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Type 1 diabetes (T1D) is an autoimmune disease mediated by T cells and is becoming a
serious public health threat. Despite the increasing incidence rate of T1D worldwide, our
understanding of why T1D develops and how T cells lose their self-tolerance in this
process remain limited. Recent advances in immunometabolism have shown that cellular
metabolism plays a fundamental role in shaping T cell responses. T cell activation and
proliferation are supported by metabolic reprogramming to meet the increased energy
and biomass demand, and deregulation in immune metabolism can lead to autoimmune
disorders. Specific metabolic pathways and factors have been investigated to rectify
known deficiencies in several autoimmune diseases, including T1D. Most therapeutic
strategies have concentrated on aerobic glycolysis to limit T cell responses, whereas
glycolysis is the main metabolic pathway for T cell activation and proliferation. The use of
metabolic inhibitors, especially glycolysis inhibitors may largely leave T cell function intact
but primarily target those autoreactive T cells with hyperactivated metabolism. In this
review, we provide an overview of metabolic reprogramming used by T cells, summarize
the recent findings of key metabolic pathways and regulators modulating T cell
homeostasis, differentiation, and function in the context of T1D, and discuss the
opportunities for metabolic intervention to be employed to suppress autoreactive T
cells and limit the progression of b-cell destruction.
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INTRODUCTION

T1D is a chronic immune-metabolic disease and is becoming a serious public health threat (1). Over
the past three decades, the incidence of T1D has escalated worldwide, afflicting as many as 10
million people (2, 3). The pathogenesis of T1D is complicated, and available data suggest that T1D
arises due to the combination of genetically determined susceptibility, environmental factors, and
impairment of immunity, which eventually leads to the breakdown of immune tolerance to self (4,
5). It was demonstrated that autoreactive CD4+ and CD8+ T cells that infiltrate the islets of T1D
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patients play a key role in the process of b-cell destruction (6, 7).
Thus, those autoreactive T cells are regarded as a potential target
for immune-based interventions aiming to combat T1D (8–11).

Recent advances in metabolomics, transgenic mice and
immunometabolism have shown that metabolic adaptation plays
a crucial role in shaping T cell responses (12–14). T cell activation is
linked to metabolic reprogramming to meet the increased energy
and biomass demand (15, 16). Binding of antigen to T cell receptor
(TCR) initiates the activation of naïve T cells, which leads to a
metabolic program shift from oxidative phosphorylation
(OXPHOS) to robust aerobic glycolysis for rapid clonal
proliferation and effector functions (17–19). In recent years, many
exciting findings have uncovered novel metabolic pathways and key
molecules that could be applied to improve the governance of
autoimmunity and guide the treatment of autoimmune diseases
(20). The use of metabolic inhibitors, especially glycolysis inhibitors,
may largely leave T cell function intact but primarily target
autoreactive T cells with hyperactivated metabolism (9, 20). This
review aims to provide an overview of metabolic reprogramming
used by T cells, summarize the recent findings of key metabolic
pathways and regulators modulating T cell homeostasis,
differentiation, and functions in the context of T1D, and discuss
the opportunities for metabolic intervention to be employed to
suppress autoreactive T cells and limit the progression of b-
cell destruction.
METABOLIC REPROGRAMMING OF T
CELLS IN T1D

The pathogenesis of T1D is mainly mediated by the activation of
autoreactive CD4+ and CD8+ T cells, which are fueled by
metabolic reprogramming (7, 21). Activated effector T cells are
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more metabolically active and engage mainly in aerobic glycolysis
(22). The transition from naïve into effector T cells is driven by
variations in anabolic and catabolic metabolism (23). Notably,
researchers have reported that glycolysis is essential for cytotoxic T
lymphocytes’ function. Treatment of nonobese diabetic (NOD)
mice with glycolysis inhibitors resulted in delayed T1D onset and
protected b-cell mass (24). In addition, as part of the OXPHOS
program, the movement of electrons generates a substantial
amount of reactive oxygen species (ROS) (25). The role of ROS
in controlling the differentiation of T cells by modulating
metabolism has recently been described (21, 25–30). Investigators
have shown that ROS can act as signaling molecules involved in the
process of T cell activation, proliferation, and function (26). In
T1D, ROS generation leads to the activation of autoreactive T cells
and b-cell destruction (30). Regulatory T cells (Tregs) are key
mediators of peripheral immune tolerance (31–33). Yet, in some
autoimmune diseases, Tregs have been shown to have altered
stability or function (32). Several researchers have confirmed that
impaired Treg function, decreased Treg numbers, or the transition
into Th1 (helper T cell 1)-like Treg, contributed to T1D
development (33–38). Tregs have unique metabolic preferences
that have not been characterized clearly (31, 39). It is generally
recognized that Tregs preferentially use OXPHOS and fatty acid
oxidation (FAO) for differentiation and function (35, 40,
41)(Figure 1).
METABOLIC INTERVENTIONS: A NEW
OPPORTUNITY FOR T1D TREATMENT

