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Background: The transplantation of adipose-derived stem cells (ASCs) is a

most promising treatment for diabetic erectile dysfunction (DMED). However,

the effect of high glucose on the post-transplantation survival of stem cells

limits the efficacy of ASCs transplantation. Prolonging the survival time of ASCs

in vivo after transplantation is a key issue in the utilization of ASCs for DMED.

Herein, we aimed to investigate the therapeutic effect of ASCs by

downregulating NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)

as well as its mechanism of action in DMED.

Methods: ASCs were obtained by isolating subcutaneous fat from SD rats and

were identified using lipogenic and osteogenic differentiation assays, as well as

flow cytometric analysis. The shNLRP3 lentivirus with the best downregulating

effect was screened, and shNLRP3 lentivirus (LV-shNLRP3) was transfected into

ASCs (ASCsshNLRP3) to detect apoptosis and the reactive oxygen species (ROS)

levels in each group under high glucose conditions. In DMED rats, ASCsLV-

shNLRP3, ASCsLV-control, or phosphate buffered saline (PBS) were administrated

via intra-cavernous injection, and normal rats served as normal controls. One

week post-injection, animal imaging was performed to track the ASCs. Four

weeks post-injection, erectile function was evaluated by measuring the intra-

cavernosal pressure and mean arterial pressure. Corpus cavernosum

pyroptosis and endothelial function were examined by western blotting and

immunofluorescence.

Results: NLRP3-mediated pyroptosis might be a pathogenic mechanism of ED

and DMED. ASCs were isolated successfully. Thereafter, the LV-shNLRP3 with

the highest transfection efficiency was selected and used to modify ASCs

successfully. LV-shNLRP3 could protect ASCs paracrine function under

hyperglycemia through anti-apoptosis and anti-ROS deposition mechanisms.
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Furthermore, ASCsLV-shNLRP3 showed an advantage in the suppression of

pyroptosis compared to ASCsLV-control. The ASCsLV-shNLRP3 group had

improved cavernous endothelial function and smooth muscle injury, thus

reversing erectile function, and was superior to the ASCsLV-control group.

Conclusions: NLRP3 Inflammasome-mediated pyroptosis might be involved in

DMED formation. Intra-cavernous injection of ASCsLV-shNLRP3 could suppress

cavernosal pyroptosis, contributing to improved erectile function in DMED rats.
KEYWORDS

adipose derived stem cell, erectile dysfunction, pyroptosis, gene modification,
diabetes mellitus
Introduction

Nearly 35–90% of diabetic patients have varying degrees of

erectile dysfunction (ED) (1). Men with diabetes are 1.9-4 times

more likely to experience ED and on average experience ED 15

years earlier than men without diabetes (2–4). The current first-

line treatment for diabetic erectile dysfunction (DMED) involves

phosphodiesterase-5 inhibitors (PDE5Is), however, PDE5Is can

be ineffective in 30–40% of the population, most patients have to

opt for penile prosthesis surgery, which has significant

postoperative complications including pain. Therefore, it is

important to explore new therapeutic approaches and new

pathophysiological mechanisms for DMED.

The erectile tissue is a specialized vascular tissue structure,

composed of small resistance arteries and spiral arteries, which

lead to a sinusoidal cavity arranged via a single-layer vascular

endothelium. The vascular endothelium is usually covered by the

network structure composed of smooth muscle cells,

extracellular matrix, and autonomic nerves. In addition,

collagen, elastic fibers, and fibroblasts form part of the

extracellular matrix. The interaction between these tissue

structures results in the hemodynamic and mechanical process

of penile erection, which is very important to the whole erectile

system (5, 6). The pathogenesis of DMED is complex, but

ultimately both can lead to endothelial dysfunction and

impaired smooth muscle relaxation, either of which might

affect erectile function.

Adipose-derived stem cells (ASCs) therapy is considered a

promising treatment for DMED (7). Its advantages include a high

number of ASCs per volume of subcutaneous adipose tissue, a

high rate of proliferation; additionally, anti-fibrotic, anti-

apoptotic, immunomodulatory, anti-inflammatory, and

paracrine mechanisms have been demonstrated in preclinical

studies (8–11). Angiogenic growth factors (e.g., vascular

endothelial growth factor [VEGF] and insulin-like growth
02
factor-1 [IGF-1]) secreted by ASCs are present in body tissues.

These proteins tend to induce proliferation and angiogenesis and

can protect against vascular ED (12). Furthermore, ASCs function

in reducing autophagy to treat diabetic nephropathy and

inflammation by secreting exosomes and via differentiation (13,

14). However, the erectile-protective function of ASCs in treating

DMED rats has not yielded satisfactory results and has not yet

been applied in clinical work (15). One of the main reasons is that

stem cell transplantation is difficult and short-lived in a high

glucose and inflammatory environment. Interestingly, Czech (16)

deleted the heat production inhibitory gene NRIP1 through

CRISPR and efficiently depleted its product in human ASCs in

vitro; compared to that with unmodified adipocyte implantation,

implanting this CRISPR-enhanced human or mouse brown-like

adipocytes into mice fed a high-fat diet was found to reduce

obesity and liver triglycerides and improve glucose tolerance. Xu

(10) found that HIF1a overexpression could enhance diabetic

wound closure in high glucose and low oxygen conditions by

promoting adipose-derived stem cell paracrine functions and

survival. Furthermore, some studies found that HIF-1a, VEGF,
and GDNF modify diverse stem cells to enhance their paracrine

function and promote their curative effect in the treatment of ED

(17, 18). In summary, the knockdown or overexpression of some

key genes in ASCs will increase the response of stem cells in a high

glucose and hypoxia environment.

