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Obesity is a global health challenge that warrants effective treatments to avoid its multiple
comorbidities. Bariatric surgery, a cornerstone treatment to control bodyweight excess and
relieve the health-related burdens of obesity, can promote accelerated bone loss and affect
skeletal strength, particularly after malabsorptive and mixed surgical procedures, and
probably after restrictive surgeries. The increase in bone resorption markers occurs early
and persist for up to 12 months or longer after bariatric surgery, while bone formation
markers increase but to a lesser extent, suggesting a potential uncoupling process between
resorption and formation. The skeletal response to bariatric surgery, as investigated by dual-
energy X-ray absorptiometry (DXA), has shown significant loss in bone mineral density
(BMD) at the hip with less consistent results for the lumbar spine. Supporting DXA studies,
analyses by high-resolution peripheral quantitative computed tomography (HR-pQCT)
showed lower cortical density and thickness, higher cortical porosity, and lower
trabecular density and number for up to 5 years after bariatric surgery. These alterations
translate into an increased risk of fall injury, which contributes to increase the fracture risk in
patients who have been subjected to bariatric surgery procedures. As bone deterioration
continues for years following bariatric surgery, the fracture risk does not seem to be
dependent on acute weight loss but, rather, is a chronic condition with an increasing impact
over time. Among the post-bariatric surgery mechanisms that have been claimed to act
globally on bone health, there is evidence that micro- and macro-nutrient malabsorptive
factors, mechanical unloading and changes in molecules partaking in the crosstalk between
adipose tissue, bone andmuscle may play a determining role. Given these circumstances, it
is conceivable that bone health should be adequately investigated in candidates to bariatric
surgery through bone-specific work-up and dedicated postsurgical follow-up. Specific
protocols of nutrients supplementation, motor activity, structured rehabilitative programs
and, when needed, targeted therapeutic strategies should be deemed as an integral part of
post-bariatric surgery clinical support.
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INTRODUCTION

Obesity is a disease (1) and a global health challenge, now
included among the global noncommunicable disease targets
identified by the World Health Organization (2). Bariatric
surgery constitutes a remarkable tool against obesity and its
comorbidities (3). The current epidemic proportions reached by
obesity make it a cornerstone treatment to contrast obesity if
resistant to standard weight-loss approaches, especially when
significant weight loss results are mandatory to control obesity-
related impaired health conditions. A number of recent clinical
practice guidelines exist on bariatric surgery in adults with
obesity (4–6) and the evolution of surgical trends in the past
10 years shows similarities and disparities in the number and
types of surgical and endoluminal interventions (7). As for
trends of standard bariatric surgery, sleeve gastrectomy (SG)
shows a continuous upward trend, while Roux-en-Y gastric
bypass (RYGB) and laparoscopic adjustable gastric band
(AGB) have trended downward (5). In parallel, an increasing
number of gastroenterologists are performing bariatric
endoscopic procedures that include placement of intragastric
balloons, plications and suturing of the stomach, and insertion
of a duodenal-jejunal bypass liner, among other emerging
procedures (8).

To ensure long-term postoperative success, patients must be
prepared to adopt comprehensive lifestyle changes, yet a number
of endogenous and exogenous factors are known to influence
bariatric surgery outcomes, as summarized in Table 1 (5, 9–25). It
is known that postsurgical weight loss is associated with extended
health benefits in terms of arterial hypertension, diabetes mellitus,
cardiopulmonary problems, dyslipidemia, susceptibility to
neoplasms, osteoarticular disabilities, gastroesophageal reflux
disease, psychosocial wellbeing, quality of life, as well as
decreased odds of cardiovascular fatalities, strokes and all-cause-
mortality (26–29). Nevertheless, there is growing interest on the
potential impact of bariatric surgery on bone health, as changes
have accumulated to suggest the postsurgical development of
accelerated bone loss and skeletal fragility (30). After gastric
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bypass, an increase in bone resorption markers occurs as early
as 10 days postoperatively (31), then marker levels peak by 6 to 12
months (31, 32) and remain elevated thereafter (33). Biochemical
markers of bone formation increase but to a lesser extent,
suggesting a potential “uncoupling” of resorption from
formation (34–37). Several post-bariatric surgery mechanisms
have been claimed to occur and act globally on bone health,
including mechanical unloading due to bodyweight loss,
adipocyte-derived and gastro-enteric hormone changes, and
malabsorptive factors (30, 34, 37, 38). Concerns exist on the key
role of bariatric surgery on micronutrient intake, diminished
calcium and vitamin D absorption leading to secondary
hyperparathyroidism, and restricted energy delivery (30, 37).
Secondary hyperparathyroidism, which often occurs before
bariatric surgery due to the highly prevalent vitamin D
deficiency in obesity, progressively increases its prevalence
following bariatric surgery, going from 21% at baseline to 35.4%
at 1 year and 63.3% at 5 years after surgery (39). The mechanism
resides in calcium malabsorption which, in association with
vitamin D deficiency, promotes secondary hyperparathyroidism
leading to bone resorption. There are even claims that, in the very
long term, post-bariatric surgery hypocalcemia may overstimulate
parathyroid gland and lead to the anectodical development of a
parathyroid adenoma (40). Further, intestinal adaptation
mechanisms, local effect of the Wnt/b-catenin signaling
pathway, changes in carrier proteins, and the effect of
adipokines are other calcium-related mechanisms potentially
involved in bone loss after bariatric surgery (40, 41).

While the skeletal response to the effects of bariatric surgery
has been collectively confirmed in systematic reviews and meta-
analyses, discrepancies still exist in terms of affected bone regions
and timing of dynamic bone changes (30, 42, 43). As such, dual-
energy X-ray absorptiometry (DXA) studies have shown
significant BMD loss at the hip with less consistent results for
the lumbar spine (44, 45). Despite weight stabilization and
maintenance of metabolic parameters, bone loss and
deterioration in bone strength continued years following
bariatric surgery, supporting the hypothesis that fracture risk
TABLE 1 | Baseline and peri-operative factors associated with higher and more durable total weight loss after bariatric surgery.

