabolic features and function of BMAs compared to white
adipocytes, even thoughmuch still remains to be further elucidated.
METABOLIC FEATURES

Recent technologies have also unveiled numerous novel metabolic
features of BMAs. Attané and colleagues compared the proteomic
and lipidomic features of BMAs with subcutaneous fat tissue and
concluded that BMAs display a distinct lipid metabolism contrary
to classical white adipocytes (45). Pathway enrichment in
proteomic results displayed elevated cholesterol metabolism in
BMAs, which was further confirmed by a 1.5-fold increase in free
cholesterol content and decreased lipolytic activity in
BMAs. Moreover, more sphingosine, fewer ceramides and
sphingomyelin were observed in the lipid profiles of
BMAs compared to subcutaneous white adipocytes. The
monoacylglycerol lipase (MGLL) expression is reduced with
monoacylglycerol (MG) species elevated in BMAs, implying on
an impaired MG hydrolysis compared to subcutaneous fat tissues.
The altered lipid metabolism is also corroborated in another study,
delineating that human BMAs possess distinct gene expression
profiles, especially in regulating lipid metabolism, stemness genes,
and browning pathways compared to subcutaneous adipose tissue
(24). The overall steady state molecular signature of BMAs was
described more comparable to brown adipocytes. In contrast,
BMA expansion by aging or diabetes leads to a steady energy
storing, white adipocyte-resembling metabolic signature (46).
Scheller et al. also reported the diminished lipid hydrolysis in
BMAs compared to white adipose tissue in response to b-
adrenergic stimulation, mainly in distal regions (47).
Transcriptomic analysis in rabbits also revealed decreased
glycerol content, insulin resistance, reduced lipid synthesis, and
transport, decreased fatty acid metabolism, and decreased
thermoregulation in BMAs compared to white adipocytes.
Reduction in fatty acid b-oxidation (FAO) and oxidative
phosphorylation were also found in BMAs (29).

The glucose metabolism in BMAs and their role in systemic
glucose homeostasis are also unique. The transcriptome analysis
Frontiers in Endocrinology | www.frontiersin.org 4
in rabbits and humans both revealed an altered glucose
metabolism and diminished insulin responsiveness in BMAs
compared to white adipocytes, while markers of brown or
beige adipocytes were enriched. Using PET/CT and [18F] FDG,
it was recently demonstrated that BMAs possess high basal
glucose uptake both in rodents and humans but are
unresponsive to insulin, cold exposure and glucocorticoids (2).
However, in another clinical trial, Tam et al. as well used PET/CT
and [18F] FDG to characterize the glucose uptake (GU) in human
femoral and vertebral BMAs, found that insulin enhances GU in
human femoral BMAs (48). These two conflicting results
indicate that different species (rodents vs. human) and different
sites (distal tibia BMAs vs. femur BMAs) vary significantly in
BMA metabolism.

Metabolic programming also plays an important role in
regulating BMA differentiation. BMA progenitors display
higher insulin-dependent glucose utilization, enhanced capacity
for oxidative phosphorylation (OXPHOS) and lipid storage,
while osteoblast progenitors exhibit diminished insulin
signaling, glycolysis-prone energy production, and reduced
lipid storage (49). Moreover, metabolic changes in diseases
such as obesity, diabetes and anorexia nervosa could also affect
the formation of BMAs. Dyslipidemia caused by overnutrition in
obesity facilitates BMA expansion and BMAs could then buffer
extra energy in the form of triglycerides (50). The impaired lipid
metabolism of type 2 diabetes (T2D) is characterized by the
elevated low-density lipoprotein (LDL) cholesterol and free fatty
acids, high concentration of plasma triglyceride and decreased
high-density lipoprotein (HDL) cholesterol (51). This kind of
hyperlipidemia could probably be associated with the enhanced
adiposity of the bone marrow, for fatty acids could bind and
activate PPARg (52). In addition, hyperglycemia could induce
expression of PPARg by activating PI3K/Akt pathway and
therefore enhance the adipogenicity of MSCs (53). The
production of reactive oxygen species (ROS) resulting from the
increased glucose levels in T2D could also promote the
expression of genes associated with adipogenesis (54, 55).
Starvation or fasting caused by anorexia nervosa also leads to
hyperlipidemia (56), which could probably partly explain the
expanded BMAs mentioned before. Collectively, BMA formation
seems to be much closer to serum lipid levels than the type
of diseases.

