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Empagliflozin (EMPA) is a novel sodium-glucose cotransporter 2 inhibitor (SGLT2i) that
produces protective cardiovascular-renal outcomes in patients with diabetes. However,
the effects of EMPA on obesity-related kidney disease have not been determined. The
heme oxygenase-1 (HO-1)–adiponectin axis is an essential antioxidant system with anti-
apoptotic and anti-inflammatory properties. This study explored whether EMPA improves
obesity-related kidney disease through regulation of the renal HO-1-mediated adiponectin
axis. C57BL/6J mice were assigned to control, high-fat diet (HFD) groups, and EMPA (10
mg/kg) groups. HFD mice showed metabolic abnormality and renal injury, including
increased urinary albumin excretion, morphologic changes, and lipid accumulation. EMPA
treatment improved metabolic disorders and attenuated lipotoxicity-induced renal injury.
Furthermore, EMPA treatment ameliorated renal NLRP3 inflammasome activity and
upregulated the HO-1–adiponectin axis. Our findings indicate that EMPA improves
obesity-related kidney disease through reduction of NLRP3 inflammasome activity and
upregulation of the HO-1–adiponectin axis, suggesting a novel mechanism for SGLT2i-
mediated renal protection in obesity.

Keywords: Empagliflozin, obesity, kidney disease, NLRP3, HO-1
INTRODUCTION

The prevalence of obesity, an important public health problem, has substantially increased over the
past 30 years (1). This increased prevalence has implications for various complications, including
renal damage known as obesity-related kidney disease (OKD) (2). Generally, the onset of OKD is
unnoticed; most patients initially have no obvious clinical symptoms, with the exception of
microalbuminuria identified during physical examination. In patients with obesity,
hyperfiltration often occurs as a compensatory mechanism for the increased metabolic demands.
This causes damage to renal structure and function, leading to OKD and the potential for end-stage
kidney disease (3, 4). The pathogenesis of OKD usually involves high metabolic demand, insulin
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resistance, chronic inflammation, and disordered lipid
metabolism (5). However, the mechanisms by which obesity
contributes to the induction or progression of OKD have
remained unclear.

Heme oxygenase-1 (HO-1) is an inducible enzyme/protein
that catalyzes the oxidative degradation of heme to bilirubin (6).
HO-1 can sense and respond to various metabolic alterations,
including oxidative and inflammatory stress. Increased HO-1
expression is considered a promising therapeutic method for
metabolic disease alleviation through the regulation of cellular
function and pathophysiology (7). Notably, HO-1 may mediate
beneficial effects by enhancing adiponectin secretion; this
pathway is known as the HO-1–adiponectin axis (8–10). The
activation of this axis in obese animal models may suppress
inflammatory cytokine activity and protect against OKD (8, 11).
Adiponectin is mainly secreted from adipose tissue that has
potent anti-inflammatory, antiatherogenic, and vasoprotective
properties (12). Circulating adiponectin levels are usually
decreased in obesity and metabolic disease. Adiponectin
therapy has glucose-lowering effects and can ameliorate insulin
resistance (13). Several studies have reported favorable results of
adiponectin treatment in metabolic disease (14, 15). Notably,
adiponectin is also produced in non-adipose tissue, particularly
in the kidney (e.g., in glomerular endothelial cells and tubular
cells) (16). However, there is a need to identify the mechanism by
which the renal HO-1–adiponectin axis affects OKD.

Empagliflozin (EMPA), a new oral glucose-lowering drug,
selectively acts on sodium-glucose cotransporter-2 inhibitor
(SGLT2i) receptors in proximal kidney tubule epithelial cells; it
inhibits sodium-glucose cotransporters to reduce blood glucose
(17). The most direct effects of SGLT2i therapy include the
restoration of tubule feedback and reduction of both oxidative
stress and inflammation; these effects have renoprotective and
cardioprotective outcomes (18). Although SGLT2i therapy
improves diabetic nephropathy outcomes, no study has
investigated whether OKD can be alleviated by SGLT2i therapy
in patients or animals with obesity. This study examined whether
EMPA could improve OKD through the HO-1–adiponectin axis
in high-fat diet (HFD)-induced obese mice.
MATERIALS AND METHODS