Factors Outcomes

Age Younger patients tend to experience greater results than elderlies
Gender Higher absolute weight loss occurs in men, greater BMI loss in women
Presurgical bodyweight Higher preoperative BMI (particularly super-obesity) is associated with less weight loss
Surgical approach Effectiveness on total weight loss varies as follows: BPD > RYGB > SG > AGB
Motivations and expectations Physiological, emotional, cognitive, and interpersonal/environmental factors can strengthen bariatric surgery

outcomes
Eating behaviors Disordered eating is associated with poorer weight loss and greater weight regain in the long term
Adherence to dietary guidelines Presurgery nutritional evaluation, dietary adherence and postsurgery nutritional follow-up are associated with

successful postsurgical weight loss.
Gastroenteric environment Gut hormones, bile acids and gut microbiota predict responses to successful weight loss
Sarcopenia No interaction is suggested between obesity sarcopenia and postsurgical skeletal muscle loss as compared to

nonsarcopenic persons
Muscle mass maintenance and propensity to
physical exercise

Physical activity after bariatric surgery is associated with enhanced weight loss outcomes
AGB, laparoscopic adjustable gastric banding; BMI, body mass index; BPD, bilio-pancreatic diversion; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy.
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does not appear to be dependent on weight loss, and rather it
increases with observation time (46). Moreover, an increased risk
of fall injury has been reported after bariatric surgery, which
contributes to increase the fracture risk in patients undergoing
bariatric surgery procedures (47, 48). Supporting DXA studies,
analyses by high-resolution peripheral quantitative computed
tomography (HR-pQCT) also showed lower cortical density and
thickness, higher cortical porosity, and lower trabecular density
and number for up to 5 years after gastric bypass (49). Given
these circumstances, it is conceivable that bone health should be
accounted for before deciding on the type of bariatric surgery.
Little is known about the role of lifestyle intervention,
rehabilitation and pharmacological treatments to prevent or
treat post-bariatric surgery bone loss and fracture outcome.

The aim of the present review is to update the current data
regarding the mechanisms and determinants of bone damage
after bariatric surgery and the strategies of prevention
and treatment.
CROSSTALK BETWEEN OBESITY AND
BONE HEALTH

The crosstalk between adipose tissue and bone is regulated by a
large number of interacting factors (Figure 1). A common
stromal cell origin of osteoblasts and adipocytes has been
proposed as a possible link between adipose tissue and bone
(50). Despite being acknowledged as beneficial to bone mineral
density (BMD) due to the mechanical loading effect of weight
excess (51), obesity is consistently emerging as a potential
detrimental factor for bone health, particularly appendicular
bones. Studies highlighted the impact of fat overload on bone
strength (52–54) and cortical rearrangement through insulin
resistance (55). Osteoporosis is associated with obesity in one out
of three women (56), and nearly one out of four postmenopausal
women with fractures can present with obesity, particularly in
the case of ankle and femur fractures (57). Further, femoral neck
BMD is reduced and risk of non-vertebral fragility fractures
increased in obese postmenopausal women compared to lean
Frontiers in Endocrinology | www.frontiersin.org 3
counterparts (58). Collectively, potential mechanisms claimed to
explain the interaction between obesity, menopause and bone
metabolism (59) include: 1) visceral fat accumulation (60) and
sarcopenia (61) compromise the mechanical loading effect (62);
2) lower vitamin D levels and secondary hyperparathyroidism
can favor osteoporosis (63); 3) obesity affects endocrine
somatotroph, adrenal and thyroid signals active on the bone
(64–66); 4) increased risk of type 2 diabetes mellitus (T2DM) can
impair femoral neck strength (67, 68).

It is noteworthy that several molecules can serve as signaling
triggers between adipose and bone tissue. These include several
products and determinants, i.e. adipocytokines released by the
adipose tissue (AT) and its macrophage-rich stromal fraction,
osteoblast- and osteoclast-derived proteins, as well as several
vitamins (69–75). Leptin and other adipokines secreted by the
adipose tissue can modulate bone cells through major inhibition
of bone remodeling, whereas molecules activating the
peroxisome proliferator-activated receptor-g can drive
mesenchymal stem cell differentiation from osteoblastic
towards adipocyte lineage (76). Obesity-associated leptin
resistance has been linked to decreased bone mass, as seen in
case of hypoleptinemia due to extreme leanness (77). Leptin
actions involve inhibition of osteoblastic bone formation through
its binding to a specific receptor located in the hypothalamus (69,
70). A study conducted by Ducy et al. showed that leptin receptor
expression is associated with noradrenalin release and activation
of b2 adrenergic receptor in osteoblasts, thus reducing their
activity (70). In mice, leptin also inhibits endocrine function of
osteoblasts by sympathetic enhancement of the Esp gene
expression, thereby decreasing osteocalcin bioactivity and
leading to hyperinsulinemia and glucose intolerance (78).

Importantly, insulin partakes in the feedback loop between
pancreas and osteoblasts (79), enhances bone remodeling and
promotes the decarboxylation of osteocalcin. Osteoblast-
derived osteocalcin circulates both as carboxylated (cOC) and
undercarboxylated (ucOC) isoforms (69). ucOC possesses
extra-skeletal effects, as it stimulates insulin expression and
secretion, b-cells proliferation and adiponectin expression in
adipocytes, thus resulting in improved glucose tolerance (69,
FIGURE 1 | Similarities and homologies between adipose tissue and bone.
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80). In 1998, Rosato et al. (81) reported that osteocalcin levels
were lower in patients with T2DM than healthy subjects, while
others observed lower serum osteocalcin levels in patients with
poor metabolic control as compared to those with adequate
metabolic control and to healthy subjects (82). In rodents and
humans, ucOC has also been found to reduce fat mass
accumulation through an increase in adiponectin production
(83–88). In osteocalcin-deficient homozygous mice (Ocn -/-),
Lee et al. (71) documented higher blood glucose and lower
insulin levels than in wild-type or heterozygous mice. More,
Ocn -/- mice showed an increase in fat mass, adipocyte number
and serum triglyceride levels than wild-type mates. In children
and adolescents with obesity, serum osteocalcin is reported to
be inversely associated with markers of metabolic health and
meta-inflammation, i.e. HOMA-IR, HbA1c, triglycerides, C-
reactive protein, and fibrinogen, as well as with measures of
adiposity, i.e. body mass index (BMI), body fat and waist
circumference (87).