The number of BMAs and osteoblasts might be reciprocal,
since they are competing for the same original stem cells.
However, BMAs could also interfere with skeletal homeostasis
and bone remodeling via its metabolic activities (57). The
maintenance of bone mass depends on the dynamic and
precise coordination of osteoclast-dominated bone resorption
and osteoblast-mediated bone formation (58, 59). Studies in rats
and dogs indicated reduced osteoblast activity, osteoclast
numbers and increased bone loss at sites with higher BMA
numbers (57). As osteoblasts are highly dependent on fatty
acids for their glycolytic energy production, taking up to 80%,
intact BMAs could be of importance for osteoblast function (60,
61). Moreover, Fatty acids, cholesterol, phospholipids and
endogenous metabolites have been proven to regulate
June 2022 | Volume 13 | Article 902033
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numerous signaling pathways mediating the proliferation and
function of local osteoclasts and osteoblasts (62). Besides energy
resources, BMAs may also protect osteoblasts from lipotoxicity
(63). Other studies have shown the existence of BMA-derived
exosomes filled with adipogenic factors and anti-osteoblastic
miRNAs that are able to alter osteoblast function (64).
Nevertheless, the role of BMA metabolism on bone cell
survival and function remains poorly understood, and would
require further investigation.
METABOLIC ROLE IN BONE METASTASIS

Bone is one of the main organs for metastasis by various tumors.
Hernandez et al. have retrospectively analyzed the real world
electronic medical record data from oncology practices in the US
and estimated the cumulative incidence of bone metastasis
among patients with various solid tumors (65). The prostate
cohort had the highest risk of bone metastasis with an incidence
of 18.0% at one year, 20.4% at two years, 24.5% at five years, and
29.2% at ten years followed by lung (10.4-12.9%), renal (5.8-
9.9%), breast (3.4-8.1%), gastrointestinal (2.3-3.6%), malignant
melanoma (1.6-3.0%) and other tumors. In addition, the
incidence of bone metastasis increased by the stage at
diagnosis in all studied tumors. Another retrospective
population-based study using data (2010-2015) from
Surveillance, Epidemiology, and End Results (SEER) program,
Frontiers in Endocrinology | www.frontiersin.org 5
has reported that 5.7% of cancer patients suffer from bone
metastasis (66). The third most vital factor for cancer is
obesity, while smoking and infection pose number 1 and 2,
respectively (67). Indeed, approximately 40% of cancers are
associated with the excess of body weight (68). Researchers
were able to show, that the risk of metastasis formation in
obese breast cancer patients is increased by 46% (69). Overall,
the link between the expansion of adipose tissue and metastasis
formation has become evident in the recent decade, while the
mechanism underlying bone metastases and BMAs remains
unclear to date.

The novel findings in the metabolism of BMAs could be of
vital importance for the understanding of tumor cell niching and
growth in the bone marrow (Figure 2). In our previous work, we
were able to observe that increased numbers of BMAs lead to
accelerated melanoma tumor growth in the bone marrow and
can be abrogated by inhibiting the adipocyte differentiation via
PPARg with the pharmacological compound bisphenol-A-
diglycidylether (BADGE) (11, 12). Further experiments
demonstrated that increased adipogenic differentiation of pre-
adipocytes boosted by melanoma cell-derived factors led to the
increase of BMAs at the early stage of bone metastasis, which
further favored the tumor cells to niche and proliferate (70).
Moreover, it is known that upregulated number of BMAs after
chemotherapy and radiotherapy can correlate with tumor
evasion (71). Finally, the facts that bone metastasis occurs
preferentially in older people who have a higher portion of
FIGURE 2 | BMAs modulate their surrounding microenvironment and interact with niching tumor cells and bone marrow-resident cells. BMAs, bone marrow
adipocytes; TAM, tumor-associated macrophage; FFA, free fatty acid; FABP4, fatty acid-binding protein 4; CXCL1/2, C-X-C motif ligand 1/2; FAO, fatty acid
oxidation; TNFa, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor; TGFb, transforming growth factor beta; IGF-1, insulin-like growth factor-1;
FGFs, fibroblast growth factors; OPN, osteopontin; RANKL, receptor activator of NF-kB ligand; Tregs, regulatory T cells. The dark arrows indicate relationships, while
dashed arrows represent potential links (43, 44). Designed by Biorender.
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adipocytes in the bone marrow, and that BMAs rapidly expand
(9-32%) in tumor patients over one year (72) further confirmed
the close connection between BMAs and bone metastasis. As a
result, the involvement of BMAs in the “vicious cycle” of tumor
cells and bone cells seems to accelerate tumor growth. However,
recent starving therapies have obtained a gratified result in
eliciting an anti-tumor response (73, 74), while BMAs were
also observed elevated in these fasting-like conditions. The
ambiguous results may depend on the type of the tumor cells
and stage of the disease, or the individual state of BMA subsets.