As one of the main complications of diabetes, DMED

is closely associated with inflammation. Of related markers, the

NLRP3 inflammasome is the most well-characterized multimeric

protein complex to date (19). NLRP3 inflammasome-mediated

inflammatory cytokines can act in both an autocrine and a

paracrine manner and contribute to multiple chronic

inflammatory diseases and metabolic disorders, such as obesity,

hypertension, diabetes, atherosclerosis, and cancer (20–24). These

diseases also have a close relationship with dysregulation of the

endothelium, by altering both active participants and regulators of
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inflammatory processes (24). Thus, targeting NLRP3 has great

therapeutic benefits (25). Furthermore, most studies on ED have

been performed at the animal level, and whether the mechanisms

identified in these studies can be applied to human studies

remains debatable. Accordingly, this study explored the

relationship between ED and pyroptosis through bioinformatic

analysis techniques. We then hypothesized that the knockdown of

NLRP3 (ASCsLV-shNLRP3) in ASCs could promote longer cell

survival in a high glucose environment and alleviate the erectile

dysfunction in DMED rats via paracrine secretion. In this study,

we tested this hypothesis using DMED rats and found that NLRP3

downregulation could enhance erectile functions in diabetic rat by

promoting ASCs paracrine functions and survival.
Materials and methods

Bioinformatic analysis

According to our previous study (26), differentially expressed

genes (DEGs) between the ED and non-ED group were screened

from the Gene Expression Omnibus dataset using the ‘limma’

package of R (4.0.0). Pyroptosis-related genes were obtained from

GeneCard (https://www.genecards.org/). Briefly, we entered the

keyword “pyroptosis”, and downloaded the data in the format of

“txt.” The DEGs and pyroptosis-related genes were then entered

into the Venn diagram (http://bioinformatics.psb.ugent.be/

webtools/Venn/) to obtain pyroptosis-related differential

expressed genes (PRGs). Next, we mapped the PRGs to the

KEGG database using ‘ClusterProfiler’ and ‘org.Hs.eg.db’

packages of R software to identify associated pathways. The cut-

off values were set according to the parameters of an absolute

logFC >0.5 and false discovery rate < 0.05.
Isolation, culture, and identification of
ASCs

Primary ASCs were obtained as described previously (27). Fat

tissue of Sprague-Dawley (SD) rats weighing 180–220 g was isolated

from the inguinal area, minced in digestive solution containing

0.15% type I collagenase, and incubated under shaking at 120 rpm

in a constant-temperature hybridization oven (UVP, Upland, CA,

USA) at, 37°C for 1 h. Subsequently, adipose tissue was resuspended

in 10% FBS (HyClone, GE, Boston, MA,USA) complete medium to

terminate the digestion and washed with PBS by centrifugation at

1200 rpm, then processed with FACS Lysing Solution (BDIS

Catalog No.349202) for 10 min. The final precipitate was

collected and cultured in stem cell culture medium (CM-R198,

Procell, Wuhan, China). Cells from the third passage were used for

adipogenic and osteogenic induction using the corresponding

inducing medium (PanEra laboratories. Inc., Beijing, China) for

21 days to confirm the multipotential differentiation capability. The
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cell surface markers of ASCs were measured using a FACScan flow

cytometer (BD, Franklin Lakes, NJ, USA) using fluorochrome-

conjugated antibodies, including CD29-FITC (1 µg/test; 11-0291-

82, eBiosciences, CA), CD45-APC (0.5 mg/test; 17-0461-82,
eBiosciences, CA,USA), and CD90-PE (0.06 mg/test; 12-0900-
81, eBiosciences).
Lipogenesis assessment and oil red O
staining experiment

ASCs with good growth status at the P2 passage were

selected and spread in 6-well plates to induce the cells grow to

cover 70% of the bottom of the plate, or approximately 1.5 × 105

cells/well. According to the instructions of the lipogenesis

induction Kit (Abcam, Cambridge, UK), we performed

adipogenesis induction with ASCs. The induced growth of the

cells was observed daily under an inverted microscope and

photographed and recorded. When the lipid-inducing solution

was administered for 7–14 days, ASCs appeared as many round

vesicle-like lipid droplets. Induction was terminated when the

number of lipid droplets was high or when induction reached 21

days. Next, according to the manufacturer’s instructions, we

prepared oil red O dye in advance (Abcam, Cambridge, UK) and

stained the induced cells. Then, the culture dishes were moved

into the inverted microscope (Olympus, x63, Japan) to observe

and photograph them.
Osteogenesis and alizarin red staining
experiment

ASCs with a good growth status at the P2 passage were selected

and spread in 6-well plates to induce the cells grow to cover 70% of

the bottom of the plate, or approximately 1.5 × 105 cells/well. The

osteogenic induction of ASCs was performed using the Osteogenic

Induction Kit (Santa Cruz Biotechnology, Santa Cruz, CA, USA). In

general, when osteogenesis was induced for approximately 7–14

days, more obvious round calcified nodules gradually appeared on

the surfaces of ASCs, and the number of calcified nodules gradually

increased with time. When many calcified spots appeared or when

induction reached 21 days, induction was stopped as appropriate.