Recent studies emphasized a potential role for the osteocyte-
secreted product of the SOST gene, sclerostin, in the relationship
linking adiposity, T2DM and bone (89, 90). Biologically,
sclerostin antagonizes the Wnt/b catenin signaling pathway,
which regulates positively osteoprogenitor cell and osteoblast
activity (91–93), and plays a role in adipocyte differentiation and
metabolic homeostasis (94). Sclerostin predicts bone loss in
relation to age, gender and menopause (95), prolonged
immobilization (96), and postmenopausal hip fracture risk
(97). Even if no difference appears to exist between obese and
controls (98), serum sclerostin was found to be negatively
associated with insulin sensitivity in obese but not lean
subjects, suggesting a potential role for the Wnt/b-catenin
pathway in regulating insulin sensitivity in obesity (99).
Moreover, sclerostin is increased in states of unloading and
possibly mediates changes in bone metabolism associated with
weight loss and exercise (100). A negative association relates
sclerostin to skeletal muscle mass after adjusting for multiple
confounders (101). Finally, in pre- and postmenopausal women
with obesity sclerostin positively predicted lumbar spine BMD.
Although this relationship seems to conflict with the intrinsic
osteopenic effects of sclerostin, this finding suggests a potential
role of this hormone in the protective effects elicited by obesity
on lumbar spine at menopause (102). Further studies are
required to clarify this issue.

Another relevant link between bone, adipose tissue and
glucose metabolism is vitamin D. It has been demonstrated
that 25-hydroxyvitamin D (25(OH)D) concentrations are
positively associated with adiponectin (103) and negatively
associated with indices of insulin resistance (103, 104), BMI,
and leptin (105). Debatedly, the adipose tissue (AT) is capable of
storing vitamin D and, in case of AT excess, it is deemed as
responsible of leading to a reduction in its circulating levels (106,
107). Moreover, there is suggestion that vitamin D deficiency
promotes greater adiposity by elevating PTH release, which has
been shown to increase intracellular calcium accumulation in
adipocytes, thereby enhancing lipogenesis (108). After
Frontiers in Endocrinology | www.frontiersin.org 4
cholecalciferol administration, a change in multimeric
adiponectin is also seen (109). Adiponectin is regulated by
osteocalcin and has insulin-sensitizing effects (110), with a
well-known negative correlation with parameters of the
metabolic syndrome (111–114).

In summary, the crosstalk between bone metabolism and
adipose tissue involves multiple factors, which could exert
different regulatory mechanisms that affect the skeletal health.
However, these mechanisms still need to be clarified.
BONE TURNOVER MARKERS AFTER
BARIATRIC SURGERY

Bariatric surgery is characterized by rapid and dramatic changes
in body composition and nutritional factors that are paralleled by
changes in bone turnover markers (37, 115). Bone turnover can be
inspected and monitored through circulating markers that include
serum C-terminal cross-linked telopeptide of type I collagen
(CTX), procollagen type I N-terminal propeptide (PINP), bone-
specific alkaline phosphatase (BALP), and osteocalcin.

These factors dramatically increase from the first 3-10 days,
peak after 6-24 months, and remain elevated until 7 years
following bariatric surgery (116–118). Both SG and RYGB
promote increases in bone turnover markers, with the latter
eliciting the strongest effects and leading to an increase in CTX
by 50%-300% (37, 49, 119). Comparative analyses between
RYBP and SG showed a significantly higher increase in CTX,
P1NP, TRAcP5b with the former, and a greater increase in total
OC and uOC with the latter, suggesting a predominating bone
resorption over bone formation markers during RYGB (36). A
randomized triple-blind trial showed an approximately
100% higher increase in P1NP and CTX-1 levels after RYGB
than SG at 1-year post surgery (45). Likewise, studies after
biliopancreatic diversion (BPD) showed that CTX increased
significantly at 3 days (+ 66%), 3 months (+ 219%), and 12
months (+ 295%), while OC decreased at 3 days (- 19%) then
increased at 3 months (+ 69%) and 12 months (+ 164%),
suggesting an earlier and greater increase in bone resorption
over bone formation markers with BPD (120). Although both
CTX and P1NP start to decline after 12-24 months since
surgery, they do not tend to return to presurgical levels (116,
121). Oppositely, BALP is a less varying bone turnover marker
(10-25%) which predominantly changes during the first year
after surgery and more after RYGB than SG (49, 118, 119).
Figure 2 summarizes visually the changes occurring over time
in bone turnover markers after bariatric surgery. Interestingly,
the magnitude of variation in bone turnover markers is
reportedly similar between diabetic and non-diabetic cohorts
undergoing bariatric surgery, yet patients T2DM patients carry
per se a higher risk of osteoporosis (122, 123). Because
alterations in CTX and P1NP levels have also been reported
in adolescents after RYGB (124) and SG (125), uncertainties
remain on the final effect of bariatric surgery on bone mass peak
and subsequent adult risk of osteoporosis.
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BONE MINERAL DENSITY AFTER
BARIATRIC SURGERY

A negative impact of bariatric surgery on bone mineral density
(BMD) has been described since the 1980s. Hey et al. described
the case of a 38-year old woman who underwent a jejunoileal
bypass for severe obesity. Despite vitamin D supplementation,
five years after the surgical procedure, the patient develop a
fragility fracture of the distal forearm, which healed only after
intestinal reanastomosis. The authors hypothesized that the
surgery-related malabsorption could lead to alterations in bone
metabolism with an increased fracture risk (126). Several studies
and meta-analyses on the relationship between bariatric surgery
and bone loss have clearly demonstrated that significant declines
in BMD occur already within the first year after bariatric surgery
(127). Following any type of bariatric surgery, the BMD at the
femoral neck has been found significantly lower as compared to
controls, with a mean difference (MD) of -0.05 g/cm2 (95% CI
-0.07 to -0.02) (43). Oppositely, no difference in BMD was found
at column between the two groups.

Growing evidence suggested that the negative effect of
bariatric surgery on BMD is strictly dependent on the type of
the surgical procedure. A systematic review and meta-analysis by
Rodriguez-Carmona et al. demonstrated a significant decrease of
-0.03 g/cm2 (95% CI -0.06 to 0.00) in total BMD in patients
undergoing mixed restrictive-malabsorptive surgical procedures,
but not in those undergoing restrictive surgery (128). In
particular, BMD was reduced by -0.07 g/cm2 (95% CI -0.11 to
-0.03) at the lumbar spine, -0.12 g/cm2 (95% CI -0.15 to -0.10) at
the hip and -0.03 g/cm2 (95% CI -0.04 to -0.02) at the forearm.