Experimental Animals
Four-week-old male C57BL/6J mice were purchased from Jinan
Pengyue Laboratory (China). All mice were randomly assigned
to normal control (NC), HFD, and HFD-EMPA (HFD-E)
groups. Mice in the NC group were fed a regular diet, while
mice in the other groups were fed an HFD (45% fat, 530 kcal/100
g; Fanbo Biotechnology, Wuxi, China). After they had received
an HFD for 24 weeks, mice in the HFD-E group were
administered EMPA (10 mg/kg/day) (Boehringer Ingelheim)
by oral gavage for another 8 weeks. Body weight and body
composition analysis were measured weekly (Bruker Minispec
LF50, Germany). After 32 weeks of feeding, glucose tolerance
assessment, insulin resistance assessment, and 12-h urine
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collection were performed; mice were sacrificed 1 week later.
The study protocol was approved by the Animal Ethics
Committee of Weifang Medical University.
Oral Glucose Tolerance Test and Insulin
Tolerance Test
After they had been fasted for 6 h, the mice were administered 2
mg/g glucose by oral gavage (oral glucose tolerance test) or 0.75
U/kg regular insulin (diluted in saline) by intraperitoneal
injection (insulin tolerance test). Tail venous blood were
collected for assessment with a blood glucometer (On Call
EzIII, China) at various time points.
Biochemical Assays
Plasma triglycerides (TG) and free fatty acid (FFA)
concentrations were measured using commercial test kits
(BC0625 and BC0596, Solarbio, China). Urinary albumin was
measured using an enzyme-linked immunosorbent assay
(CEB028Mu, Cloud-Clone Corp, China). Urinary creatinine
was measured using a test kit from Jiancheng (Nanjing, China).
Immunofluorescence
For the detection of NLR family, pyrin domain containing 3
(NLRP3) expression patterns, frozen tissue blocks were cut into
5-mm sections. After they had been washed with phosphate-
buffered saline, tissues were fixed with 4% paraformaldehyde
solution for 10 min, permeabilized with 0.3% Triton-X 100
(TB8200, Solarbio, China) for 20 min, blocked with 1% bovine
serum albumin, then followed by incubated with NLRP3 antibody
(#15101, Cell Signaling Technology) (1:200) overnight.
Subsequently, the tissues were incubated with goat secondary
antibody (1:600; ab150077, Abcam) at room temperature, then
incubated with 4′,6-diamidino-2-phenylindole (DAPI, 1:200) for
10 min. Finally, NLRP3 expression patterns were photographed
using a microscope (Zeiss, Germany).
Histopathological Analysis
Kidney tissues were separated in cooled saline, then immediately
fixed in 4% paraformaldehyde and embedded in paraffin. Five-
millimeter sections were cut fromparaffin blocks, then stainedwith
hematoxylin and eosin for histopathology analysis. Kidney tubular
interstitial fibrosis was evaluated by Masson’s trichrome and
Picrosirius Red staining, while lipid accumulation was assessed by
Oil Red O staining. Photographs were acquired usingMotic Digital
Pathology Solution (Easyscan, Motic, China).
Transmission Electron Microscopy
Mouse kidney tissues were fixed in sodium cacodylate buffer. Fixed
tissues were trimmed to 1-mm3 cubes for embedding. Sixty-
nanometer-thick sections were cut using an ultramicrotome
(Leica UC7, Leica, Germany); the sections were placed in cuprum
June 2022 | Volume 13 | Article 907984
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grids.The cuprumgridswere then imaged via transmissionelectron
microscopy (HT7800/HT7700, Hitachi, Japan).
Western Blotting
Kidney tissue was ground with a manual homogenizer and
homogenized in cold protease inhibitor lysis buffer for 30 min.
It was then centrifuged at 12000 rpm for 10 min at 4°C; the
supernatant was subjected to protein quantification via
bicinchoninic acid assay. The samples were separated via 12%
sodium dodecyl sulfate–polyacrylamide gel electrophoresis,
transferred to polyvinylidene fluoride membranes, and
incubated with antibodies to the following proteins: HO-1
(#43966, Cell Signaling Technology); Adiponectin (ab181281,
Abcam) and b-actin (66009-1-Ig, Proteintech).
Reverse Transcription Polymerase Chain
Reaction Analysis
Total RNA from the left kidney was isolated and extracted using
TRIzol Reagent (Invitrogen). Then, the extracted RNA was
reverse-transcribed using a PrimeScript™ RT Reagent Kit with
gDNA Eraser (#RR047A, TaKaRa). TB Green® Premix Ex Taq™