Both mammalian target of rapamycin (mTOR) and AMP-activated
protein kinase (AMPK) are metabolic sensors required for T cell
proliferation and function (19, 42–44). Activation of AMPK inhibits
FIGURE 1 | The metabolic imbalance of autoreactive T cells and Tregs contributes to T1D development and progression. Glycolysis supports pro-inflammatory
responses, while OXPHOS promotes anti-inflammatory responses and immune tolerance. Immunometabolism regulators of key metabolic pathways, such as
metformin and PFK15, could suppress effector T cell responses and facilitate Treg expansion and function, which could provide a promising metabolic intervention
strategy for limiting the progression of b-cell destruction and reversing pathologies of T1D.
June 2022 | Volume 13 | Article 914136

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhang et al. T Cell Immunometabolism in T1D
anabolic metabolism, such as nucleic acid and lipid synthesis, but
favors catabolic metabolism. In contrast, activation of mTOR
signaling facilitates glycolysis, fatty acid production, and
mitochondrial biogenesis (42, 45, 46). As mentioned above,
autoreactive CD4+/CD8+ T cells exhibit a higher level of
glycolysis and depend less on OXPHOS, thus suggesting that
glycolysis could be used as an attractive therapeutic target (47).
Inhibiting mTOR signaling with rapamycin or enhancing the
AMPK signaling pathway with metformin are known to reduce
glycolysis (19). Given the key role of AMPK in the activation of T
cells, multiple studies have investigated the capacity of metformin to
suppress autoimmune diseases, notably T1D. Metformin is now the
first line of oral antidiabetic medicine and is used to regulate glucose
metabolism (48). Mechanistically, metformin inhibits the
mitochondrial electron transport chain (ETC) at Complex I and
results in a reduction in intracellular ATP production (48–50).
Furthermore, laboratory work demonstrated that metformin could
reduce the expansion of activated T cells by inhibiting the
expression of cellular myelocytomatosis oncogene (c-Myc) and
hypoxia-inducible factor 1 alpha (HIF1-a) in an AMPK-
independent way (51–53). Metformin exhibits a dose-dependent
effect to control T cell proliferation and suppress the differentiation
of Th1 and Th17 cells while enhancing Treg development in vitro.
NOD mice treated with metformin showed alleviated autoimmune
insulitis and reduced amounts of Th1 and Th17 cells in the spleens
(50). Furthermore, the anti-inflammatory function of metformin
has also been investigated in detail in mouse models of autoimmune
arthritis, systemic lupus erythematosus and colitis, all of which
portrayed a role of metformin as an anti-inflammatory coordinator
and provided the rationale for possible islet protective properties
(54–57). Currently, the REMOVAL study and some other smaller
trials have proven the clinical advantage of metformin against
diverse cardiovascular surrogate endpoints, while the long-term
effect of metformin on islet autoimmunity still needs to be further
investigated (58–61). As a master regulator of cell metabolism,
mTOR has been shown to enhance helper T cell differentiation,
especially Th1 and Th17, by modulating glucose metabolism
through glucose transporter 1 (Glut1) (62). Therefore, targeting
upstream or downstream of mTOR signaling is a potential
therapeutic strategy. As a classic mTOR inhibitor, rapamycin
decreases the proliferation of Th1 and Th17 cells (63).
Furthermore, rapamycin was documented to facilitate Treg
expansion and enhance their capability to suppress conventional
T cells in a T1D mouse model (34, 64–66). Likewise, augmenting
catabolic pathways in CD8+ T cells with metformin or rapamycin
decreased the differentiation and proliferation of effector T cells
instead of enhancing memory T cell expansion (67). In a phase 2,
single-center, randomized, double-blind, placebo-controlled study,
rapamycin was shown to decrease insulin requirement in patients
with long-term T1D (68). Interestingly, w-3 polyunsaturated fatty
acids (w-3 PUFAs) have been shown to inhibit CD4+ T cell
differentiation via suppressing mTOR complex 1 (mTORC1). The
pancreatic enrichment of w-3 PUFAs could inhibit or avoid T1D
progression in streptozotocin (STZ)-induced mice (69, 70).