BMD changes following bariatric procedures differ depending
on skeletal sites and time passed since the operation. At the hip,
bone loss following RYGB reaches -3 to -5% after 6 months
(129–132) and -6 to -11% after 9-12 months (34, 35, 46, 133–
135). Similar results were reported for bone loss at the femoral
Frontiers in Endocrinology | www.frontiersin.org 5
neck, with a decrease in BMD of -1 to -5% after 6 months and -2
to -9% after 9-12 months, mostly in patients undergoing
malabsorptive procedures (34, 35, 38, 49, 130–138). A decline
in BMD at the hip and femoral neck has also been observed after
restrictive procedures, equivalent to -2 to -8% after 6-24 months
(130, 131). At the lumbar spine, some authors did not observe
significant variations in BMD at 6-12 month after RYGB (34,
129, 135), whereas others showed a significant reduction in BMD
equivalent to -2 to -6% at 6 months and -3 to -7% at 9-12 months
(33, 133, 134, 138). Nogues et al. observed a mild difference in
BMD loss at the lumbar spine between SG and RYGB (-4.6% vs
-6.3%, respectively) (139), while others reported a significant
reduction of BMD at this level only after restrictive procedures
(130, 140). Further, Maghrabi and co-workers conducted a
randomized controlled trial on patients with T2DM to evaluate
BMD after 2 years since RYGB and SG, as compared to intensive
medical treatment (141). At the hip, BMD loss was significantly
higher in patients undergoing SG (-9.2%) and RYGB (-9.5%)
than intensive medical therapy group (-0.3%), whereas at lumbar
spine a significant decrease in BMD was only observed in the SG
group (-2.3%), without changes in RYGB (0.4%) and intensive
medical therapy groups (0.8%). A subsequent randomized
controlled trial in patients with obesity and T2DM
demonstrated that subjects undergoing RYGB had a higher
decrease in BMD at the femoral neck (mean between-group
difference -2.8%, 95% CI -4.7 to -0.8), total hip (mean between-
group difference -3.0%, 95% CI -5.0 to -0.9) and lumbar spine
(mean between-group difference -4.2%, 95% CI -6.4 to -2.1) than
patients undergoing SG (45).

Overall, the decrease in BMD mainly occurs in the first years
after bariatric surgery during the period of rapid weight loss, but
it continues even after reaching a stable weight, suggesting that
the impact of bariatric surgery on BMD is not completely
explained by weight loss (142). Losses appear to be heavier
after malabsorptive surgery. Several mechanisms have been
FIGURE 2 | Visual graph of changes over time of bone turnover markers levels after bariatric surgery procedures (RYGB and SG). Data extracted from the
references (116, 118,120).
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hypothesized to explain the negative effects of bariatric surgery
on bone metabolism, including mechanical unloading,
malabsorption of macro and micronutrients, alterations in gut-
derived hormones and microbiota, and changes in body
composition (30, 37), which have been extensively described in
the following paragraphs.
BONE MICRO-ARCHITECTURE AFTER
BARIATRIC SURGERY

As seen in many observational studies and clinical trials
investigating bone loss associated with bariatric surgery,
attention is primarily focused on areal BMD (aBMD) evaluated
by using dual-energy X-rays absorptiometry (DXA). However, in
the setting of a marked weight loss, DXA results could be
influenced by changes in the composition of the bone
surrounding tissues (37, 143). In addition, DXA is unable to
assess bone microarchitecture, as it cannot discriminate
trabecular from cortical bone compartments (37). With the
aim of overcoming such limitations, more recent studies have
focused on HR-pQCT to evaluate post-bariatric volumetric BMD
(vBMD) and bone microarchitecture (38, 46, 119, 135, 144–146).
A pioneer study by Stein and co-workers (38) assessed HR-
pQCT at the distal radius and tibia in 22 women who underwent
RYGB (n=14) and restrictive procedures (n=8). Compared to
baseline, after 12 months from surgery trabecular parameters
remained stable in both sites, while cortical bone deterioration
was observed as exemplified by reductions at the tibia in cortical
density (-1.7%), cortical thickness (-2.1%) and cortical area
(-2.7%). These changes in cortical compartment were noticed
to be more pronounced after RYGB and were independently
predicted by the increase in PTH levels, thus suggesting a
preferential endocortical bone resorption (38).

In a prospective cohort study on 30 obese adults and 20 non-
surgical controls, Yu et al. evaluated the rate of bone loss and
microarchitectural alterations occurring in 24 months after
RYGB (144). Their results showed that total vBMD
progressively decreased after surgery both at the radius and
tibia, with a 9% decrease of bone strength as compared to the
control group. At the radius, the decrease in bone strength was
associated with a greater reduction in trabecular vBMD together
with an increase in trabecular heterogeneity, while similar
reductions in cortical and trabecular vBMD were seen at the
tibia. In addition, the authors observed that the impairment in
bone microarchitecture, density and strength observed after the
first 12 months was maintained or even worsened after 24
months following surgery, despite a bodyweight plateau
reached after 6 months. This temporal connection highlights
the potential complex origin of bone loss associated with
bariatric surgery.

Subsequent studies (46, 119, 135, 145), underscored an
increased porosity in the bone cortical compartment
associated, in some instances, with a significant decrease in
cortical and trabecular vBMD both at the radius and tibia (46,
49, 119, 135, 145) (Figure 3). The effects of bariatric surgery on
Frontiers in Endocrinology | www.frontiersin.org 6
bone microarchitecture and vBMD are early and occur within
the first months, with a progressive deterioration over the
following years (46, 119, 135, 145). It has been also
hypothesized that the changes in the cortical compartment of
weight bearing and non-weight bearing sites could be modulated
by estrogen concentrations in the bone microenvironment
(46, 135).

A recent comparative study on vBMD and bone
microarchitecture 10 years after RYGB and adjustable gastric
banding (AGB) in comparison to age, sex and BMI-matched
non-surgical controls (146) documented that total vBMD at the
tibia and radius were 17% and 19% lower than in controls,
respectively. Alterations were prominent in trabecular
microarchitecture and consisted of lower trabecular number
and thinner trabeculae. Moreover, in RYGB group, trabecular
bone was less axially aligned at both radius and tibia with a
decrease in plate bone volume fraction and density as compared
to matched controls. No significant differences were found in
terms of bone morphology and microarchitecture between the
AGB group and controls (146).