II (#RR820A, TaKaRa) was used for quantitative polymerase
chain reaction analysis. Relative changes in expression levels of
amplified genes were determined using the comparative cycle
threshold (Ct) method (i.e., 2-DDCt). Relative expression levels of
the interleukin (IL)-1b, IL-6, IL-18, and NLRP3 genes were
normalized to the expression of b-actin. The primers used in
this study are shown in Table 1.
RNA-Seq and Data Analysis
The RNA sequence and data analysis were prepared as
previously described by our group (19). Differentially expressed
genes (DEGs) were identified using limma packages in R 4.0.3
with the default parameters at (logFC) > 1, P.Value < 0.05 for the
groups. And Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses of DEGs were conducted
using the clusterProfiler package in R based on the
criteria: Adjusted.P.Value<0.01.
Statistical Analysis
All statistical analyses were carried out using GraphPad Prism 8.
The results are shown as means ± standard errors of the mean.
One-way or two-way ANOVA and Turkey’s test were utilized as
Frontiers in Endocrinology | www.frontiersin.org 3
appropriate. Differences were considered statistically significant
based on the following setting: P<0.05.
RESULTS

EMPA Treatment Decreased Weight Gain,
Fat Mass, and Fat%, While Normalizing
Glucose Intolerance, in HFD Mice
After 32 weeks of HFD administration, HFD mice exhibited
significant morphological changes compared with NC mice
(Figures 1A, B). Specifically, HFD mice had significantly
increased body weight (49.67 ± 1.48 g vs. 30.82 ± 1.08 g, P<0.05),
fat mass (14.56 ± 0.43 g vs. 2.05 ± 0.18 g, P<0.05), and fat/weight%
(29.37 ± 0.75% vs. 7.74 ± 0.27%, P<0.05), compared with NCmice.
However, EMPA treatment significantly decreased the final body
weight (44.87 ± 1.42 g vs. 49.67 ± 1.48 g, P<0.05), fat mass (11.75 ±
0.78 g vs. 14.56±0.43 g,P<0.05), and fat/weight% (26.08±1.09%vs.
29.37± 0.75%,P<0.05), comparedwithHFDalone (Figures 1C–E).
To further explore the lipidmetabolismprofiles, wemeasured levels
of serum TG and FFA. As expected, these indicators were
remarkedly increased in the HFD mice, compared with NC mice
(TG: 32.87 ± 1.69 mg/dL vs. 18.51 ± 2.49 mg/dL, P<0.05; FFA:
1303.00 ± 81.14mmol/L vs. 618.60 ± 52.12mmol/L, P<0.05); EMPA
significantly decreased FFA (746.30 ± 56.59 mmol/L vs. 1303.00 ±
81.14 mmol/L, P<0.05) but had no beneficial effects on TG (29.31 ±
2.71 mg/dL vs. 32.87± 1.69 mg/dL, P>0.05), compared with HFD
alone (Figures 1F,G). Furthermore, comparedwithNCmice,HFD
mice showed higher fasting glucose levels (10.32 ± 0.66 mmol/L vs.
6.73 ± 0.37 mmol/L, P<0.05) and impairments of both glucose
tolerance and insulin tolerance; these alterations were mitigated by
EMPA treatment (P<0.05) (Figures 1H–J), suggesting that EMPA
could alleviate HFD-induced metabolic disorders.

