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Emerging evidence is examining the precise role of intestinal microbiota in the pathogenesis
of type 2 diabetes. The aim of this study was to investigate the association of intestinal
microbiota and microbiota-generated metabolites with glucose metabolism systematically
in a large cross-sectional study in China. 1160 subjects were divided into three groups
based on their glucose level: normal glucose group (n=504), prediabetes group (n=394),
and diabetes group (n=262). Plasma concentrations of TMAO, choline, betaine, and
carnitine were measured. Intestinal microbiota was measured in a subgroup of 161
controls, 144 prediabetes and 56 diabetes by using metagenomics sequencing. We
identified that plasma choline [Per SD of log-transformed change: odds ratio 1.36 (95
confidence interval 1.16, 1.58)] was positively, while betaine [0.77 (0.66, 0.89)] was
negatively associated with diabetes, independently of TMAO. Individuals with diabetes
could be accurately distinguished from controls by integrating data on choline, and certain
microbiota species, as well as traditional risk factors (AUC=0.971). KOs associated with the
carbohydrate metabolism pathway were enhanced in individuals with high choline level. The
functional shift in the carbohydrate metabolism pathway in high choline group was driven by
n.org June 2022 | Volume 13 | Article 9063101

https://www.frontiersin.org/articles/10.3389/fendo.2022.906310/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.906310/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.906310/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.906310/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:heyuan8506@126.com
mailto:zhengl@bjmu.edu.cn
https://doi.org/10.3389/fendo.2022.906310
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.906310
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.906310&domain=pdf&date_stamp=2022-06-27


Abbreviations: AUC, Area under the
Carbohydrate-Active EnZymes; CVD, C
monooxygenase; HDL, High-density lip
model assessment of insulin resistance; IQ
Encyclopedia of Genes and Genomes; KO
density lipoprotein; LEfSe Linear discrimin
Multiple reaction monitoring; ROC, Recei
cholesterol; TG, Triglyceride; TMA, Trimet
oxide; UA, Uric acid.

Zeng et al. Type-2 Diabetes Classification Based Metagenomics

Frontiers in Endocrinology | www.frontiersi
species Ruminococcus lactaris, Coprococcus catus and Prevotella copri. We
demonstrated the potential ability for classifying diabetic population by choline and
specific species, and provided a novel insight of choline metabolism linking the
microbiota to impaired glucose metabolism and diabetes.
Keywords: choline, intestinal microbiota, TMAO, type 2 diabetes, machine learning
1 INTRODUCTION

Recently, emerging evidence is examining the precise role of
intestinal microbiota in the pathogenesis of type 2 diabetes
(diabetes) (1). Data are accumulating that patients with
diabetes had a moderate intestinal dysbiosis. Metagenome-wide
association studies have demonstrated a highly significant
association between butyrate-producing bacteria such as
Roseburia intestinalis and Faecalibacterium prausnitzii
concentrations and diabetes (2). Fecal transplantation in
humans further highlights the possibility of modulating human
metabolism by directly altering the microbiota, showing that
insulin sensitivity was improved along with the increase of
butyrate-producing bacteria after fecal transferring from lean
donors to male recipients with metabolic syndrome (3).
Microbiota may directly modulate host metabolism by short-
chain fatty acids especially butyrate, endotoxaemia, and specific
intestinal bacteria (such as Akkermansia muciniphila) which
plays a role in anti-inflammatory and beneficial metabolic
functions (4).

Trimethylamine-N-oxide (TMAO) is a plasma metabolite
and its generation is dependent on the intestinal microbiota
from TMA, which primarily metabolizes from dietary choline,
betaine and L-carnitine in the intestinal tract. Thereafter, TMA is
metabolized to TMAO by enzymes of the flavin monooxygenase
(FMO) family in liver (5). Numerous studies have demonstrated
TMAO is a novel predictive risk factor of adverse cardiovascular
outcomes (5–7). The mechanism appears to involve that TMAO
interacting with platelets, altering stimulus-dependent calcium
signaling, fostering platelet hyper-reactivity in vivo, and
promoting vascular inflammation in animal models (8). Several
studies further demonstrated that plasma TMAO was elevated in
patients with diabetes compared to healthy controls, possibly due
to TMAO converting enzyme FMO3 which exerted broad effects
on glucose and lipid metabolism (9). Knockdown of hepatic
FMO3 significant decreased circulating TMAO levels and
atherosclerosis in mice, accompanying decreases in hepatic
lipids and in levels of plasma lipids, glucose, and insulin (10).
Also, recent study showed that elevated levels of circulating
receiver operating curve; CAZy,
ardiovascular disease; FMO, Flavin
oprotein; HOMA-IR, Homeostasis
R, Interquartile range; KEGG, Kyoto
, KEGG orthologue group; LDL, Low-
ant analysis (LDA) effect size; MRM,
ver operating characteristic; TC, Total
hylamine; TMAO, Trimethylamine-N-
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choline were significantly associated with diabetes (11).
Intervention study has found the associations between change
in choline and that in insulin sensitivity independently of
concurrent changes in TMAO (12). However, advanced
correlations of blood glucose, related phenotypes and microbial
metabolites including plasma choline, betaine and TMAO, and
whether these metabolites are related to human intestinal
microbiota were unknown. Thus, the aim of this study was to
investigate the associations of TMAO and its precursors (choline,
betaine and carnitine) with glucose metabolism, and to explore
the potential mechanism targeting intestinal microbiota and
their effects on the human health.
2 METHODS