Then we prepared Alizarin red staining solution (Santa Cruz

Biotechnology) in advance and stained the induced cells.

Afterwards, the culture dishes were moved into the inverted

microscope (Olympus, x63, Japan) to observe and photograph them.
Lentiviral-shNLRP3 construction and
transfection

A specific LV-shNLRP3 (a lentiviral LV-control carrying

luciferase and NLRP3 knockdown interfering plasmids) was
frontiersin.org
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designed by JiKai Gene Company (Shanghai, China) and verified

by sequencing. The carrier number was GV344, and the original

order was hU6-MCS-Ubiquitin-firefly_Luciferase-IRES-

puromycin. Three LV-shNLRP3 lentiviral LV-controls were

constructed based on their original order. The sequence of the

NLRP3 interference plasmid is presented in Table 1. The

lentivirus supernatant was screened and used for multiplicity

of infection (MOI = 50). Three dishes of cells were each

transfected with one of three lentiviruses to screen the best

lentivirus. Puromycin was used to screen for stable cells. The

dishes were maintained in a humidified atmosphere containing

5% CO2 and 95% air at 37°C. The medium was changed 8 hours

after lentivirus transfection and then every 24 hours. After 72

hours, cells were harvested to detect NLRP3 mRNA and protein

expression using quantitative real-time PCR (qRT-PCR) and

western blot (WB) assays. After their third Passage, the

transfected cells were used for experiments. To explore the

function of ASCs transfected with NLRP3 knockdown

lentivirus (ASCsLV-shNLRP3). ASCs were divided into three

groups: ASCs, ASCs transfected with vector lentivirus

(ASCsLV-control) and ASCsLV-shNLRP3, that were cultured in a

high glucose medium (30mmol/L) for 24 hour.
Quantitative real-time PCR

Total RNA was extracted from the cultured cells using AG

RNAex Pro Reagent (AG21101, Accurate Biology, Changsha,

China) following the manufacturer’s protocols. Reverse

transcription of RNA was performed by using 1 µg of RNA per

20 µl of reaction buffer with the PrimeScript RT reagent kit

(Takara Bio Inc., Otsu, Japan). qRT-PCR was performed using

LightCycler®480 II (Roche, Basel, Switzerland) with the SYBR

Green PCR kit (Takara, Japan) according to the manufacturer’s

protocol. qRT-PCR amplification with specific primer sets for

NLRP3, VEGFA, SDF-1, FGF2, and b-actin was conducted at an

annealing temperature of 55–60°C for 40 cycles. The following
Frontiers in Endocrinology 04
primers were used: NLRP3, forward, 5′-CAGAAGCTGGGGT
TGGTGAA-3′ and reverse, 5′-CCCATGTCTCCAAGGGCATT-
3′; VEGFA, forward, 5′-ACAGGGAAGACAATGGGA-3′ and

reverse, 5′-CTGGAAGTGAGCCAACG-3′; SDF-1, forward, 5′-
CCTCTGTCACCAGCCTTT-3′ and reverse, 5′-CTGCACTT
CCTTCCCACT-3′; FGF2, forward, 5′-ACTTCGCTTCCCGC
ACT-3′ and reverse primer, 5′-GTGGGTCGCTCTTCTCC-3′;
b-actin, forward, 5′-GATCAAGATCATTGCTCCTCCTG-3′
and reverse, 5′-AGGGTGTAAAACGCAGCTCA-3′. b-actin was

used as the internal reference; relative expression was determined

using the 2−DDCT method.
Flow cytometry

The apoptosis rate was evaluated using the Annexin V-FITC/

PI Apoptosis Detection kit. The cells were seeded into 6-well tissue

culture plates (5 × 105 cells/well). Following treatment, the cells

were collected, washed with PBS, and resuspended in 500 mL
binding buffer. Then, 5 mL Annexin V-FITC and 5 mL propidium

iodide (PI) were added to the buffer and incubated at room

temperature (PI) for 15 min in the dark. Stained cells were

analyzed using a FACScan flow cytometer (BD).
Reactive oxygen species assay

The ROS assay kit (E004-1-1, Nanjing Jiancheng

Bioengineering Institute) was used for analysis. Briefly, after

high glucose stimulation, ASCs in each group were washed three

times with fresh PBS. Serum-free medium containing 10 mmol

L−1 DCFH-DA was added to the culture plate. Then, an

appropriate amount of the mixture was added and incubated

in a cell incubator at 37°C for 30 min and then washed with fresh

PBS buffer three times. ROS detection was observed by IX73

fluorescence microscopy (Olympus, Tokyo, Japan), and the

appropriate area was selected for imaging.
TABLE 1 The sequence of NLRP3 interference plasmid.