Upon initial activation of lymphocytes, Glut1, one of the typical
glucose transporters, is upregulated by the PI3K-Akt-mTOR
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signaling pathway to enhance glucose influx as well as
concomitant with the increased production of key glycolytic
enzymes (71, 72). The upregulation of Glut1 is critical for T cell
activation, as deletion of Glut1 greatly suppresses proliferation and
function of effector T cells (73, 74). Pharmacological blockade of
Glut1 might be an efficient way to inhibit autoreactive T cells. The
glycolysis inhibitor 2-deoxy-D-glucose (2-DG) is a glucose analog
that selectively targets effector T cells with upregulated glycolytic
activity (16, 24, 75, 76). NOD mice treated with 2-DG displayed a
reduced frequency of activated T cells, decreased immune
infiltration within pancreatic islets and increased b-cell granularity
(24, 77, 78). Additionally, 2-DG facilitates the differentiation of
naïve T cells into Tregs but represses their polarization to Th17 cells
(36). Likewise, studies have demonstrated that the combination of
2-DG andmetformin reduces CD4+/CD8+ effector T cell responses
while inducing Tregs, probably by increasing FAO (79). However,
in the light of translation from preclinical trials to clinical
application for T1D patients, one of the most relevant side effects
of 2-DG is central nervous system toxicity, which demands a
prompt solution (80–82). In addition, various natural or synthetic
molecules that function as Glut1 inhibitors have emerged in recent
years, such as sodium meta-arsenite, STF-31, WZB117 and
BAY876, which give us more therapeutic options (73, 83–89).

PFK15, a competitive inhibitor of the rate-limiting glycolysis
enzyme, has been found to suppress glycolysis utilization of CD4+
T cells and decrease the response of CD4+ T cells to b-cell antigens.
Additionally, treatment of PFK15 in NOD mouse models delayed
T1Donset due tometabolic and functional exhaustion of T cells (47).
In addition, peroxisome proliferator-activated receptors (PPARs) are
transcription factors that control genes involved in glucose and lipid
metabolism and FAO (90–92). PPARs are expressed in multiple
immune cells including T cells, and modulation of FAO through
PPARs provides the possibility to promote immunological
intervention therapy (93, 94). Activation of PPARb/d inhibits Th1
and Th17 cell differentiation due to the transition from glycolysis to
FAO and suppresses the proliferative burst of T cells upon activation
(95, 96). Researchers have shown that the PPARa activator
fenofibrate and the PPARg activators troglitazone and rosiglitazone
have the capability todecrease the incidenceofT1D(95, 97, 98).With
the treatment of troglitazone, STZ-induced T1D mice exhibited
reduced hyperglycemia and insulitis (99, 100).

Another potential approach to improving T1D is to regulate
ROS production. T1D is known to be highly actuated by oxidative
stress, as CD4+ T cells require high levels of ROS for optimal
activation (26, 101). Utilizing manganese metalloporphyrin (MnP),
a ROS scavenger and potent antioxidant, delayed T1D progression
through modulating aerobic glycolysis and the mTOR/AMPK axis
(102–104). Given the critical role of ROS in autoimmune diseases,
researchers have applied superoxide dismutase (SOD)mimetics in a
T1D mouse model to promote the longevity and stability of
antioxidants to delay b-cell damage (25, 105). T1D was
significantly delayed or prevented in NOD mice treated with SOD
mimic, partly owing to the decrease in proliferation of CD4+/CD8+
T cells as well as reduced production of pro-inflammatory factors
(26, 53, 106, 107). Additionally, lymphocyte activation gene 3
(LAG-3) is an inhibitory receptor expressed on the CD4+ T cell
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surface, whose deficiency would result in their homeostatic
expansion. Studies have reported that the expression of LAG-3 in
naïve CD4+ T cells contributes to the restriction of mitochondrial
biogenesis and cellular metabolism to keep T cells quiescent. Loss of
LAG-3 in NOD mice leads to accelerated T1D progression,
potentially by enhancing OXPHOS and glycolytic metabolism
and promoting mitochondrial biogenesis of CD4+ T cells (102,
108, 109).