2.1 Population
We conducted a cross-sectional study at three health examination
centers from Jan. 2016 to Sep. 2017, aiming to examine the
association of intestinal microbiota, microbiota-generated
metabolites with glucose metabolism in Chinese adults. The two-
stage cluster sampling method was used to, first selected three cities
according to geographical region and dietary/lifestyle habit
(Northern region: Changchun; Southern region: Quanzhou;
Western region: Chongqing), and then selected one local
representative health examination center from each city
(Changchun: The China-Japan Union Hospital; Quanzhou: The
910th Hospital of People’s Liberation Army; Chongqing: Southwest
Hospital). A total of 1160 subjects (aged 20-75 years) who
participated in annual health examinations were randomly
selected in each center with complete information on
demographics, personal characteristics (including weight, height
and waist circumference) and clinical characteristics (including
blood pressure, blood glucose, lipid concentrations, uric acid and
serum creatinine). Exclusion criteria for study participation
included: i) younger than 20 years or older than 75 years; ii)
exposed to antibiotic, probiotics, acid reducing medications or
proton pump inhibitor one month before physical examination;
iii) suffered from diarrhea, constipation, hematochezia or other
gastrointestinal infectious diseases one month prior to physical
examination; iv) experienced enema or other gastroenterology
operations one month before physical examination; v) suffered
from mental disorders, autoimmune diseases or psychological
imbalance; vi) had drug abuse history, which resulted in 1160
subjects for current study. Detailed study flow is shown in Figure 1.
This study was approved by the Ethical Committee of the Chinese
People’s Liberation Army General Hospital and was in accordance
June 2022 | Volume 13 | Article 906310
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with the Helsinki Declaration. Every subject provided written
informed consent.

2.2 Outcomes
Type 2 Diabetes status was used as main outcomes. Prediabetes
was defined as a fasting plasma glucose from 5.6 to 6.9mmol/L,
and diabetes was defined as a fasting plasma glucose ≥7.0mmol/
L. In addition, the following outcomes were used: hypertension
was defined as having a systolic blood pressure ≥140mmHg and/
or diastolic blood pressure ≥90mmHg; dyslipidemia was defined
as having plasma total cholesterol ≥6.22mmol/L and/or fasting
triglycerides ≥2.26mmol/L and/or LDL cholesterol ≥4.14mmol/L
and/or HDL-cholesterol <1.04mmol/L; hyperuricemia was
defined as having uric acid ≥420 mg/dL for men and ≥357mg/
dL for women.

2.3 Covariates
All clinical data was collected according to standard procedures.
Subjects underwent anthropometric measurements in barefoot
and light clothing. Body weight (measured to the nearest 0.1kg)
and height (measured to the nearest 0.1cm) were collected and
BMI was calculated by dividing weight (kg) by height squared
(m2). Blood pressure was recorded using a recently calibrated
electronic sphygmomanometer in the supine position with the
right arm after 5minutes rest. Blood samples were obtained after
an overnight fast for measurement of blood glucose, total and
high-density lipoprotein cholesterol, triglycerides, uric acid and
serum creatinine. Low-density lipoprotein cholesterol was
calculated using the Friedewald formula. Serum creatinine was
measured using Jaffe’s kinetic method. All blood samples were
analyzed at a local laboratory in each city rather than a central
laboratory. Because all the laboratories were affiliated with a top
tertiary hospital and completed a standardized and certificated
method for blood test, these results have been widely considered
comparably across laboratories in China.
Frontiers in Endocrinology | www.frontiersin.org 3
2.4 Microbiota-Generated Metabolites
Measurements
Analytes (TMAO, betaine, choline, and carnitine) were
measured in one center laboratory as described previously (13).
Briefly, 20ml plasma were mixed with 80ml of 10mM d9-
(trimethyl)-labelled internal standards in methanol. Protein
was precipitated and the supernatant was recovered following
centrifugation at 20,000g at 4°C for 10min. The precise
concentration was measured by API 5500Q-TRAP mass
spectrometer (AB SCIEX, Framingham, MA). Analytes were
monitored using electrospray ionization in positive-ion mode
with multiple reaction monitoring (MRM) of precursor and
characteristic product-ion transitions of TMAO at m/z 76!58,
d9-TMAO at m/z 85!66, choline at m/z 104!59.8, d9-choline
at m/z 113.2!68.9, carnitine at m/z 162.1!103, d9-carnitine at
m/z 171.1!102.8, betaine at m/z 118!59, d11-betaine at
129.1!65.9, respectively. Three quality control samples with
different metabolites concentrations were measured every twenty
samples and the CV% values were below 10%. The quartiles
based on TMAO, choline, betaine, and carnitine, separately,
TMAO levels for the quartile groups were as follows: Q1 <0.98,
Q2: 0.98~1.58, Q3: 1.59~2.52, Q4 > 2.52mmol/L; Choline levels
for the quartiles were as follows: Q1 <7.2, Q2: 7.2~8.5, Q3:
8.6~10.1, Q4 > 10.1mmol/L; Betaine levels for the quartiles were
as follows: Q1 < 37.3, Q2: 37.3~43.3, Q3: 43.4~51.3, Q4 >
51.3mmol/L. Carnitine levels for the quartiles were as follows:
Q1 < 48.2, Q2: 48.2~55.1, Q3: 55.2~61.9, Q4 > 61.9mmol/L.

2.5 Gut Microbiota Measurements
2.5.1 Stool Sample Collection and DNA Extraction
During physical examination, fresh stools were collected from the
individuals using sterile stool containers. For each individual,
approximately 5g of hard stools were obtained using the swab
(Huachenyang Technology CO., LTD, Shenzhen, China). The stool
samples were preserved using stool collection tubes (Axygen,
FIGURE 1 | Flow chart of the study participant.
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California, USA) with Microlution (ML001-A, Dayun Ltd,
Shenzhen, China), and then transferred to -80°C refrigerator
(DW-86L626, Haier, China) within half an hour. Bacterial DNA
was extracted from stool samples using Power Soil DNA Isolation
kit (Mo Bio Laboratories, Carlsbad) at WeHealthGene Co., Ltd
according to the manufacturer’s instruction.

2.5.2 Library Construction and Metagenomics
Sequencing
DNA library construction was performed with the following
workflow as suggested by the manufacturer (Illumina, San
Diego): cluster generation, template hybridization, isothermal
amplification, linearization, blocking and denaturation, and
hybridization of the sequencing primers. We constructed
paired-end (PE) library with insert size of 350bp, and each
sample contains around 20 million PE reads after high-
throughput sequencing. For samples at stages I, their libraries
were sequenced with 75 or 90 base pairs, while the libraries were
sequenced with 90 base pairs for samples at stage II.