ID 5’ stem loop stem 3’

Nlrp3-RNAi
(92977-1)-a

CCGG GTGGATAGGTTT
GCTGGGATA

CTCGAG TATCCCAGCAAA
CCTATCCAC

TTTTTG

Nlrp3-RNAi
(92977-1)-b

AATTCA
AAAA

GTGGATAGGTTT
GCTGGGATA

CTCGAG TATCCCAGCAAA
CCTATCCAC

_

Nlrp3-RNAi
(92978-1)-a

CCGG CCGAAAGAAGT
TGCTGCCTAA

CTCGAG TTAGGCAGCAAC
TTCTTTCGG

TTTTTG

Nlrp3-RNAi
(92978-1)-b

AATTCA
AAAA

CCGAAAGAAGT
TGCTGCCTAA

CTCGAG TTAGGCAGCAAC
TTCTTTCGG

_

Nlrp3-RNAi
(92979-1)-a

CCGG AGCATCCAAGCA
AGCAGGAAA

CTCGAG TTTCCTGCTTGC
TTGGATGCT

TTTTTG

Nlrp3-RNAi
(92979-1)-b

AATTCA
AAAA

AGCATCCAAGCA
AGCAGGAAA

CTCGAG TTTCCTGCTTGC
TTGGATGCT

_
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Establishment of a DMED rat model and
ASCs implantation in vivo

Male SD rats (approximately 200 g and 8-weeks-old)

with normal erectile function were provided by the Experimental

Animal Center of Southern Medical University. The rats with

DMED were modeled and identified as previously described (27).

Briefly, 80 healthy adult male SD rats were intraperitoneally injected

with 1% streptozotocin solution (65 mg kg−1). Diabetes was

confirmed by measuring random blood glucose levels 72 h after

injection. Rats with random blood glucose concentrations >16.7

mmol L−1 were diagnosed as diabetic. Eight weeks after STZ

injection, an apomorphine (Sigma-Aldrich) test (100 mg kg−1)

was carried out to confirm DMED in rats as previously described

and 42 rats met the standard for ED (28). The rats with DMED

were anesthetized with pentobarbital sodium (50 mg kg−1, i.p.) and

received a bilateral intracavernous injection of 1 × 106 ASCsLV-control

in 200 ml of phosphate-buffered saline (ASCsLV-control-treated

group) or 1 × 106 ASCs transfected with LV-shNLRP3 (ASCsLV-

shNLRP3-treated group) (n =10 per group). Another 10 normal rats

served as the control group. A successful DMED rat model should

have an intracavernosal pressure (ICP) of <60 mmHg, and an ICP/

MAP (mean arterial pressure) ratio of <0.5. The penis was harvested

for histological and WB analyses.
In vivo small animal imaging

In vivo tracking of LV-shNLRP3-transfected ASCs was

performed using the IVIS Lumina II system, as previously

described (27). Briefly, all groups of animals were

intraperitoneally injected with 150 mg kg−1 D-luciferin

(Bioworld, Minneapolis, MN, USA) dissolved in DPBS

(HyClone) at a concentration of 15 mg ml−1 for 5 min before

anesthesia. The animals were then placed in the camera

apparatus, and local images were taken.
Immunofluorescent staining

Corpus cavernosum tissues were fixed overnight in 4%

paraformaldehyde. Paraffin-embedded tissue specimens were

routinely prepared and sectioned at a 5 mm thickness. After

antigen repair, goat serum was applied at RT for 30 min. The

caspase1 antibody (1:50; 22915-1-AP, Proteintech), NLRP3

antibody (1:50; 19771-1-AP, Proteintech), a-SMA antibody

(1:100; SC-53015, Santa Cruz), and CD31 antibody (1: 100;

ab222783, Abcam) were incubated with the sample overnight,

and goat anti-rabbit IgG (HRP) (Abcam, ab205718) was added

through a drip. We used DAPI to stain the cell nuclei, and

images were captured using a laser confocal microscope (Nikon,

Tokyo, Japan).
Frontiers in Endocrinology 05
Histology and immunohistochemistry

Tissue slides were prepared similarly to those used for

immunofluorescence staining. H&E, Masson’s trichrome

staining, and immunohistochemistry (IHC) were performed.

Sections were cut at 5 mm thickness and incubated with an

anti-NLRP3 antibody (1:50; 19771-1-AP, Proteintech). Digital

images were acquired with an Olympus microscope (BX63), and

the smooth muscle (SM)-to-collagen ratio based on Masson’s

trichrome staining was evaluated using Image-Pro Plus 8.0.
WB assay

WB analysis was performed as described previously (27).

Briefly, cellular proteins were extracted using RIPA lysis buffer

(UW0103, Ubio, Shanghai, China) and centrifuged at 4°C for 20

min (15 000 rpm). Tissue proteins were fixed in liquid nitrogen

and ground with a grinding rod; this process was repeated 3-5

times. Next, RIPA lysis buffer was added, shaken for 10 seconds,

further ground with a tissue grinder (condition: 65 Hz, 60

seconds, 5 cycles) (Tissuelyser-32L, Jingxin, Shanghai, China),

and centrifuged at 4°C for 20 minutes (15,000 rpm). Protein

concentration was measured using a BCA kit (Thermo Fisher

Scientific Inc., Waltham, MA, USA). The proteins were

separated using sodium dodecyl sulfate-polyacrylamide gel

e lectrophores is (SDS-PAGE) and transferred onto

polyvinylidene fluoride (PVDF) membranes. After blocking

with 5% bovine serum albumin solution, membranes were

incubated overnight with primary antibodies (19771-1-AP;

Proteintech) at 4 °C.