In summary, all the evidences confirmed that the decrease in
vBMD after bariatric surgery is strongly related to a significant
deterioration in bone microarchitecture and strength, thus
predisposing to greater bone fragility.
FRACTURE RISK AFTER BARIATRIC
SURGERY

Despite the large body of evidence suggesting that obesity is
associated with an increase in BMD, both relating to higher
estrogens levels in the adipose tissue and due to the mechanical
effect of weight increment (115), this increase in BMD does not
reflect a functional improvement of bone microarchitecture, and
several studies have demonstrated a higher risk of fracture in obese
patients (147). This “obesity paradox” (148) has been attributed to
mechanisms involving an increase in bone fragility caused by
adiposity and higher risk of falls (115, 149–153) (Figure 4).

Opposed to what would be expected, weight loss is not
associated with a decrease in bone fractures risk. In fact, some
authors have demonstrated that weight loss, both unintentional
and intentional, leads to a decrease in BMD at the proximal
humerus and the hip (154–156), with a consequent increase of
fracture risk in these sites (157–159). Ensrud and co-workers
demonstrated that women achieving intentional and non-
intentional weight loss had 1.8 times the risk of subsequent hip
fracture (95% CI 1.43–2.24) than those with stable or increasing
weight (154). Moreover, a decline of 35% in hip BMD for every 5
kg lost has been observed. The consequences of bariatric surgery
are strictly connected with the effect of weight loss, and many
studies suggested its potential negative effects on bone
metabolism (160). A summary of the results of observational
studies and interventional trials is reported in Table 2 (48, 141,
161–169).

One of the first studies designed to evaluate the increased
fracture risk in patients undergoing bariatric surgery was
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published in 2014 by Nakamura and co-workers (162). The
authors observed that the relative risk (RR) for any fracture
was increased by 2.3-fold as compared to non-surgical controls
and that the standardized incidence ratios (SIRs) for a first
Frontiers in Endocrinology | www.frontiersin.org 7
fracture in osteoporotic sites, including the spine, hip, wrist, or
humerus, was nearly doubled (SIR, 1.9; 95% CI, 1.1-2.9). Many
subsequent retrospective and interventional studies confirmed
the strong association between bariatric surgery and bone
FIGURE 3 | Prospective 5-year observational study of cortical porosity at the distal radius and tibia after RYGB in 21 adults with severe obesity. Declines in cortical
and trabecular microarchitecture led to decreases in estimated failure load of -20% and -13% at the radius and tibia (46).
FIGURE 4 | Summary of the two hypothesized mechanisms to explain the susceptibility of obese patients to bone fractures. The negative effects of adiposity on
bone fragility are reported in the upper box: obesity is associated with alterations in adipokines and cytokines levels, deregulation of peptides and hormones related
to bone metabolism, and dyslipidaemia (112, 146). All these factors contribute to alter bone resorption and formation, by acting directly on osteoclast and osteoblast
or indirectly through different molecular pathways. The factors that influence the risk of falling in obesity are reported in the lower box: the mechanistic links between
falls and obesity include chronic health conditions, medication use and sedentary behaviour, which lead to a reduction in muscle strength and agility (147). Moreover,
biomechanical alterations including poor muscle quality, impaired postural control and osteoarthritis, may reduce postural stability and muscle performances, thus
inducing walking deficit and functional disability (148–150).
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TABLE 2 | Summary of the observational and interventional studies on the fracture risk after bariatric surgery.

References Study design Participants Type of
surgery

Follow-up (years) Mean (SD)
or Median (IQR)

Fracture risk for bariatric surgeryrisk ratio
(95% CI)

Lalmohamed A
2012 (158)

Retrospective cohort study Bariatric
surgery: 2079
Control group:
10442

AGB: 1249
RYGB: 613
Other: 217

Bariatric surgery: 2.2 (2.1)
Control group: 2.3 (2.2)

Adjusted RR (bariatric vs control group):
- any fracture: 0.89 (0.60-1.33)
- fragility fracture: 0.67 (0.34-1.32)
- non-fragility fracture: 0.90 (0.56-1.45)

Nakamura KM
2014 (159)

Retrospective cohort study Bariatric
surgery: 258
No control
group

RYGB: 243
VBG: 13
BPD: 1
PBD: 1

Bariatric surgery: 8.9 (4.8)
Control group:/

SIR (bariatric vs control group):
- any fracture: 2.3 (1.8-2.8)
- osteoportic sites: 2.0 (1.3-3.0)
- non-osteoporotic sites: 2.4 (1.8-3.0)

Douglas IJ 2015
(160)

Retrospective cohort study Bariatric
surgery: 3882
Control group:
3882

GB: 1829
RYGB: 1421
SG: 613
GS: 6
SP: 5
DS: <5
VBG: <5

Bariatric surgery: 3.4 (2.3)
Control group: 3.4 (2.4)

HR for any fracture (bariatric vs control group):
1.28 (0.81-2.02)

Lu CW 2015
(161)

Observational cohort study Bariatric
surgery: 2064
Control group:
5027

Malabsorptive:
289
Restrictive:
1775

Bariatric surgery: 4.8 (2.3)
Control group: 4.9 (2.1)

Adjusted HR for any fracture (bariatric vs
control group):
- all procedures: 1.21 (1.01-1.44)
- malabsorptive procedures: 1.47 (1.01-2.15)
- restrictive procedures: 1.17 (0.97-1.41)

Maghrabi AH
2015 (138)

Randomized control trial Bariatric
surgery: 37
Control group:
17

SG: 19
RYGB: 18

12 and 24 months RR for peripheral fractures (bariatric vs control
group): 2.12 (0.44-10.16)

Rousseau C
2016 (45)

Case-control study Bariatric
surgery: 12676
Control group:
- Obese:
38028
- Non-obese:
126760

AGB: 3887
SG: 2554
BPD: 1986
RYGB: 873

4.4 (range <1-13) Adjusted RR for any fracture:
- Bariatric vs non-obese group: 1.44 (1.29-
1.59)
- Bariatric vs obese group: 1.38 (1.23-1.55)

Fashandi AZ
2018 (162)

Retrospective cohort study Bariatric
surgery: 3439
Control group:
3380

RYGB: 2729
AGB: 385
SG: 268
Other: 57

From 3 to 22 years OR for any fracture (bariatric vs control group):
- all procedures: 2.36 (1.72-2.23)
- RYGB (vs SG): 2.17 (1.04-4.52)

Javanainen M
2018 (163)