2.5.3 Quality Control and Host Genome Filtering
High quality reads were obtained with the following filtering
criteria: If any one of paired-end reads i) contains10%
ambiguous N bases; ii) or more than 50% low quality (Q<5)
bases, the paired-end reads were thrown away. Then, the clean
reads were subjected to human genomes (human genome
reference hg19) from the National Center for Biotechnology
Information GenBank with SOAPaligner (version 2.21,”-m 250
-x 450 -v 5 -r 1 -l 35 -M 4”), and the reads which mapped to
human genome were abandoned (14). The filtered reads were
retained for further analysis.

2.5.4 Gene Abundance, Functional Annotation and
Taxonomic Profiling
The qualified reads from the samples were aligned to the
upgraded non-redundant gene catalogue (15) with
SOAPaligner (version 2.21, “-m 250 -x 450 -v 5 -r 1 -l 35 -M
4”), wand the mapped reads with less than 7 mismatches were
kept. Based on the gene length and the number of mapped reads,
the abundances of genes were obtained for each sample with
previous published method (16).

To obtain the functional distributions of genes, we aligned them
to the proteins/domains in KEGG databases (release 59.0) and CAZy
database using BLASTP (e-value ≤1e-5). The KEGG orthologue
group (KO) or CAZy families with the highest scoring annotated hit
(s) which containing at least one HSP (high-scoring segment pair)
scoring over 60 bits was selected. The abundance of KEGG
orthology/module in each sample was calculated by summing the
abundance of genes which annotated to the same functional item.
With shotgun metagenomic data, the composition of microbial
community on different taxonomic level was detected for each
sample using MetaPhlAn2 pipeline with default parameters (17).

2.6 Statistical Analyses
Continuous variables are summarized as mean (SD) if normally
distributed and median [interquartile range (IQR)] if
Frontiers in Endocrinology | www.frontiersin.org 4
nonnormally distributed. The unpaired Student t-test or
Wilcoxon signed rank test for continuous variables and Chi-
squared test for categorical variables were employed to examine
between group differences. The associations between intestinal
microbiota-generated metabolites and diabetes were examined
by applying logistic regression models with adjustment for
potential confounders including age, sex and BMI. The levels
of TMAO, betaine, choline, carnitine were divided into quartiles
and the lowest quartile was used as the reference group.
Sensitivity analysis was conducted i) by including lifestyle
factors, alcohol consumption, smoking habit, dietary habit,
exercise habit, sleeping habit, stool shape, whether eating
probiotics supplements, whether having conditions of regular
defecation, diarrhea, or constipation, as covariates in a subgroup
population; ii) by further adjusted other metabolites in the
models. Statistical analysis was performed using STATA
software version 13.0 (StataCorp., College Station, TX) or
GraphPad Prism 6 software. Statistical tests were 2-sided and a
P value<0.05 was considered statistically significant.

We pre-processed the intestinal microbiota abundant data
and deleted the variables with 0 value greater than 20%. The
Shannon index and principal coordinates analysis (PCoA) was
calculated with the vegan package in R software (Version
3.4.3). PCoA was performed and displayed by ade4 package,
cluster packages, fpc packages, and clusterSim package in R
software. PLS-DA was performed using SIMCA-P software to
cluster the sample plots across groups. The relative abundance
of these features was subjected to statistical analyses. Linear
discriminant analysis (LDA) effect size (LEfSe) analysis was
used to detect the features (organisms, KOs, or CAZy genes)
most likely to explain differences between the prediabetes,
diabetes and control group, as well as high (top quartile) and
low groups (lowest quartile) of choline and TMAO. Different
features with an LDA score cut-off of 2.0 were identified.
Taxa-based functional profiles was calculating by FishTaco
software. Correlations between enriched species, metabolites
and clinical indices were tested with MaAslin2. Dimension
reduction analysis was based on the PLS-DA, where the
variables were selected by variable importance projection
(VIP)>1 and mean difference screening (P<0.05) as
biomarkers 1; variables were selected by one-way ANOVA
(P<0.05) as biomarkers 2; only microbiota indicators were
selected by one-way ANOVA (P<0.05) as biomarkers 3; and
traditional risk factors were selected as biomarkers 4.
Classification machine learning algorithms using Support
Vector Machines (SVM), Random Forests (RF), Decision
Tree (DT) were performed to obtain the optimal diagnostic
model using R. The OPLS-DA model analysis was based on
muma and ropls package, and the SVM, RF and DT and was
based on svm, random forest, and rpart package. Then, in
order to evaluate the performance of the predictive model and
get more precise curves, we used a 10-fold cross-validation for
each model. ROC curve analysis was performed using the
highest validated AUC values, and variable importance was
measured by GINI coefficient. The ROC curves were
conducted by pROC package.
June 2022 | Volume 13 | Article 906310
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3 RESULTS

3.1 Association of Intestinal Microbiota-
Generated Metabolites With Prediabetes
and Diabetes
We conducted a cross-sectional study including a total of 1160
subjects (aged 20-75 years) who participated in annual health
examinations. The sample size varied according to the number of
missing data, with missing data on metabolites outcome
variables (n =1 for TMAO and choline, as well as n =5 for
betaine), or other covariates (n =33). Baseline characteristics of
the 1160 participants are shown in Table 1. The median (mean)
plasma concentrations of TMAO, choline, betaine, and L-
carnitine were 1.59 mmol/L (IQR: 0.98 to 2.52mmol/L), 8.58
mmol/L (IQR: 7.23 to 10.10mmol/L), 43.4 mmol/L (IQR: 37.30
to 51.32 mmol/L), and 55.2 ± 10.8 (mean ± SEM), respectively.
Participants with higher levels of blood glucose were more likely
to be older, had a higher proportion of males, and had higher
levels of BMI, blood pressure, and were more likely to be
dyslipidemia and hypeluricemia. In the three groups of
diabetes, prediabetes and controls, TMAO was significantly
higher in participants with diabetes compared with controls,
and choline was higher in participants with hyperglycemia than
controls. There was an inverse dose-response association
between plasma betaine concentration and fasting glucose in
the three groups. Cubic spline curves showed that TMAO
associated with blood glucose as a J-shape. Choline linearly
increased with increasing blood glucose, while betaine linearly
decreased with increasing blood glucose (Figure S1)