EMPA Treatment Decreased Kidney Injury
in HFD Mice
Urinary albumin assessment and histopathology techniques were
used to observe renal function. The ratio of urinary albumin to
creatininewashigher inHFDmice than inNCmice (45.24±4.71mg/
mmol vs. 14.26 ± 2.28 mg/mmol, P<0.05); EMPA treatment decreased
this ratio compared withHFD alone (21.01 ± 1.99 mg/mmol vs. 45.24
± 4.71 mg/mmol, P<0.05) (Figure 2B). HFDmice showed substantial
glomerular hypertrophy and renal tubular lumen enlargement in
hematoxylin and eosin staining analyses; they also exhibited
considerable lipid deposition in Oil Red O staining analyses of
renal tubules. Furthermore, HFD treatment induced significant
renal fibrosis, compared with NC treatment, in Masson’s trichrome
TABLE 1 | The primers used in the study.

Gene Primer sequence (5’!3’)

b-actin F: GGCTGTATTCCCCTCCATCG R: CCAGTTGGTAACAATGCCATGT
IL-1b F: GCAACTGTTCCTGAACTCAACT R: ATCTTTTGGGGTCCGTCAACT
IL-18 F: GACTCTTGCGTCAACTTCAAGG R: CAGGCTGTCTTTTGTCAACGA
IL-6 F: CTGCAAGAGACTTCCATCCAG R: AGTGGTATAGACAGGTCTGTTGG
NLRP3 F: ATTACCCGCCCGAGAAAGG R: TCGCAGCAAAGATCCACACAG
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and Picrosirius Red staining. Contemporaneously with these
changes, the mitochondria swell and rupture, crest disorder, and
increased lipid droplets accumulation in the transmission electron
microscope in HFD mice. These morphological alterations were
partially reversed by EMPA treatment, indicating that EMPA exerts
renoprotective effects in HFD mice (Figure 2).
Frontiers in Endocrinology | www.frontiersin.org 4
Kidney Transcriptomic Analyses Revealed
Novel EMPA-Induced Pathways in
HFD Mice
To identify potential mechanisms by which EMPA alleviates
OKD, three groups of kidneys were subjected to transcriptome
profiling. These samples were divided into three groups (NC,
A B

C D E

F G H

I

J

FIGURE 1 | EMPA reduced body weight and glycolipid metabolism. (A) 4-week-old male mice were fed HFD for 24 weeks and then treated with EMPA for another
8 weeks. (B) Morphology of mice. (C) Body weight. (D) Body fat mass. (E) Body fat mass%. (F) TG levels. (G) FFA levels. (H) Fasting blood glucose levels. (I) Oral
glucose tolerance test and area under curve (AUC) of glucose tolerance. (J) Insulin tolerance test and AUC of insulin tolerance. Data are means ± SEM, n = 6/group,
*P < 0.05 vs. NC; #P < 0.05 vs. HFD.
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A B

C

D

FIGURE 2 | EMPA improved kidney dysfunction and morphologic change. (A) Morphology of mice kidney. (B) The ratio of urinary albumin to creatinine (n= 6/
group). Data are means ± SEM. *P < 0.05 vs. NC; #P < 0.05 vs. HFD. (C) H&E, Oil red O, Masson trichrome and picrosirius red staining. Scale bar = 30 µm. (D)
TEM images of glomerular and tubular structures. Scale bar = 20 µm, 2 µm and 5 µm. BM, basement membrane; Ep, epithelial cells; Rb, red blood cell; Mc,
mesangial cells; P, podocyte; Double arrow, basement membrane thickness; * lipid drops; ↑ Damaged mitochondria.
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HFD, HFD-E), and limma package in R 4.0.3 were used to
screening DEGs. DEGs were identified using two comparisons:
HFD/NC, and HFD-E/HFD based on (logFC) > 1, P.Value <
0.05. We identified 1029 DEGs union in three groups
(Figure 3A), 852 DEGs in comparing HFD vs. NC, 279
DEGs in the HFD-E vs. HFD groups, both of which 102
DEGs shared in HFD vs. NC and HFD-E vs. HFD
(Figure 3B). Additionally, we identified DEGs for which
expression levels were altered or reversed by EMPA. In total,
852 DEGs were detected in the HFD vs. NC comparison, of
which 524 were upregulated and 328 were downregulated; 279
DEGs were detected in the HFD-E vs. HFD comparison, of
which 127 were upregulated and 152 were downregulated. All
DEGs were depicted using bar plots and volcano diagrams
(Figures 3C, D). These DEGs shared in HFD-E vs. HFD and
HFD vs. NC were enriched in GO and KEGG categories
associated with cytokines and chemokines based on the
criteria: Adjusted.P.Value<0.01 (Figure 3E).
EMPA Treatment Decreased NLRP3
Inflammasome Activity in HFD Mice
Immunofluorescence staining to quantify the protein
expression of NLRP3 in mouse kidney tissue revealed
significantly elevated expression in HFD mice, compared with
NC mice; EMPA treatment reversed this expression pattern
(Figure 4A). Additionally, we analyzed the transcription levels
of NLRP3 and its related genes. Consistent with the
immunofluorescence staining results, HFD induced increased
transcription of NLRP3, IL-6, IL-1b, and IL-18; these
alterations were reversed by EMPA treatment (P<0.05;
Figures 4B–E).
EMPA Treatment Induced HO-1–
Adiponectin Axis Activity in HFD Mice
To verify whether the renal HO-1–adiponectin axis is involved in
OKD, we detected the levels of these proteins in kidney tissue;
both were significantly decreased in HFD mice. Importantly,
EMPA reversed this expression pattern through significant
upregulation of HO-1–adiponectin levels (Figure 5).
DISCUSSION