Retrospective cohort study Bariatric
surgery: 395
Control group:
199

RYGB: 253
SG: 142

12 and 24 months HR for any fracture (bariatric vs control group):
5.49 (1.76-17.15)

Yu EW 2019
(164)

Retrospective cohort study Bariatric
surgery: 42345

RYGB: 29624
AGB: 12721

RYGB: 3.3 (2.2)
AGB: 3.9 (2.1)

Adjusted HR for non-vertebral fractures (RYGB
vs AGB): 1.73 (1.45-2.08)

Ahlin S 2020
(165)

Nonrandomized controlled
intervention study

Bariatric
surgery: 2007
Control group:
2040

VBG: 1365
GB: 376
RYGB: 266

From 6 months to 20 years Adjusted HR for any fracture:
- VBG vs controls: 1.20 (1.00-1.43)
- GB vs controls: 1.30 (0.97-1.74)
- RYGB vs controls: 2.58 (2.02-3.31)
Adjusted HR for osteoporotic fractures:
- VBG vs controls: 1.15 (0.87-1.51)
- GB vs controls: 1.85 (1.27-2.70)
- RYGB vs controls: 3.60 (2.56-5.05)

Khalid SI 2020
(166)

Retrospective cohort study Bariatric
surgery: 32742
Control group:
16371

RYGB: 16371
SG: 16371

3 years OR for any fractures:
- RYGB vs controls: 0.95 (0.84-1.07)
- SG vs controls: 0.53 (0.46-0.62)
- RYGB vs SG: 1.79 (1.55-2.06)

Paccou J 2020
(167)

Retrospective cohort study Bariatric
surgery: 40992
Control group:
40992

SG: 18635
RYGB: 14532
AGB: 5178
VBG: 2647

Bariatric surgery: 6.19 years
Control group: 5.26 years

Adjusted HR for major osteoporotic fractures:
- Bariatric surgery vs controls: 1.22 (1.08-
1.39)
- SG vs controls: 0.95 (0.79-1.14)
- RYGB vs controls: 1.70 (1.46-1.98)
- AGB vs controls: 0.95 (0.72-1.25)
- VBG vs controls: 0.95 (0.68-1.31)

Alsaed OS 2021
(168)

Case-controlled study Bariatric
surgery: 403

SG: 334
RYGB: 69

8.6 years (mean) OR for any fracture: 2.71 (1.69-4.36)

(Continued)
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fractures risk, also in long-term follow-up (47, 48, 164–166, 168,
170, 171). A recent meta-analysis of 10 observational studies was
conducted to compare the fracture risk between 116,205 subjects
who underwent bariatric surgery and 134,637 non-surgical
patients (121). The results showed that the risk of any fractures
was significantly increase by 20% in the group of bariatric
surgery than the control counterpart. Despite the low rating on
the risk of bias assessment scales, the analysis on three
interventional trials shows a trend toward an increase in the
fracture risk in patients who underwent bariatric surgery (RR
1.16, CI 95% 1.00-1.33).

Alternatively, Lalmohamed at al. failed to observe a
significant increase in the fracture risk in patients undergoing
bariatric surgery as compared to control group (adjusted relative
risk 0.89, 95% CI 0.60-1.33). However, the authors found a trend
towards an increased fracture risk after 3 to 5 years following
surgery and in patients with a greater weight loss (161). A lack of
association between bariatric surgery and an increased fracture
risk was also observed in three subsequent retrospective cohort
studies (163, 169, 172). The results of a randomized controlled
trial aiming at investigating the 2-year outcomes of bariatric
surgery vs intensive medical therapy, have reported a lower total
and hip BMD in bariatric surgery but the number of bone
fractures did not differ between groups (141). It is important to
note that these studies predominantly included patients who
underwent restrictive surgery with few cases of malabsorptive
procedures (161, 163). Some suggested that the degree of damage
to bone microarchitecture varies according to the type of surgery
(48, 162). Paccou and co-workers, in a population-based cohort
study including 81,948 patients (40,992 in the bariatric surgery
group, and 40,992 matched controls), observed a 70% increased
risk of fragility fractures only for RYGB within 10-year after
surgery (170), while no association between the risk of fragility
fractures and SG, AGB and vertical banded gastroplasty (VBG)
was seen. An average 1.4-fold higher fracture risk was also
observed in a Bayesian network metanalysis, with differences
emerging across the various surgical procedures (173), as
subjects receiving mixed restrictive/malabsorptive procedures
Frontiers in Endocrinology | www.frontiersin.org 9
tended to suffer from an increased risk of fracture as compared
with those undergoing restrictive procedures (RR 1.54, 95% CI
0.96-2.46). A meta-analysis by Chaves et al. confirmed that
malabsorptive procedures elicited a high fracture risk as
compared to controls (RR 1.53, CI 95% 1.13-2.07), and RYGB
group had a higher risk as compared to SG group (RR 1.77, CI
95% 1.48-2.12) (118). It has been suggested that the higher
fracture risk related to malabsorptive or combined procedures
could be attributable to neurohormonal changes and
malabsorption (37).
POTENTIAL MECHANISMS ASSOCIATED
WITH BONE LOSS AFTER BARIATRIC
SURGERY

A number of mechanisms have been hypothetically linked to
postsurgical bone loss, which may involve nutrient absorption
deficits, mechanical unloading, alterations in bone marrow
adipose tissue (BMAT), as well as changes in adipokines and
gut-derived hormones (Table 3) (30, 92, 174–195).

In 1985, Parfitt et al. described bone histomorphometric
changes in patients undergoing intestinal bypass and collected
evidence from literature of 2.5-25% rate of osteomalacia after
shunt operations, commenting that osteomalacia after intestinal
bypass surgery has similar clinical, biochemical and histologic
features as in other causes of net intestinal malabsorption (196).
Bariatric surgery impairs the ability of the digestive tract to
secrete hydrochloric acid required for digestion and absorption
of nutrients which are required for bone formation and healthy
bone remodeling, such as trace elements, essential minerals,
water-soluble and fat-soluble vitamins. Many of these disorders
are inadequately replaced after surgery, especially if extended
gastric bypass surgery, duodenal switch or biliopancreatic
diversion are involved (197). Among these, calcium is absorbed
passively as well as actively in the small intestine, and a study
using a dual stable calcium isotope method (198) demonstrated a
significant reduction in calcium absorption following RYGB
TABLE 2 | Continued

References Study design Participants Type of
surgery

Follow-up (years) Mean (SD)
or Median (IQR)