Following multivariate logistic regression analyses adjusting
for age, sex and BMI, each SD increment in log-transformed
plasma concentration for TMAO and choline was associated
with 16-36% increased odds of diabetes (P<0.05), while each SD
increment of log-transformed plasma betaine was correlated
with 23% decreased odds of diabetes (P<0.001) (Table 2).
Frontiers in Endocrinology | www.frontiersin.org 5
Participants in the top quartile of TMAO had 1.67 fold higher
odds of diabetes compared with the lowest quartile. In general,
the association of plasma TMAO, choline and betaine with
diabetes was consistent across total group, and subgroups after
stratification by sex and age groups (all Ps for interaction > 0.05).
In the sensitivity analyses, the odds ratios for the metabolites did
not change appreciably with additional adjustment for lifestyle
factors in the subgroup; Findings were similar when per SD of all
metabolites were included into the same adjusted model, that
TMAO [odds ratio and 95%CI: 1.25 (1.01-1.54)], choline [1.74
(1.38-2.19)], betaine [0.58 (0.47-0.71)] and carnitine [0.72 (0.59-
0.89)] remained significantly associated with diabetes. Parameter
estimates were slightly attenuated after further adjustment for
metabolic biomarkers including blood pressure, lipids and uric
acid. Further, when we put four quartiles of all metabolites into
one model, the association between the top quartile of TMAO
and diabetes was also significant (1.57 [1.03-2.39]).

3.2 Prediabetes and Diabetes-Associated
Intestinal Microbial Species and
Metabolites
We further performed metagenomic sequencing of 361 fecal
samples (56 samples from diabetes, 145 from prediabetes, and
160 healthy controls), and the baseline characteristics of
individuals were presented in Table S1. The shannon index
based on the species profile was calculated to estimate the within-
sample (a) diversity. The a-diversity of the intestinal
microbiome was similar at the species level in the three groups.
Similarity, no significant differences were found in b-diversity
based on PCoA between the three groups. Genes were aligned to
the NR database and annotated to taxonomic groups, and a
supervised comparison of the microbiota by utilizing the LEfSe
analysis was performed. Our results identified 3 bacterial species
consisting Coprococcus catus, Eubacterium siraeum, and
Fusobacterium ulcerans were significantly enriched in the
TABLE 1 | Baseline characteristics according to controls, prediabetes and diabetes.

Total
n = 1160

Controls
n = 504

Prediabetes
n = 394

Diabetes
n = 262

P value

Age, years 46.0 (38.0, 52.0) 42.0 (35.0, 51.0) 47.0 (40.0, 52.0) 48.0 (42.0, 53.0) < 0.001
Male, % 65.2 57.9 68.0 74.8 < 0.001
BMI, kg/m2 27.4 (25.4, 29.3) 27.5 (24.7, 29.4) 27.5 (26.0, 29.0) 28.2 (26.4, 30.9) < 0.001
Systolic BP, mmHg 129 (118, 139) 125 (114, 135) 129 (119, 140) 135 (123, 146) < 0.001
Diastolic BP, mmHg 82 ± 12 79.6 ± 11.4 83.0 ± 12.5 85.0 ± 12.6 < 0.001
Fasting glucose, mmol/L 5.7 (5.2, 6.6) 5.2 (4.9, 5.4) 5.9 (5.7, 6.1) 8.5 (7.3, 10.5) < 0.001
Total cholesterol, mmol/L 5.3 (4.6, 5.9) 5.0 (4.4, 5.7) 5.4 (4.8, 5.9) 5.4 (4.9, 6.2) < 0.001
Triglycerides, mmol/L 1.8 (1.2, 2.7) 1.5 (1.0, 2.3) 1.8 (1.3, 2.6) 2.4 (1.6, 3.7) < 0.001
HDL cholesterol, mmol/L 1.2 (1.1, 1.4) 1.2 (1.1, 1.4) 1.2 (1.1, 1.4) 1.2 (1.0, 1.4) 0.082
LDL cholesterol, mmol/L 2.8 (2.4, 3.2) 2.7 (2.3, 3.2) 2.8 (2.4, 3.2) 2.9 (2.5, 3.5) < 0.001
Uric acid, mg/dL 372.5 ± 98.0 360.5 ± 100.1 387.6 ± 97.4 373.2 ± 92.0 < 0.001
Hypertension, % 33.7 25.4 35.8 46.6 < 0.001
Dyslipidemia, % 52.2 42.3 52.0 71.4 < 0.001
Hypeluricemia, % 34.4 29.8 39.8 37.0 < 0.001
TMAO, mmol/L 1.59 (0.98, 2.52) 1.5 (0.9, 2.3) 1.6 (1.0, 2.5) 1.7 (1.1, 3.3) 0.040
Choline, mmol/L 8.58 (7.23, 10.10) 8.2 (6.9, 9.9) 8.3 (7.1, 9.8) 9.3 (7.9, 11.0) < 0.001
Betaine, mmol/L 43.4 (37.30, 51.32) 44.4 (37.7, 52.9) 43.6 (37.7, 51.2) 41.0 (35.2, 48.6) 0.003
Carnitine, mmol/L 55.2 ± 10.8 55.5 ± 10.4 55.4 ± 10.8 54.5 ± 11.7 0.434
Jun
e 2022 | Volume 13 | Article
BMI, body mass index; BP, blood pressure; HDL, high-density lipoproterin; LDL, low-density lipoprotein; TMAO, trimethylamine N-oxide.
906310

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zeng et al. Type-2 Diabetes Classification Based Metagenomics
TABLE 2 | Relationship between plasma concentrations of TMAO, choline, betaine, carnitine and diabetes (mmol/L)a.