In general, tumor cells metastasize to rBMAs-enriched
regions (proximal femur, hip, and lumbar spine) which
contain smaller and less stable adipocytes (75). This preference
may be directly connected to the distribution of blood vessels
allowing distinct distribution of nutrition and oxygen
concentration (76). The mechanisms underlying the pro-tumor
effects of BMAs have attracted considerable attention. Many
publications have discussed the importance of adipokines
released by BMAs in bone metastasis, such as adiponectin (71),
leptin (77), adipsin (78) and estrogen (79). Others have focused
on the pro-inflammatory cytokines released by BMAs like TNFa,
IL-6 and RANKL or target on BMAs like sclerostin (75, 80). But
the metabolic functions of BMAs during bone metastasis have
been less reviewed.

BMAs are a direct power station for tumor cells via lipolysis
and lipid transfer (81). Using the vibrational spectroscopic
technique-Fourier transform infrared (FTIR) microspectroscopy,
Ehsan and his colleagues demonstrated that prostate cancer cells
take up isotopically labeled FA [deuterated palmitic acid (D(31)-
PA)] from human MSC-derived adipocytes (82). Furthermore,
they also observed the lipid uptake of prostate cancer cells from
nearby BMAs in the bone metastases specimens from patients,
providing direct evidence of BMAs inducing tumor growth (83).
BMAs could also shape tumor cell metabolism, contributing to
their growth and metastasis. Podgorski and colleagues
demonstrated that lipids from BMAs could fuel prostate tumor
cells by upregulating CD36, FABP4, and Perilipin 2, supporting
fatty acid transport (84). They also proved that BMAs drive
metabolic reprogramming of tumor cells via an oxygen-
independent mechanism of HIF-1a activation (85). CD36 is a
scavenger receptor found on tumor cells, which was shown to be
vital for metastasis formation and is currently considered as a
potential therapeutic target (86, 87). It can be activated by free fatty
acids secreted by BMAs and thus promote cancer growth (88). For
prostate cancer bone metastases, researchers were able to show
that the oxidative and endoplasmic reticulum (ER) stress pathways
activated in BMAs can upregulate the secretion of survivin and
heme oxygenase 1 to facilitate tumor cell survival (89). Other
studies have demonstrated BMAs to drive FAO in tumor cells
embedded in the bone marrow (88). As a parallel research field,
bone cancers show similar indications for BMAmediated FAO. In
acute monocytic leukemia, BMAs promote the cell survival by
facilitating FAO via the stress response-associated AMP-activated
protein kinase (AMPK). Thus, FAO in BMAs could also be
considered as potential therapeutic target in the fight against
bone metastases (90). The investigation of adipocyte-rich tissues
Frontiers in Endocrinology | www.frontiersin.org 6
revealed that ovarian, pancreatic and breast tumor cells can
reprogram adipocytes to cancer-associated adipocytes (CAA).
This phenotype aids the tumor growth by adipocyte
dedifferentiation and release of their lipids, thereby promoting
migration, proliferation, survival and chemoresistance (91–93). In
this context, Liu et al. were able to show that BMAs can be
reprogrammed to support myeloma-induced bone disease (94).
Nevertheless, it remains unclear whether BMAs can dedifferentiate
into the same tumor-aiding phenotype as found in other adipose
tissues. Regarding overall lipid metabolism, researchers have
shown that caprylic acid (C8:0) was increased in prostate cancer
patients with diagnosed bone metastases (95). These results open a
novel research avenue to study the various fatty acid-influenced
molecular actions in the BMA-tumor cell interplays.

BMAs may also shape the microenvironment in the bone
marrow in aid of tumor cell colonization (96). An expansion of
BMAs with age was shown to be associated with a decreased
bone mineral density (BMD) in patients (97). Similarly,
experiments in mice demonstrated that high-calorie diets
induce a shift from osteoblast to adipocyte differentiation,
while increasing parameters for osteoclast activity (12). In
addition, BMAs can promote osteoclastogenesis by mediation
of osteoblast-secreted RANKL (98). These phenotypes are
contributing to the severity of BMA-induced tumor burden, by
driving osteoclastogenesis and thereby osteolytic lesion
formation via IL-6 or indirectly via CXCL1 and osteopontin
(OPN) (11). The CXCL1 and CXCL2 derived from BMAs were
shown to promote prostate cancer survival and stiffen the overall
tumor immune response (88, 99). Along this line, these
chemokines could potentially attract macrophages and
attribute to the distinct BMA-altered microenvironment.
Studies in omental adipocytes have demonstrated to induce
tumor-associated-macrophage polarization by upregulation of
Pparb expression (88). Further research is needed to define the
specific role of monocyte and macrophage sub-populations
dependent on the presence of BMAs on the growth of tumor
cells. Concerning the B cell lineage, BMAs were shown to overall
impair the function of plasma cells compared to other adipocytes
in humans (100). However, B cells in bone tumor niches remain
an untouched area of research. Nevertheless, BMAs seem to play
a pivotal role in the bone niche allowing the tumor cells to move
in and grow.