Fracture risk for bariatric surgeryrisk ratio
(95% CI)

Control group:
806

Chin WL 2021
(169)

Retrospective cohort study Bariatric
surgery: 1322
Non-surgical
group: 1322
General
population:
4359

Not specified 87.55 months (median) Adjusted HR for any fracture:
- Bariatric surgery vs non-surgical group: 0.77
(0.54-1.11)
- Bariatric surgery vs general population: 2.21
(1.57-3.11)
Adjusted HR for non-traffic accident-related
fractures:
- Bariatric surgery vs non-surgical group: 0.54
(0.34-0.87)
- Bariatric surgery vs general population: 1.69
(1.08-2.66)
AGB, adjustable gastric banding; RYGB, roux-en-Y gastric bypass; VBG, vertical-banded gastroplasty; BPD, biliopancreatic diversion; PBD, pancreatobiliary diversion; SIR, standardized
incidence ratios; GB, gastric band; SG, sleeve gastrectomy; GS, gastric stapling; SP, stomach partition; HR, hazard ratio; OR, odds ratio; SG, sleeve gastrectomy.
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TABLE 3 | Summary of the mechanisms hypothesized to explain the negative effects of bariatric surgery on bone metabolism.

Factors Mechanisms Changes
after

bariatric
surgery

Expected effect
on bone

Mechanical
loading

The skeletal adaptation to mechanical strain and loading is fundamental to preserve bone mass and
microarchitecture.
Weight loss reduces mechanical loading on bone structure, thus favoring bone loss (171).

↑ Mechanical
unloading

Upregulation of
bone turnover/
BMD loss

Nutritional factors
Vitamin D/
calcium

A high prevalence of hypovitaminosis D have been documented in obese patients (172). Vitamin D deficiency is
worsened by bariatric surgery and calcium absorption is impaired, particularly after malabsorptive procedures (30).

↓ Vitamin D
levels
↓ Calcium
levels
↑ PTH

Upregulation of
bone turnover/
BMD loss

Amino-acids The early post-surgery phase after malabsorptive procedures is characterized by protein depletion (173). ↓ Muscle
mass
↑ amino-
acids levels

BMD loss

Neuroendocrine and gut-derived hormones
Peptide YY
(PYY)

PYY is produced and secreted by the enteroendocrine L-cells of the colon and ileum to counteract caloric intake
(174). Serum concentrations of this hormone increase are directly associated with a higher bone turnover (175).

↑ PYY levels
(in contrast
with
conventional
weight loss)

BMD loss

Glucose-
dependent
insulinotropic
polypeptide
(GIP)

The incretin hormone GIP is produces and secreted from duodenum and jejunum (176). Animal studies have shown
that GIP increase in bone formation. To date, studies with the aim of investigating the post-surgical changes of this
hormone in correlation with BMD variations are lacking (30).

↓ GIP levels BMD loss

Glucagon-like
peptide type
1 (GLP-1)

The incretin hormone GLP-1 is produced and secreted by the enteroendocrine L-cells located in the distal ileum and
colon. Only few studies correlate the post-bariatric increase in GLP-1 levels with bone metabolism. A recent
interventional study has suggested that GLP-1 variations after bariatric surgery do not significantly affect bone
metabolism (177).

↑ GLP-1
levels
(in contrast
with
conventional
weight loss)

No significant role
in bone turnover
and BMD loss

Ghrelin Ghrelin is a 28-amino acid peptide mainly released from the oxyntic cells of the stomach mucosa in response to
fasting. While in vitro ghrelin promotes osteoblast differentiation and inhibits osteoclastogenesis, in (178), in humans
there is no association between BMD and ghrelin levels (179).

↓ Ghrelin
levels
(in contrast
with
conventional
weight loss)

No significant role
in bone turnover
and BMD loss

Amylin Amylin is a pancreatic hormone with pleiotropic effects in different organs. It stimulates osteoblasts activity and inhibits
bone reabsorption (180).

↓ Amylin
secretion

Upregulation of
bone turnover/
BMD loss

Insulin Insulin is secreted by pancreatic beta cells and represents a potential regulator of bone metabolism, considering that
insulin receptors are expressed on osteoblasts (181). While in vitro studies have shown that insulin promotes
osteoblast proliferation and differentiation (182), insulin signaling in human osteoblasts stimulates bone reabsorption
by reducing osteoprotegerin levels (183). However, associative studies have shown that insulin levels are directly
associated with bone density (181).

↓ Insulin
levels

Upregulation of
bone turnover/
BMD loss

Adipokines and other hormones
Adiponectin Adiponectin is secreted by adipose tissue and is negatively associated with fat mass. Observational studies have

reported that adiponectin levels are negatively correlated to BMD (184, 185).
↑
Adiponectin

BMD loss

Leptin Leptin is secreted by adipose tissue and its circulating levels are positively associated with fat mass. This peptide
regulates energy expenditure and plays a pivotal role in bone metabolism, by increasing bone formation and reducing
bone resorption (181).

↓ Leptin
levels

Upregulation of
bone turnover

Visfatin Visfatin is a multifaced adipokine whose serum levels are increased in obese subjects and associated with insulin
resistance (186). Observational studies did not find any association between visfatin concentrations and BMD (187,
188).

↓, ↑ or ↔
Visfatin levels

Unclear role

Sclerostin Sclerostin is the osteocyte-product of the SOST gene and represents a major inhibitor of the osteogenic Wnt
signaling pathway (89).

↑ Sclerostin
levels

BMD loss

Estrogen Obesity is characterized by hyperestrogenism and weight loss induces a significant reduction in total and free
estradiol. Estrogens exert a fundamental role in promoting osteoblastic activity and in regulating bone turnover (189).

↓ Estrogen
levels

Upregulation of
bone turnover/
BMD loss

Body
composition

Bariatric surgery is characterized by a decrease of both fat mass and muscle mass (190, 191). The relationship
between the loss of muscle mass and the impairment of bone health is widley known.

↓ Muscle
mass

Alterations in
bone

(Continued)
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despite adequate vitamin D and calcium intake. With concern to
vitamin D, even solely restrictive procedures like SG can lead to
postoperative vitamin D deficiency in as much as 39% of patients
despite daily multivitamin supplementation (199), while
malabsorptive surgeries pose a higher risk for nutrient
deficiencies (200). In a retrospective study, a 73% incidence of
vitamin D deficiency was observed following BPD (201).