This study investigated the effect of EMPA treatment on OKD in
obese mice. We found that HFD induced clear metabolic
abnormality and renal injury, accompanied by downregulation
of the HO-1–adiponectin axis and enhancement of NLRP3
inflammasome activity. However, EMPA treatment reduced
renal injury and NLRP3 inflammasome through activation of
the HO-1–adiponectin axis. This study reveals a novel protective
role for EMPA in OKD, with a potential underlying mechanism.

Obesity is an increasing public health problem that leads to
metabolic syndrome and increased vascular complications,
Frontiers in Endocrinology | www.frontiersin.org 6
including OKD. Our HFD treatment induced a metabolic
syndrome-like phenotype in mice, which included increased
body weight and fat. We also observed hyperglycemia,
hyperlipidemia, and impaired glucose tolerance in HFD mice.
These pathological abnormalities alter metabolic homeostasis
and exacerbate kidney damage, as indicated by increased levels of
urinary albumin. Furthermore, HFD induced substantial
pathological changes, including glomerular hypertrophy, tubule
lumen enlargement, renal fibrosis, and mitochondrial injury. Oil
Red O staining and transmission electron microscopy
demonstrated that lipid droplet accumulation increased in
HFD mice. These results indicated that HFD-induced
lipotoxicity and associated metabolic abnormalities lead to
renal injury, consistent with our previous findings (2, 20).

EMPA is an SGLT2i with cardioprotective, renoprotective,
and glucose-lowering effects in diabetic patients. Lu et al. (21)
found that EMPA can modulate myocardial contractility; it can
also attenuate ischemia and reperfusion injury. Furthermore,
EMPA alleviated cardiac inflammation and energy depletion via
AMPK activation; it exhibited a renoprotective effect by
enhancing endogenous ketone body-induced inhibition of
mTORC1 (22, 23). Notably, Li et al. reported that EMPA
could inhibit epithelial-mesenchymal transition and aberrant
glycolysis in proximal tubules, thus protecting renal function
(24). Furthermore, EMPA reduces metabolic derangements and
restores altered tubule-glomerular feedback, protecting against
diabetes-induced cardiorenal injury (25). Our findings
demonstrated that EMPA had robust mitigating effects on
metabolic and pathophysiological abnormalities in HFD-
induced renal injury.

To further elucidate the mechanism by which EMPA protects
OKD, we analyzed the mouse kidney transcriptome by RNA-Seq
and found 102 DEGs shared in three groups. GO and KEGG
enrichment showed that these DEGs were mainly enriched in
cytokines, chemokines, and tumor necrosis factor signaling
pathways, all of which were association with inflammation
process. We discovered that HFD affects inflammatory
processes; EMPA can attenuate these processes.