While the fact that BMA-induced direct metabolic alterations
on tumor cells poses a relatively wide scientific base, the effect on
the metabolism of other resident cells and metastatic tumor
progression remains to be largely under-studied. Researchers
have shown the importance of metabolism in various tumor
microenvironments. Therefore, it stands to reason that BMAs
could influence their microenvironment in a similar way. For
instance in other murine tumor tissues, it was shown that lipid
uptake and FAO in myeloid-derived suppressor cells (MDSCs)
facilitate their inhibitory role on anti-tumor T cells and promote
tumor cell growth and migration (101, 102). Researchers could
also show that tumor regulatory T cells (Tregs) suppress anti-
tumor responses. At the same time the lipid metabolism supports
the survival and function of Tregs within the hypoxic tumor
June 2022 | Volume 13 | Article 902033
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microenvironment (103, 104). As Tregs also modulate
osteoclasts, a potential link should be investigated (105).
Moreover, in obese mice, creatine is a key metabolite linking
adipocytes and breast tumors (106). Even though it is still
unknown whether this fits for BMAs and the skeletal
metastatic cells, creatine has been reported to promote the
antitumor immune activity of CD8+ T cells and reduce the
proliferation of subcutaneous tumors (107). Altogether, BMAs
and their contribution to bone metastasis growth need to be
further elucidated.
LIMITATIONS AND PERSPECTIVES

Taken together, BMAs are distinct from other adipocyte fat
depots, especially in the context of transcriptome, metabolism
and functions to direct tumor growth. With novel emerging
technologies, more information beneath the tip of the BMA
iceberg has been unveiled, and BMAs might be considered as
potential target to counteract the bone metastasis in a manner of
individual treatment. However, their functions are still puzzling
and would require further investigation.

While BMAs in their regulated or constitutive form are better
characterized in rodents, this topic remains under-studied in
patients. As humans have higher bone marrow adiposity than
rodents, the role of BMAs in altering the surrounding
environment may differ as well. Studies have shown
contradicting conclusions regarding GU and insulin response in
rodents versus humans. Here, the lack of receptors or other
dissimilarities of the different species have to be taken in
account. In humans, the insulin-producing beta cells lack a part
of the G-protein-coupled receptor as compared to mice (108).
Another dissimilarity observed between the species, was the sex-
specific increased rBMA content in female versus male mice (9,
109). Overall, it has to be further elucidated whether the sexual
dimorphism in rodent BMAs as well as human white adipose
tissue is also reflected on human BMAs (110, 111). It is also
important to mention that most of the findings are based on in
vitro co-culture of diverse tumor cells with isolated bone marrow
mesenchymal cells-induced adipocytes or differentiated pre-
adipocyte cell lines (e.g. 3T3-L1). However, the reduced
lipolytic activity in BMAs in vivo could not be recapitulated in
vitro using these bone marrowmesenchymal stem cells (24, 45). It
is always questionable to call in vitro differentiated adipocytes real
Frontiers in Endocrinology | www.frontiersin.org 7
BMAs, as the underlying microenvironmental factors
distinguishing them from non-BMAs are lacking. Thus, future
studies should rely on the direct in vivo evidence between BMAs
and tumor cells. Also, the different metabolic or functional
manners between BMAs and other adipocyte fat depots in
s uppo r t i n g t umor c e l l s c o l on i z a t i on shou l d b e
separately delineated.

Nevertheless, the animal models precisely tracing and
locating rBMAs and cBMAs in vivo are also what we
desperately need in future studies. The animal models will be
beneficial for the investigations of BMA subpopulations. Exploit
of Ptrf knockout initiates the first step towards establishing the
rBMAs ablation model (9). Simultaneously, we are also confident
that more and preciser markers of these adipocyte
subpopulations will emerge in the future due to the utilization
of large-scale scRNA-seq analyses. Advanced in-depth analyzing
strategies may further help eliminate the contamination of BMAs
surrounding cells such as osteoblasts and hematopoietic
cells (45).

In addition, future studies need to explore the site-dependent
lipid types (rBMAs vs. cBMAs) (9), cellular source and
subcellular localization of the altered fatty acids. These
investigations will help to quantify the impact of BMAs on
local and systemic metabolism, and their function in steady-
state or with tumor burden. Thus, the pro-tumor and anti-tumor
roles of BMAs will be defined further in the future.
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