Per SD of log-transformed change* P value Quartiles* P for trend

1 (lowest) 2 3 4 (highest)

Total
TMAO 1.16 (1.00, 1.35) 0.049 1.00 1.14 (0.75, 1.73) 0.92 (0.60, 1.41) 1.67 (1.11, 2.51)* 0.035
Choline 1.36 (1.16, 1.58) < 0.001 1.00 1.32 (0.86, 2.05) 1.68 (1.10, 2.57)* 1.93 (1.27, 2.92)** 0.001
Betaine 0.77 (0.66, 0.89) < 0.001 1.00 0.77 (0.53, 1.12) 0.57 (0.38, 0.86)** 0.47 (0.31, 0.70)*** < 0.001
Carnitine 0.85 (0.73, 0.98) 0.026 1.00 0.79 (0.56, 1.17) 0.76 (0.52, 1.13) 0.68 (0.45, 1.02) 0.062
Males
TMAO 1.28 (1.07, 1.53) 0.006 1.00 1.29 (0.79, 2.11) 1.03 (0.62, 1.69) 2.08 (1.29, 3.36)* 0.009
Choline 1.33 (1.11, 1.59) 0.002 1.00 1.29 (0.78, 2.14) 1.78 (1.09, 2.90)* 1.85 (1.14, 3.02)* 0.006
Betaine 0.79 (0.66, 0.94) 0.009 1.00 0.74 (0.47, 1.17) 0.56 (0.35, 0.90)* 0.53 (0.33, 0.85)** 0.004
Carnitine 0.86 (0.72, 1.03) 0.104 1.00 0.75 (0.48, 1.20) 0.81 (0.50, 1.27) 0.65 (0.40, 1.05) 0.107
Females
TMAO 0.90 (0.69, 1.17) 0.429 1.00 0.77 (0.35, 1.71) 0.66 (0.29, 1.47) 0.84 (0.38, 1.86) 0.624
Choline 1.45 (1.07, 2.00) 0.017 1.00 1.37 (0.57, 3.31) 1.53 (0.66, 3.56) 2.07 (0.92, 4.66) 0.076
Betaine 0.73 (0.57, 0.95) 0.017 1.00 0.88 (0.43, 1.80) 0.63 (0.29, 1.38) 0.30 (0.13, 0.72)** 0.005
Carnitine 0.83 (0.63, 1.09) 0.174 1.00 0.89 (0.42, 1.89) 0.68 (0.31, 1.52) 0.79 (0.36, 1.73) 0.444
≤45 years old
TMAO 1.12 (0.89, 1.41) 0.341 1.00 1.11 (0.59, 2.10) 0.92 (0.48, 1.76) 1.61 (0.85, 3.04) 0.256
Choline 1.50 (1.17, 1.94) 0.002 1.00 1.52 (0.76, 3.06)* 2.02 (1.01, 4.03) 2.32 (1.16, 4.64)** 0.011
Betaine 0.93 (0.73, 1.16) 0.470 1.00 1.62 (0.88, 2.97) 1.03 (0.53, 2.00) 0.88 (0.43, 1.80) 0.500
Carnitine 0.81 (0.64, 1.03) 0.080 1.00 0.86 (0.46, 1.59) 0.63 (0.33, 1.21) 0.61 (0.32, 1.19) 0.093
>45 years old
TMAO 1.19 (0.97, 1.45) 0.092 1.00 1.14 (0.65, 2.01) 0.92 (0.52, 1.63) 1.70 (0.99, 2.92) 0.080
Choline 1.29 (1.06, 1.57) 0.012 1.00 1.22 (0.69, 2.16) 1.53 (0.89, 2.62)* 1.79 (1.05, 3.03)* 0.022
Betaine 0.68 (0.56, 0.83) < 0.001 1.00 0.45 (0.27, 0.75)** 0.38 (0.23, 0.65)*** 0.31 (0.19, 0.53)*** < 0.001
Carnitine 0.89 (0.74, 1.07) 0.220 1.00 0.75 (0.45, 1.26) 0.86 (0.52, 1.41) 0.76 (0.45, 1.28) 0.391
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For the definition of abbreviations, see Table 1.
aIn according to the quartiles based on TMAO, choline, betaine, and carnitine, separately, TMAO levels for the quartile groups were as follows: Q1 <0.98, Q2: 0.98~1.58, Q3: 1.59~2.52,
Q4 > 2.52mmol/L; Choline levels for the quartiles were as follows: Q1 <7.2, Q2: 7.2~8.5, Q3: 8.6~10.1, Q4 > 10.1mmol/L; Betaine levels for the quartiles were as follows: Q1 < 37.3, Q2:
37.3~43.3, Q3: 43.4~51.3, Q4 > 51.3mmol/L. Carnitine levels for the quartiles were as follows: Q1 < 48.2, Q2: 48.2~55.1, Q3: 55.2~61.9, Q4 > 61.9mmol/L.
*Adjusted for traditional risk factors include age, sex, and body mass index; *P < 0.05, **P < 0.01, ***P < 0.001.
A B D

C

FIGURE 2 | Prediabetes and diabetes-associated intestinal microbiota. (A) Box plot showing the species-based a-diversity (Shanon index) in controls, prediabtes,
and diabetes. (B) Species-based principal coordinates analysis (PCoA) of controls, prediabtes, and diabetes. (C) Linear discriminant analysis (LDA) effect size (LEfSe)
analysis revealed significant bacterial differences in fecal microbiota in controls, prediabtes, and diabetes. (D) Associations between clinical parameters, intestinal
microbiota-generated metabolites and microbial species were estimated by MaAsLin2.
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diabetes group. Two species Ruminococcus lactaris and
Fusobacterium mortiferum, were enriched in the prediabetes
group. Other two bacterial species, including Parabacteroides
merdae and Clostridium leptum, were enriched in the normal
glucose control group (Figures 2A–C).