The primary antibody, anti-NLRP3, was used to identify the

effect of the LV-shNLRP3 blockade. b-Actin (ABclonal, AC026)

was used as a loading control. The primary antibodies for

cytokines included anti-VEGFA (1:1000; ab214424, Abcam),

anti-SDF-1 (1:500; 17402-1-AP, Proteintech), and anti-FGF2

(1:1000; DF6038, Affinity).

Furthermore, ASC (apoptosis-associated speckled protein

containing CARD) is the central adapter for NLRP3

inflammasome formation (29). The primary antibodies for

pyroptosis related markers included anti-ASC (1:500; YT0365,

ImmunoWay, TX, USA), anti-caspase1 (1:500; 22915-1-AP,

Proteintech), anti-NLRP3 (1: 500; 19771-1-AP, Proteintech),

anti-IL-1b (1:500; A16288, ABclonal), anti-IL-18 (1:500;

10663-1-AP, Proteintech), and anti-GSDMD (1:500; 20770-1-

AP, Proteintech). The primary antibodies for endothelial

markers included anti-CD31 (1:2000; ab222783, Abcam), anti-

eNOS (1:500; ab76198, Abcam), and anti-phospho-eNOS

(S1177) (1:1000; ab215717, Abcam). Anti-a-SMA (1:1000; SC-

53015, Santa Cruz) was used to evaluate the cavernous smooth

muscle, which is defined as the effector organ for ED (30).

Furthermore, b-Tubulin (1:15000, 66240-1-lg; Proteintech)
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antibody was used as the loading control. Secondary antibodies

were obtained from Abbkine Inc. (catalog # A21010, # A21020,

USA) and diluted to 1:30,000.
Statistical analysis

Statistical results are expressed as mean ± standard deviation

(SD). The Unpaired t-test were performed for comparisons

between two groups using GraphPad Prism 8. Two-tailed

P<0.05 was considered statistically significant.
Results

Induction of NLRP3-mediated pyroptosis
in cavernous tissue in ED patients

Based on a previous study, the raw data were normalized for

further analysis (Figure 1A). Then, 1,236 significant DEGs

between the ED and non-ED samples were identified. Among

these DEGs, 423 genes were upregulated in ED tissue compared

with levels in non-ED tissue; the other 815 genes were

downregulated based on the volcano plot (Figure 1B). We

matched 1236 DEGs with 146 pyroptosis-related genes from

GeneCard (Supplemental File 1) using a Venn diagram,

resulting in 15 PRGs (Figure 1C). The results of KEGG

enrichment analysis showed that PRGs were significantly

enriched in the NOD-like receptor (NLR) signaling pathway

(Figure 1D). Caspase-1-activating NLRs have been commonly

studied to date. NLR recognition of bacterial, viral, and host

molecules and toxic foreign products can lead to caspase-1

activation. The NLR protein NLRP3 responds to multiple

stimuli (31). Importantly, the NLRP3/caspase1 signaling

pathway has been studied as a typical NLR signaling pathway

in pyroptosis (Figure 1E) (32). Next, a DMED rat model was

constructed to determine the expression levels of NLRP3. Blood

glucose and animal weights were also measured and compared

between the DMED and control group (NC) (Figures 1F, G).

ICP andMAP were measured to identify the DMED and NC rats

(Figure 1H). In the immunohistochemical analysis of the penile

tissues, the expression of NLRP3 in the DMED group was higher

than that in the control group (Figures 1C, D). Taken together,

NLRP3 inflammatory vesicle-associated pyroptosis might be

involved in the formation of DMED.
Characterization and LV-shNLRP3
transfection in ASCs

We extracted subcutaneous adipose tissue from the groin area

of SD rats, cleaned the blood vessels in the adipose tissue, cut,
Frontiers in Endocrinology 06
centrifuged, filtered the tissue, and then, placed it in a culture bottle

(Figure 2A). Adipogenesis and osteogenesis were confirmed by oil

red O and alizarin red staining (Figure 2B). ASCs were identified

based on specific surface antigens using flow cytometry. As shown

in Figure 2C, CD29 and CD90 were expressed in 99% of the cells,

whereas CD45 was not expressed. Moreover, qRT-PCR and WB

assays were performed to measure the decrease in the expression of

the mRNA and protein levels of NLRP3 (Figures 2D, E), indicating

that the NLRP3 gene was successfully knocked down in ASCs.

Taken together, ASCs were isolated successfully, and shNLRP3-

modified ASCs were prepared.
LV-shNLRP3 transfection prolongs the
survival of ASCs and promotes their
paracrine function

We assessed the functional characteristics of ASCsLV-

shNLRP3 in comparison to those of ASCs and ASCsLV-control.