The NLRP3 inflammasome is an important component of
pathological inflammation that can trigger local and systemic
inflammation (26); it has crucial roles in various diseases (e.g.,
autoimmunity, diabetes, and cardiovascular disease). The
NLRP3 inflammasome is also activated in both acute and
chronic kidney disease in mice and humans (27–29).
Activation of the NLRP3 inflammasome and subsequent excess
production of IL1b, IL-6, and IL18 lead to exacerbation of kidney
injury (30). The NLRP3 inflammasome participates in host–
pathogen interactions; it recruits and activates pro-inflammatory
proteases. Therefore, treatments targeting the NLRP3
inflammasome, the center of inflammatory response, may be
useful for the management of various inflammation-related
diseases. In the present study, immunofluorescence and RNA-
Seq analyses indicated that EMPA treatment attenuated
NLRP3 inflammasome activity and inflammation-related
biological processes, but the detailed mechanism requires
further exploration.
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FIGURE 3 | Kidney tissue were collected and then subjected to RNA-seq analysis. (A)The DEGs of HFD vs. NC and HFD-E vs. HFD. (B). DEGs associated with
HFD vs. NC and HFD-E vs. HFD (light red and blue). (C) The number of upregulated and downregulated genes from the HFD vs. NC, and HFD-E vs. HFD in the
mice renal genome. (D) Volcano plot for the distribution of DEGs between the HFD vs. NC and HFD-E vs. HFD. Blue represents a down-regulation in expression, red
represents upregulation and gray represents no significance compared to control. (E) Main GO terms and KEGG pathways based on shared DEGs between HFD vs.
NC and HFD-E vs. HFD.
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HO-1 is a rate-limiting enzyme that catalyzes heme
degradation, with important anti-inflammatory and anti-
oxidative properties; it is mainly synthesized by the spleen
and “visceral adipose tissue macrophages (31). HO-1 has been
shown to reduce NLRP3 inflammasome activity in mice (32); it
also reduces visceral fat accumulation, normalizes metabolic
profiles, and prevents obesity, thereby reducing cardiovascular
and renal complications (7, 33–35). Notably, these beneficial
effects were partly mediated through impacts on the
adiponectin-dependent pathway (36, 37). Adiponectin is
mainly secreted by white adipose tissue; however, its levels
are usually lower in the context of obesity and metabolic
syndrome, despite adipose accumulation (38). A lower
adiponectin level is inversely associated with insulin
resistance. Adiponectin has various beneficial effects and
modulates many metabolic processes, including anti-
atherosclerotic and anti-inflammatory effects (39). We
previously showed that HO-1 induction could increase serum
Frontiers in Endocrinology | www.frontiersin.org 8
adiponectin, thus reducing urinary albumin levels and
protecting against OKD by improving endothelial dysfunction
(8). These results indicate that HO-1 activation may be a useful
treatment for obesity-related renal damage. However, no
studies have reported whether renal HO-1 and adiponectin
participate in OKD. Here, we found that both of them in kidney
tissue were decreased after HFD induction. However, EMPA
treatment could increase these levels, indicating the HO-1–
adiponectin axis was activated by EMPA. In addition, HO-1
overexpression may protect the D-Galactosamine and
lipopolysaccharide-induced hepatic malfunction through
suppression of the NLRP3 (40). Adiponectin could inhibit
NLRP3 inflammasome activation in nonalcoholic steatohepatitis
or cerebral ischemia-reperfusion injury (41, 42). Thus, HO-1 and
adiponectin are implicated in NLRP3 inflammasome activation.
These findings support our hypothesis that EMPA treatment
increased HO-1–adiponectin axis activity and decreased NLRP3
inflammasome activity.
A

B C

D E

FIGURE 4 | EMPA attenuated the NLRP3 inflammasome. (A) Immunofluorescence of NLRP3 inflammasome. Scale bar = 20 µm and 10 µm. (B–E) mRNA levels of
NLRP3, IL-1b, IL-6, IL-18 (n = 6/group). Data are means ± SEM. *P < 0.05 NC; #P < 0.05 vs. HFD.
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CONCLUSION

In conclusion, our study demonstrated that EMPA can protect
against OKD by activating the HO-1–adiponectin axis and
reducing NLRP3 inflammasome activity in HFD mice. Kidney
transcriptome analysis revealed that EMPA affects essential
genes closely associated with inflammation. Our findings
provide new knowledge concerning the mechanism by which
EMPA exhibits protective effects in OKD.
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