Results of multivariate association analysis with MaAsLin2
between microbiota-generated metabolites, clinical indices, and
microbial species were presented in Figure 2D. Among the
microbial species significantly correlated with blood glucose,
Klebsiella variicola.pneumoniae and Coprococcus catus were
positively associated, whereas Bifidobacterium longum were
inversely associated with blood glucose. Physiological
parameters of SBP, DBP, BMI, waistline, TC, TG, HDL-C and
HDL-C were also included in the analysis. We observed that
microbial species enriched in diabetes or prediabetes was
generally positively with adverse metabolic parameters,
whereas species enriched in controls was associated with
improved metabolic parameters, such as Parabacteroides
merdae was inversely associated with TG and waistline. For
microbiota-generated metabolites, Porphyromonas gingivalis was
positively correlated with TMAO. Butyrivibrio crossotus and
Clostridum phytofermentans were inversely correlated with
choline. Four species, including Butyrivibrio crossotus,
Eubacterium saburreum, Haemophilus pittmaniae and
Ruminococcus lactaris was posively associated with betaine.

3.3 Identification of Prediabetes and
Diabetes Based on Machine Learning
Algorithms
To illustrate the microbial and metabolic signature of prediabetes
and diabetes, we exploit the potential of microbiome and
metabolites for classifying prediabetes and diabetes from
controls. The strategy of combining classical statistics and
multivariate statistics were carried out, and we found the
biomarkers distinguishing prediabetes from controls using
traditional risk factors, and biomarkers that distinguished
Frontiers in Endocrinology | www.frontiersin.org 7
diabetes from controls using P value based on one-way
ANOVA. Moreover, after 10-fold cross-validation, RF model
showed highly promising performance for classifying prediabetes
and diabetes from controls (prediabetes vs. controls, diabetes vs.
control) (Figure 3). For diabetes, compared with models using
traditional risk factors (AUC=0.938) or only using microbiome
indicators (AUC=0.948), a RF algorithm integrating traditional
risk factors with microbiome and metabolites performed better
(AUC=0.971). The most informative microbiome features
contributing to this classifier were Coprococcus catus,
Parabacteroides merdae, Ruminococcus lactaris, Bacteroides
eggerthii, Prevotella copri, and Fusobacterium varium, and
choline was more effective than TMAO for classifying diabetes
from controls (P value for Gini coefficient <0.05). To further
elucidate whether sex has an effect on the microbial and
metabolic signature, we also built models for classifying
prediabetes and diabetes from controls by sex (Figure S2). For
diabetes in males, the most informative microbiome features
contributing to this classifier were Coprococcus catus,
Fusobacterium varium, Parabacteroides merdae, Ruminococcus
lactaris, Prevotella copri and Bacteroides eggerthii., For diabetes
in females, the most informative microbiome were Bacteroides
eggerthii, Prevotella copri, Coprococcus catus, Parabacteroides
merdae, Fusobacterium varium, as well as Ruminococcus
lactaris . The most informative microbiome features
contributing to this classifier ranked somewhat differently in
males and females. For prediabetes, we observed that the RF
model using microbiome and selected traditional risk factors,
such as waistline and age, did not display the better predictive
performance (AUC=0.839) compared with that only using
traditional risk factors (AUC=0.888). After sex stratified, the
pattern was consistent, also, the risk factors ranked differently in
males and females”. Sensitivity analyses by further adjusted
lifestyle risk factors were conducted to inspect the robustness
of our findings, and the selected indicator to build the
classification models were consistent.
A B

FIGURE 3 | Classification models using selected indicators to identify prediabetes or diabetes patients from controls. (A) The selected traditional risk indicators
distinguished prediabetes from control based on the Random Forest model. The lengths of bar in the histogram represent Gini coefficient, which indicates the
importance of the indicators for classification. The color denotes the enrichment of indicators in control (blue) and in prediabetes or diabetes (red). ROC of classifier
models using four groups of biomarkers for prediabetes versus control. AUC = 0.785 for biomarkers 1 (blue curve), AUC = 0.839 for biomarkers 2 (yellow curve),
AUC = 0.792 for biomarkers 3 (red curve), and AUC = 0.888 for biomarkers 4 (black curve). (B) The ANOVA-selected indicators distinguish diabetes from control
based on the Random Forest model. ROC of classifier models using four groups of biomarkers for diabetes versus control. AUC = 0.941 for biomarkers 1 (blue
curve), AUC = 0.971 for biomarkers 2 (yellow curve), AUC = 0.948 for biomarkers 3 (red curve), and AUC = 0.938 for biomarkers 4 (black curve).
June 2022 | Volume 13 | Article 906310

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zeng et al. Type-2 Diabetes Classification Based Metagenomics
3.4 Functional Characterization in
Intestinal Microbiome of High or Low
Choline Levels
All the genes were aligned to the KEGG database and CAZy
database, and proteins were assigned to the KEGG orthology and
CAZy families. Pathways involved in carbohydrate metabolism
were enriched in high choline or low TMAO group. KEGG
pathways including ‘glycolysis gluconeogenesis’, ‘fructose and
mannose metabolism’, and ‘galactose metabolism’, were all
highly enriched in the microbiome of high choline individuals.
Conversely, KEGG pathways belonging to the ‘pentose and
glucoronate interconversions’, ‘starch and sucrose metabolism’,
and ‘galactose metabolism’, were significantly enriched in the
microbiome of low TMAO individuals (Figures 4A, B). Among
the CAZy genes for metabolizing different carbohydrate
substrates, those contributing to insulin degradation were
significantly enriched in high choline group, whereas those
contributing to starch, insulin and pectin degradation were
enriched in low TMAO group (Figures 4C, D). According to
the TMA production potential, TMAO production potential was
inversely correlated to glucose level, although the association did
not reach statistical significance. Several KOs associated with the
carbohydrate metabolism process were enhanced in individuals
with low TMA production potential (Figure 4E).