Flow cytometry was performed to check the apoptosis rate of

these three ASCs types under high glucose and showed that

ASCsLV-shNLRP3 had a lower apoptosis rate than ASCs and

ASCsLV-control (Figures 3A, B). Meanwhile, the ROS levels

were measured to determine their ability to resist oxidative

stress (OS). The results showed that the fluorescence intensity

of ASCsLV-shNLRP3 was weaker than that of the other two

groups (Figures 3C, D), which suggested that LV-shNLRP3

enhanced the ability of ASCs to resist OS. In addition, ASCs

exert their therapeutic effects mainly through paracrine

cytokines (33). Accordingly, three angiogenic factors, SDF-1

(34), VEGFA (35), and FGF2 (36), were used to measure the

paracrine function of ASCs. Protein levels and gene expression

of SDF-1, VEGFA, and FGF2 in ASCsLV-shNLRP3 were higher

than those in the other two groups (Figures 3E-G). These

results suggest that LV-shNLRP3 can protect the paracrine

function of ASCs under hyperglycemia through anti-apoptosis

and anti-ROS deposition mechanisms.
LV-shNLRP3 enhances ASCs to
ameliorate erectile dysfunction in DMED
rats

To identify the function of LV-shNLRP3-modified ASCs,

we injected the cavernous sinus of rats with phosphate

buffered sa l ine (PBS) , ASCs, and ASCsLV- shNLRP3

(Figure 4A). After the 7th day, no fluorescence was detected

in the DMED+PBS group, a control for luciferase gene

transfection. The fluorescence intensities in the other two

groups showed that fluorescence in the DMED+ASCsLV-

shNLRP3 rats was notably stronger than that in the DMED

+ASCsLV-control rats (Figure 4B). The ICP/MAP values
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reflected the erectile function with an equal load in the

electrically stimulated cavernous nerve. Generally, the penis

in the ASCsLV-shNLRP3 group exhibited an ICP/MAP ratio

similar to that in the control group, and the penis in the

DMED group showed a much lower ICP/MAP ratio than that

in the control group. Specifically, the ICP/MAP ratio in the

ASCLV-shNLRP3 group at month 4 was similar to that of the

control group, and the ICP/MAP values were higher than

those in the other groups (Figure 4C). These results suggested

that the ASCsLV-shNLRP3 had a positive effect on erectile

function. Additionally, HE staining showed that the
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structure of the corpus cavernosum was irregularly arranged

in the DMED+PBS group compared with that in the controls.

The structure in the DMED+ASC, and DMED+ASCsLV-

shNLRP3 groups was similar to that of the control group.

Masson staining showed that the penis in the DMED+PBS

group had a much lower SM/collagen ratio than that in the

control group. Specifically, the SM/collagen ratio of the

ASCsLV-shNLRP3 group at month 4 was similar to that in the

control group, and SM/collagen values were higher than

those in the DMED+PBS and DMED+ASCs LV-control

groups (Figure 4D).
A B

D E F

G

IH

C

FIGURE 1

NLRP3 mediated pyroptosis may be associated with DMED. (A) Boxplot of the relative logarithmic expression (RLE) reflected the consistency of
parallel experiments. (B) Volcano plots showed the differentially expressed genes (DEGs) from GSE10804. Data points in red represent down-
regulated, and green represent up-regulated genes. (C) Venn diagram was performed to screen the PRGs from the DEGs and pyroptosis-related
genes. (D) KEGG pathway analysis of ARGs was performed with bar plot. (E) NLRP3/CASP1 signal pathway was the classic pathway of two
pathways of pyroptosis. (F) Bodyweight after 8 weeks’ feeding and (G) blood glucose level in each group. Each bar represents mean ± SEM. (H)
Results of erectile function expressed as ICP and the ratio of ICP/MAP. (I) Immunohistochemistry staining showed the expression level of NLRP3
in corpus cavernosum between DMED and NC rat. (ns: p>0.05. * p<0.05. ** p< 0.01).
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ASCsLV-shNLRP3 suppress NLRP3-mediated
pyroptosis of the corpus cavernosum

Toidentify theprotective functionofASCsLV-shNLRP3 in thecorpus

cavernosum in vivo, this study was performed using DMED rats.

Protein levels ofpyroptosis-relatedmarkers (IL-1b, IL-18,GSDMD-N,

c-caspase1, ASC)were higher in theDMEDgroup than in the control
Frontiers in Endocrinology 08
group. Protein levels of pyroptosis-related markers decreased after

treatment with ASCs LV-control and ASCsLV-shNLRP3(Figures 5A, B).

Consistent with the protein expression, the immunofluorescence

intensity of c-caspase1 and NLRP3 suggested the same conclusion

(Figures 5C–F). indicating that ASCs have the ability suppress

pyroptosis. Furthermore, compared to ASCsLV-control, ASCsLV-

shNLRP3 showed an advantage in the suppression of pyroptosis.
A

B

D

E

C

FIGURE 2

Identification of ASCs, and screening of LV-shNLRP3. (A) Flow chart of extraction, identification and lentiviral transfection of ASCs. (B) Typical
cell image (left), adipogenesis and osteogenesis of ASCs confirmed by oil red O (left) and alizarin red (right) staining under × 200 magnification.
(White arrows represent typical lipid droplets and calcium nodules, respectively). (C) Flow cytometric analysis of surface markers suggested that
ASCs were positive for well-known stem cell markers, including CD29 and CD90, but not for endothelial or hematopoietic markers CD45. (D)
qRT-PCR showed that the third of three strains of LV-shNLRP3 lentivirus were screened in ASCs. (E) WB showed the third of three strains of LV-
shnlrp3 lentivirus were screened in ASCs. (ns: p>0.05. * p<0.05. ** p< 0.01).
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ASCsLV-shNLRP3 reverse the corpus
cavernosum endothelial function in
DMED rats