BacillusCalmette-Guérin (BCG)hasbeenreportedasaconducive
environmental qualifier of the immune system that could reduce the
incidence of autoimmune diseases such as T1D (110). Recent studies
indicate that BCG vaccination in patients with long-term T1D
showed promising antidiabetic effects, including death of
autoimmune T cells as well as expansion of beneficial Tregs (111–
113). In an 8-year human study with T1D, BCG vaccination was
demonstrated to promote the transition from OXPHOS to aerobic
glycolysis of immune cells, improving Treg generation and function,
and conferring an immunotolerance effect (114–116).High-mobility
group box 1 (HMGB1), an evolutionarily conserved chromosomal
protein, was demonstrated to impair the stability and function of
Tregs by enhancing PI3K-AKT-mTOR signaling. NOD mice with
HMGB1 blockage could protect islet isografts from autoimmune
attacks and delay or even reverse T1D development (117).
THERAPEUTIC APPLICATIONS OF
IMMUNOMETABOLISM IN
COMBINATION THERAPY

The complex etiology of T1D is the consequence of failures in
controlling autoimmunity as well as perturbations of b cells (118).
In addition to controlling autoimmune responses, ideal therapies
would also aim to preserve b-cell function and promote b-cell
regeneration (119, 120). To date, several immunometabolism-
related interventions combined with other therapy regimens have
been proven to be successful in NODmouse models (63, 121–124).
For example, the combination treatment regimenof rapamycinanda
CD28 antagonist was reported to inhibit T cell activation and
migration into pancreatic islets, hence suppressing the progression
of T1D (122). Treatment of NOD mice with rapamycin and IL-2
limits T cell expansion and effectively protects islet b-cells from
autoimmune attacks (125). Furthermore, combination therapy with
rapamycin, islet autoantigen peptides, and IL-2/IL-2 monoclonal
antibody complexes increases Treg numbers and protects against
autoimmune diabetes in NOD mice (121). However, a phase 1
clinical trial of a rapamycin/IL-2 combination in 10 T1D patients
led to transient dysfunction of b cells despite an enrichment of Treg
cells (63). Laboratory evidence has demonstrated that IL-21 signaling
plays a critical role in promoting lymphocyte infiltration into the
Frontiers in Endocrinology | www.frontiersin.org 4
pancreas and rewiring T cell metabolism to form long-livedmemory
CD8+Tcells,whichare thepredominantlypresentedTcell subsets in
the pancreatic islets of T1D mouse model (126–128). Matthias von
Herrath et al. evaluated the combination of immunotherapy (IL-21)
and b-cell-directed treatment (liraglutide) in a randomized, double-
blind and phase 2 trial in 308 adults with new-onset T1D (129). After
fifty-four weeks of treatment and follow-up, C-peptide secretion was
prominently improved in the combination therapy group compared
with the placebo, but the effect disappeared after therapy cessation in
the follow-up period. In conclusion, the effectiveness of combination
therapies in animal models and the first large clinical trial provides a
promising approach for the development of novel combination
therapies (130).
CONCLUSION

Our understanding of immunometabolism has considerably
advanced over the past few years. Multiple studies have
demonstrated that key metabolic enzymes and regulators are
involved in different processes of T cell responses by alternating
the metabolic pathways and networks to match their specific
functional requirements (18, 131, 132). Modulating T cell
metabolism has the capability of selectively enhancing or
inhibiting particular T cell subsets with distinct functions (133).
Of note, although gene knockout mice have presented valuable
information, an inescapable limitation is that there are differences
between mouse and human immune systems as well as metabolic
programs. Moreover, cellular metabolism in vivo is distinct from
that in vitro, while a large number of studies have assessed the
metabolism of immune cells during their differentiation,
proliferation, and responses in vitro. Collectively, targeting T cell
metabolism could be a promising strategy for the next wave of
immunotherapies treating human diseases, including T1D.
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