We next examined FishTaco’s calculated taxon-level
contributions to functional differences, focusing on carbohydrate
Frontiers in Endocrinology | www.frontiersin.org 8
metabolism pathways, which were observed as choline-associated
functional shifts. The specie Ruminococcus lactaris, as well as
Coprococcus catus and Prevotella copri, were the main drivers of
the enrichment of the carbohydrate metabolism pathway in the
condition of high choline. The species Parabacteroides merdae,
was the major driver of the enrichment in the carbohydrate
metabolism pathway, while Bacteroides eggerthii attenuated that
enrichment in the condition of low choline. At the module level,
some species, for example Prevotella copri, drove the observed shift
in one function while attenuating the shift in another (Figure S3).
4 DISCUSSION

Our study systematically investigated the associations of intestinal
microbiota and microbiota-generated metabolites with glucose
metabolism. In this study, we observed that plasma choline was
positively, while betaine was negatively associated with diabetes,
independently of TMAO in Chinese adults. Individuals with
diabetes could be accurately distinguished from controls by
integrating data on choline, and certain species abundance, as
well as some traditional risk factors such as age, sex, BMI and
waistline. Additionally, some species, for example diabetes-
associated species Prevotella copri drove the observed shift in
one function while attenuating the shift in another at the
module level, which implies species often had complex impacts
A

B
D

EC

FIGURE 4 | Microbial gene functions annotation in the low (lower thirds) and high (higher thirds) TMAO/Choline groups. (A) The average abundance of KEGG modules
differentially enriched in gut microbiome of the low and high TMAO groups. Five modules enriched in low TMAO group, and 22 modules overrepresented in high TMAO group
are shown in green and red, respectively. (B) The average abundance of KEGG modules differentially enriched in gut microbiome of low and high choline groups. Five modules
enriched in low choline group, and twenty twou modules overrepresented in high choline group are shown in green and red, respectively. (C) The average abundance of CAZy
family involved in metabolism of inulin, pectin, and starch significantly altered in the low and high TMAO groups. (D) The average abundance of CAZy family involved in
metabolism of inulin significantly altered in the low and high choline groups. (E) The average abundance of KEGG modules differentially enriched in gut microbiome of groups
with the low and high TMA production potential. 23 modules enriched in low TMA production potential group, and 24 modules overrepresented in high TMAO group are
shown in green and red, respectively.
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on the observed shift in function. Greater attention should be paid
to plasma choline because it is more stable, and links the
microbiota to impaired glucose metabolism and diabetes.

According to recent series of researches, intestinal microbiota
can metabolize trimethylamine (TMA)-containing nutrients to
produce TMA in the intestine, which is subsequently converted
into TMAO by host FMO3 in the liver (18). Manipulation of
TMAO concentrations in mice through inhibiting host FMO3
can prevent the development of hyperglycemia, hyperlipidemia,
and atherosclerosis in a diabetic mouse model (10). Plasma level
of TMAO was found to be higher in diabetic individuals in
observed studies (11, 19). The meta-analysis of continuous
variable documented that levels of TMAO were 0.36mmol/L
higher in patients with diabetes than in that without diabetes
(20). However, in intervention studies, a reduction of choline
rather than TMAO showed significant associated with losses of
body fat, fasting insulin and HOMA-IR, as well as 2-year
improvements in glucose and insulin resistance (12, 21).
Similarly, circulating level of choline decreased in morbidly
obese patients after bariatric surgery along with level of TMAO
significantly increased after the weight loss. Mice fed a choline-
deficient diet also observed to have improved insulin resistance
and glucose metabolism (22). In our results, there was a positive
relationship between plasma choline and adverse glucose
metabolism independently of TMAO. We speculate the blood
glucose modulated by choline was possibly through different
diabetes-related mechanisms besides TMAO. Choline (or the
choline metabolite betaine) is a methyl donor involved in one-
carbon metabolism and play a critical role in methylation
reactions, including DNA methylation, as well as DNA
stability and repair. Disruption of epigenetic mechanisms may
significantly impact the development of metabolic disease by
increasing oxidative stress, reducing chromosome stability, and
promoting the development of obesity, insulin resistance, and
vascular dysfunction (23). Previous epidemiological study have
demonstrated that DNAmethylomic changes are associated with
chronic health conditions such as glucose level alteration, and
most DNAmeta-methylome changes occurred 80-90 days before
clinically detectable glucose elevation (24). Besides, data from
KEGG pathways and Cazy enzymes showed microbial functions
in the condition of high choline displayed higher capacity for
carbohydrate utilization, by which we also speculated that
microbiota might directly induce adverse glucose metabolism
through other metabolites, rather than TMAO production. For
example, intestinal microbiota was able to synthesize amino
acids, such as aromatic amino acids (AAAs) and branched-
chain amino acids (BCAAs), and choline was further positively
connected to these diabetes-related amino acids (12, 25).

Plasma betaine, contrary to choline, was inversely associated with
diabetes in our study. Previous study has showed that plasma choline
and betaine were investigated in relation to cardiovascular disease
risk with opposite directions, that choline was positively, conversely
betaine was inversely associated with several components of
cardiometabolic risk profiles in different populations (26, 27).
Glycine betaine mainly from the food items could be transformed
into a group of betainized compounds by the gut microbiota.
Frontiers in Endocrinology | www.frontiersin.org 9
In recent interventional and animal studies, betainized compounds
correlated with improved glucose metabolism and the risk of
diabetes (28). Among adults with the metabolic syndrome, PAB,
one betainized compounds, was associated with favorable fasting
insulin, lipid profiles and inflammation (29). Several bacterial taxa,
including Akkermansia, Bifidobacterium, Coriobacteriaceae,
Lactobacillus, Parasutterella, and Ruminococcus, may involve in
betaine metabolism in animal study (30). Betaine is formed in
kidney and liver by choline oxidation, or obtained from food of
cereal grains, especially whole-grain rye and wheat. Betaine serves as
a methyl donor in the betaine-homocysteine methyltransferase
reaction, which is responsible for the betaine-dependent
remethylation of homocysteine to methionine (31). There is an
important crosstalk between choline/1-carbon metabolism (such as
betaine) and the pathways of insulin sensitivity, fact deposition and
energy metabolism through epigenetic modifications. This may
explain why there is a paradox: increased plasma concentration of
choline associated with hyperglycemia, but decreased plasma
concentration of betaine also related to hyperglycemia. Given that
most of the evidence is cross-sectional, it cannot be used to establish
cause and effect between betaine deficiency and hyperglycemia.
Diagnostic performance of betained compounds in blood is
important for future research, which need further studies to
elucidate mechanisms.