To clarify the protective effect of ASCsLV-shNLRP3 on

cavernous smooth muscle cells and endothelial cell function,

endothelial cell markers (CD31, eNOS, and phosphorylated

eNOS (P-eNOS)) and a smooth muscle marker (a-SMA) were
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detected by WB analysis. The protein levels of CD31, eNOS,

and p-eNOS in the DMED+ASCsLV-shNLRP3 group were higher

than those in the DMED+PBS and DMED+ASCs LV-control

groups (Figures 6A, B). Furthermore, the fluorescence

intensity of CD31 and a-SMA in the DMED+ASCsLV-

shNLRP3 group was much higher than that in the DMED and

DMED+ASCsLV-control groups and similar to that in the

control group (Figure 6C).
A B
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FIGURE 3

LV-shNLRP3 prolong the survival and the paracrine function of ASCs. (A, B). Flow cytometry was performed to check the apoptosis rate of
ASCsLV-shNLRP3, ASCsLV-control, and ASCs under normal and high glucose respectively. (C, D) IF showed the fluorescence intensity of three kind of
ASCs. (The mean fluorescence intensity represents intracellular ROS level). (E) WB showed the protein level of NLRP3, SDF-1, VEGFA and FGF2
in the three groups; (F) relative statistical analysis. (G) qPR-PCR showed the gene expression of SDF-1, VEGFA and FGF2 in the three groups
respectively. (ns: p>0.05. * p<0.05. ** p< 0.01).
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Discussion

The desire for restorative rather than palliative management

strategies for ED has stimulated interest in cell-and gene-based

therapies (37). In this study, the knockdown of NLRP3 enhanced

the anti-apoptotic function of and anti-ROS deposits with ASCs

in a high-glucose environment, with maintenance of the

paracrine function of ASCs. The knockdown of NLRP3

enhanced the post-transplantation success rate of ASCs and

inhibited pyroptotic cell death of ASCs, reducing cavernous

endothelial dysfunction and smooth muscle cell injury, and
Frontiers in Endocrinology 10
thereby enhancing the effects ASCs to improve DMED.

However, available studies suggest that ROS can promote

NLRP3 inflammasome format ion , which leads to

inflammation and pyroptosis (38). Therefore, the knockdown

of NLRP3 might inhibit NLRP3 inflammasome-mediated

pyroptosis and inflammation in ASCs in a high glucose

environment. In addition, the paracrine function of stem cells

participates in NLRP3-mediated cellular pyroptosis, which has

been studied. For example, Liu et al (39) found that the

neuroprotective effects of bone marrow mesenchymal stem

cell-derived exosomes are associated with the attenuation of
A B

D

C

FIGURE 4

Transplantation of ASCsLV-shNLRP3 improved erectile function of the diabetic ED rats. (A) Schematic diagram of injection site of ASCs. (B) ASCsLV-
shNLRP3 can prolong the survival time in cavernous tissue. (C) Representative images of intracavernosal pressure (ICP) and mean arterial pressure
(MAP) and the ICP/MAP ratio are shown in each group of rats. (D) A thinner smooth muscle layer and discontinuous and disordered cavernous
sinuses were found in all diabetic rats, with more severe changes in the PBS group. In the Masson’s trichrome staining images, the ASCs and
ASCsLV-shNLRP3 groups retained the SM-to-collagen ratio compared with the PBS group, which is shown in the statistical graph. (ns: p>0.05. *
p<0.05. ** p< 0.01).
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NLRP3 inflammasome-mediated inflammation and pyroptosis.

Park et al (40) suggested that ASCs ameliorate colitis by

suppressing inflammasome formation and regulating M1-

macrophage populations through prostaglandin E2. Huang et

al (41) showed that ASCs attenuate NLRP3 inflammasome

activation and improve functional recovery after spinal cord

injury through paracrine secretion. In this study, we selected

three cytokines, SDF1, VEGFA and FGF2, which represent stem

cell retrieval, paracrine secretion and survival, respectively.

In summary, ASCsLV-shNLRP3 not only enhance their own

anti-apoptosis and anti-oxidative stress capacity in a high-

glucose environment but also can be used to treat the disease

through anti-pyroptosis and anti-inflammatory functions based

on paracrine secretion.
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NLRP3 acts as a sensor molecule, which occurs during self-

polymerization, and it recruits ASCs and induces their assembly

into large speckled structures. Subsequently, the further

recruitment of caspase-1 leads to the autocatalytic activation of

caspase-1. The activated caspase-1 heterodimer functions as a

protease activator of the pro-inflammatory cytokines IL-1b and

IL-18, as well as the soluble cell membrane protein gasdermin D.

Upon proteolysis, oligomeric gasdermin N binds to membrane

lipids and forms membrane pores to mediate the unconventional

secretion of IL-1b and IL-18. Simultaneously, cells undergo a pro-

inflammatory type of cell death known as “pyroptosis” (19). Thus,

knocking down the NLRP3 gene would potentially block

pyroptosis-related signaling pathways, thereby inhibiting

inflammation and thus alleviating the disease.
A B

D
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C

FIGURE 5

ASCsLV-shNLRP3 ameliorate Corpus cavernosum pyroptosis. (A) WB showed the protein expression level of pyroptosis-related moleculars among
four groups, and (B) statistical analysis. (C-F) IF showed the fluorescence intensity of caspase-1, NLRP3 among four groups, and statistic analysis.
(ns: p>0.05. *: compared with control group, p<0.05. #: compared with DMED+PBS group, p< 0.05;!: compared with DMED+ASCsLV-control,
P<0.05).
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At the beginning of the study, we tried to explore whether

pyroptosis occurs with ED in patients. However, in clinical

studies, it is difficult to obtain penile tissue because of the ED.

Thus, we obtained sequencing data from the public database

platform the GEO database. We found DEGs related to pyroptosis

in ED by using the R language. KEGG enrichment analysis found

that pyroptosis-related DEGs are most frequently enriched in the

NLR signaling pathway. Of them, the NLRP3/CASP1/ASC

signaling pathway has been mostly researched to date (31).

Further immunohistochemical analysis revealed the presence of

altered NLRP3 expression in the cavernous tissue of the penis of

DMED rats. This reinforces our suspicion of the possibility of

pyroptosis in the cavernous tissue with DMED. We then detected

IL-18, IL-1b, caspase1, GSDMD, and other pyroptosis-related
Frontiers in Endocrinology 12
molecular proteins and found that pyroptosis was indeed

occurring in the cavernous body of the DMED penis.

ASCs have been used to treat DMED (27). Moreover, they can

inhibit NLRP3-mediated inflammatory reactions to treat diabetes-

associated complications (42). However, high glucose levels form

an inflammatory environment impair the paracrine function of

ASCs and threaten their survival (10, 18). LV-shNLRP3 was then

used to modify ASCs. We found that ASCsLV-shNLRP3 were more

likely to survive in a high glucose environment. Thus, our study

not only demonstrated for the first time that ASCs improve

diabetic erectile function by suppressing NLRP3 Inflammasome-

mediated pyroptosis and inflammation in corpus cavernosum

tissue but also found that LV-shNLRP3-modified ASCs exhibit a

prolonged residence time in the cavernous body.
A B

C

FIGURE 6

ASCsLV-shNLRP3 retained the endothelial and smooth muscle ingredient of cavernous body. (A) WB, and (B) quantification for WB revealed that
CD31, eNOS, p-eNOS, a-SMA expression were all increased in the ASCs-treated and ASCsLV-shNLRP3 -treated group 4 weeks after cytotherapy.
(C) IF showed the fluorescence intensity of CD31 and a-SMA in cavernous tissue of each group. (ns: p>0.05. *: compared with control group,
p<0.05. #: compared with DMED+PBS group, p< 0.05.!: compared with DMED+ASCsLV-control, P<0.05).
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Previous studies have identified the importance of

endothelial function in ED. Erection occurs with the release

of nitric oxide (NO) from the vascular endothelial cells. A

reduction in the endothelial cell production of NO has a

negative effect on the smooth muscles in the corporal bodies

and results in impaired relaxation of the smooth muscle cells

with a decrease in blood supply, leading to ED. Consistent with

this theory, we found that the endothelium marker CD31 (36)

was reversed after treatment with ASCsLV-shNLRP3. In addition,

e-NOS, the critical modulatory factor associated with ED, was

also increased in the ASCsLV-shNLRP3 group as compared with

levels in the DMED group. In addition, the smooth muscle

contraction-associated protein a-SMA showed an altered

expression pattern similar to that of CD31 in all groups. HE

and Masson staining also showed that the penile corpus

cavernosum tissue structure was fuller and clearer and the

smooth muscle content was higher in the ASCsLV-shNLRP3

group than the DMED and ASCsLV-control groups. Thus, the

improvement in erectile function accompanies the recovery of

endothelial function and the reduction in smooth muscle

tissue. Meanwhile, the ICP and ICP/MAP ratio in the

ASCsLV-shNLRP3 increased and was closer to that in the

control group. Taken together, the erectile tissue recovered

better after treatment with ASCsLV-shNLRP3 as compared to that

with ASCsLV-control.

The limitation of this study is that the types and targets of

cytokines released by ASCs need to be further explored. It is also

possible that paracrine extracellular vesicles might also play a

role. Further studies are thus warranted to address this.

Furthermore, several other NLRs are also considered to have

non-classical inflammation-independent functions and regulate

a variety of signaling pathways. The modulated molecules

therefore need to be identified in further studies.
Conclusion

This study confirmed the presence of NLRP3-mediated

pyroptosis in ED patients and DMED rats, which further

expands our understanding of the pathogenesis of DMED.

Importantly, LV-shNLRP3 enhanced the anti-apoptotic and

anti-ROS functions of ASCs in a high-glucose environment,

thereby enhancing their post-transplantation success rate and

anti-pyroptosis function, reducing cavernous endothelial

dysfunction and smooth muscle cell injury, and consequently

enhancing ASCs to improve DMED.
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