Two independent metagenome-wide association studies in
European and Asian patients with diabetes, showed that the
concentrations of butyrate-producing such as Roseburia intestinalis
and Faecalibacterium prausnitzii decreased in diabetic subjects, and
the proportion of opportunistically pathogenic Clostridium species
increased (2, 32). Zhang et al. (33) focused on the analysis of the
intestinal microbiota in prediabetes using 16S rDNA-based high-
throughput sequencing. Patients with prediabetes already differed
from normal glucose people, that prediabetes had lower proportions
of butyrate-producing bacteria such as Akkermansia muciniphila
ATCCBAA-835, and Faecalibacterium prausnitzii L2-6, whereas
bacteria such as Clostridiales sp. SS3/4, and Haemophilus
parainfluenzae T3T1 were more abundant. In Danish adults, the
intestinal microbiota differed the most between prediabetes and
controls were genus Clostridium and Akkermansia muciniphila,
which both displayed lower abundance in prediabetes group (34).
Despite there was a similar trend in some universal butyrate-
producing bacteria, the bacterial taxa were markedly different in
diverse populations, demonstrating the microbiota is dramatically
impacted by research method, diet, medication use, ethnicity and
geographical locations. In our study, we found that Coprococcus catus
belonged to Firmicutes was the common microbial characteristics of
diabetes, and contributed a lot to distinguish individuals with diabetes
from controls, which is consistent with previous studies that phyla
Firmicutes (eg.Coprococcus catus) were more abundant in obese
people those had worse glucose level (35, 36). Ruminococcus flora
help gut epithelial cells to absorb sugars, which might contribute to
weight gain in the host. Results from diabetic rats model
demonstrated that blood glucose was positively correlated with
Ruminococcus (37). In previous animal studies, two Parabacteroides
species, including Parabacteroides distasonis and Parabacteroides
goldsteinii, played roles in anti-obesity, hyperglycemia, and insulin
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zeng et al. Type-2 Diabetes Classification Based Metagenomics
resistant (38, 39). Parabacteroides merdae, which is opportunistic
pathogenic taxa, was reported frequently distributed in hypertensive
gut microbiome, further investigations whether Parabacteroides
merdae play preventive role in the progression of diabetes need be
conducted. Since a number of Ruminococcus species are known to be
associated with metabolic diseases, also Bacteroides eggerthii
abundance was reported significantly higher in obese children and
correlated positively with body fat percentage and negatively with
insoluble fiber intake (40). Based on data from the MetaHIT,
Prevotella copri was identified as the main species driving the
positive association between biosynthesis of branched-chain amino
acids (BCAAs) and insulin resistance, and mice fed with Prevotella
copri had increased insulin resistance, aggravate glucose intolerance
and elevated levels of BCAAs (41). Deficiency of gut short-chain fatty
acid (SCFA) is associated with diabetes.We also observed that several
Bifidobacterium species, including Bifidobacterium bifidum,
Bifidobacterium_longum , Bifidobacterium_breve , and
Bifidobacterium adolescentis were important for classification
prediabets and control groups. Zhao et al. (42) found that adopting
a high-fiber diet promoted the growth of SCFA-producing species
including Bifidobacterium longum in diabetic humans, in company
with the elevated levels of glucagon-like peptide-1, a decline in
hemoglobin A1c levels, and improved blood glucose levels.
Although the results yielded different species biomarkers, our
findings indicated that choline may be more effective to classify
diabetes group from control group, comparing to specific species.

Our study has several strengths and limitations. First, this study
introduced data of metagenome and microbiota-generated
metabolites in a population-based study, which is to date the
largest in Asian allowing us to directly examine bacterial
functional genes. Second, we enrolled relatively healthy study
population, whereas many of the TMAO studies to date have
been limited to participants with metabolic disease or undergoing
various medical procedures. Third, we were also able to assess
associations of disease biomarkers not only with TMAO, but also
choline, carnitine, and betaine. Our study also had some
limitations. The major limitation of this study was a cross-
sectional study, and the statistically significant association
between intestinal microbiota, microbiota-generated metabolites
and host health do not establish causality. Longitudinal studies are
needed to determine the stronger evidence of these associations.
Second, we did not have postprandial blood sugar or HbA1c data
available in this study, which may induce a misclassification bias.
However, the misclassification of undiagnosed diabetic women
into normal glycemic group was more likely to weaken the
associations. Third, we did not adjust for potential confounders
such as dietary factors. Diet maymodify the associations of choline
or its metabolites with disease risk. However, in the sensitive
analyses, the results were somewhat consistent after further
adjusted lifestyle factors including dietary habit.

In this study, we found that the integrating choline and
microbiota species, as well as traditional risk factors specific was
consistently more effective to classify diabetes from healthy controls.
The blood glucose metabolism modulated by microbial metabolites,
such as choline and TMAO, were possibly through different
diabetes-related mechanisms. These results provide evidence that
Frontiers in Endocrinology | www.frontiersin.org 10
higher microbial choline was positively associated with glucose
metabolism and type 2 diabetes, especially highlight great
potential ability for classifying diabetes population by choline and
specific intestinal species.
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