Weight loss following bariatric surgery instigates a condition
of mechanical unloading, that causes a net loss of bone mass by
reducing osteoblast function and bone formation. The
mechanism likely involves the aforementioned sclerostin and
its negative regulation of Wnt/b-catenin signaling pathway,
which is important for osteoblast differentiation and function
(202). Maintenance of bone strength and density is indeed
dependent on adequate muscle mass and function, which
reflects intake of high-quality protein (203). Bariatric patients
ingest less than 60–120 g of protein recommended daily (197,
204). The combination of postsurgical malnutrition, negative
skeletal muscle protein balance, and rapid weight loss initiates a
net loss of fat-free mass especially during the first postoperative
year, which can last up to 36 months or even up to 9 years post-
surgery, and is correlated with loss of handgrip strength (205).
Post-operative decrease in fat-free mass and fat mass does not
differ between RYGBP and LSG (206). While the biomechanical
interaction between nutrition, muscle and bone after bariatric
surgery is of key relevance, also important is the biochemical
communication existing between muscle and bone which
involves secreted factors that act bidirectionally with autocrine/
paracrine effects locally as well as through the endocrine system
(207). Together, these mechanisms and cross-talks potentially
represent the theoretical basis to explain the bone-directed
benefit of protein supplementation and mechanical loading
through exercise after bariatric surgery. In addition to the
previous, a role for bone marrow adipose tissue (BMAT) has
also suggested in this scenario. Identified over 100 years ago,
BMAT represents up to 70% of bone marrow volume in humans
and is a metabolically active, insulin-sensitive and molecularly
distinct fat depot that may play a role in whole body energy
metabolism (208). Several factors are known to impact bone
marrow fat such as obesity, T2DM, estrogen deficiency, caloric
restriction, aging, chronic kidney disease, radiotherapy and
glucocorticoids. In obese individuals, BMAT fraction is
negatively associated with aBMD and the change described for
BMAT fraction following RYGB is positively associated with
Frontiers in Endocrinology | www.frontiersin.org 11
changes in BMI and total body fat (209). RYGB decreases both
BMAT and vBMD, yet their changes are unrelated (210).

Finally, a role for adipokines and gut hormones through their
central and peripheral receptors has been described (211–216),
with evidence indeed coming mainly from animal and in vitro
studies (Figure 5).

In humans, bariatric surgery modulates a change in gut
hormones, the magnitude of which is dependent of the surgical
technique and has a predictive value on postsurgical weight loss
and metabolic improvements by mechanisms other than
restriction and malabsorption (24). In rodents, GLP-1
administration elicited an anabolic effect on bone, while GLP-2
was associated with reduction in bone resorption markers (217,
218). In vitro, it was further observed that ghrelin administration
suppressed osteoclastogenesis and stimulated proliferation and
differentiation of osteoblasts (219), while a study in bariatric
surgery patients reported an association between ghrelin
reduction and BMD loss after RYGB and SG (220). Also, PYY
has been positively associated with bone resorption (221),
whereas a positive correlation linking PYY to CTX and P1NP
levels was observed in patients following RYGB and AGB. In a
12-month study on patients subjected to RYGB, SG or greater
curvature plication, postsurgical bone mineral content at the
lumbar spine was inversely correlated both with fasting ghrelin
and GLP-1, while BMD was positively correlated with post-
surgical fasting glucagon and insulin at the femoral neck and
inversely with GLP-1 at the lumbar spine.
SUPPLEMENTATION AND
ANTIRESORPTIVE TREATMENTS

Supplementation Treatment
In the last two decades, increasing evidence has showed that
post-bariatric surgery patients need a specific protocol of
supplementation in order to prevent bone loss and the risk of
osteoporosis in the following years.

Calcium balance and vitamin D levels are considered as the
main components for maintaining bone mass after bariatric
surgery. Nevertheless, a high proportion of subjects do not reach
an adequate intake, especially after the surgery. It is estimated that,
4 years following a malabsorptive bariatric procedure, calcium
deficiency develops in 25–48% of patients, and vitamin D
deficiency in 50–63% of cases. For this reason, before
TABLE 3 | Continued

Factors Mechanisms Changes
after

bariatric
surgery

Expected effect
on bone

microarchitecture/
BMD loss

Bone marrow
adiposity
(BMA)

Contrary to what expected, BMA is increased in weight loss and is related to a lower BMD and vertebral fractures
(192).

↑ BMA BMD loss
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administration of antiresorptive agents, normal vitamin D and
calcium levels should be guaranteed even by means of aggressive
supplementation, especially when hypocalcaemia and
hyperparathyroidism are present (127, 222). In general, GB is
associated with higher prevalence of hyperparathyroidism and
hypocalcaemia compared to SG and therefore the recommended
doses are typically higher. On the other hand, patients subjected to
BPD/duodenal switch (DS) show the highest needs in terms of
supplementation (222, 223).

As far as the recommended doses are concerned, guidelines
established a minimal daily intake of 1,200-1,500 mg/day for SG
and RYGB, and 1,800-2,400 mg/day for BPD with or without DS
of elemental calcium in the diet or as supplement (5, 222). Calcium
citrate is generally recommended over calcium carbonate and
should be given in divided doses to enhance absorption.

For vitamin D, a recent meta-analysis reported that at least
800 UI/die can be sufficient to maintain a level of vitamin D
sufficiency (224). Due to the high heterogeneity of patients,
therapies should start from 1000 UI/die and go up to 2,000-
6,000 IU daily, depending on the malabsorption level. A target
vitamin D level of 30 ng/ml is desirable. In the case of severe
vitamin D malabsorption, an initial oral dose of vitamin D
equivalent to 50,000 IU should be administered 1 to 3 times
weekly (5, 204, 222). In case of secondary hyperparathyroidism,
the Endocrine Society Clinical Practice Guidelines suggested that
a weekly 100,000 IU of parenteral ergocalciferol could be useful,
until the target Vitamin D level ≥ 30 ng/ml is achieved, resorting
to calcitriol if bone loss or elevated PTH persisted (5).

Magnesium, has also shown to be slightly increased in blood
after gastric bypass, even if it requires HCl from secreting parietal
cells to be solubilized and its absorption is compromised due to
the reduction of fatty acids which are bound with. However, the
supplementation of at least 100 mg/day of magnesium is highly
recommended since its increase in blood, like calcium, could be
associated to a higher bone resorption (225–227).
Frontiers in Endocrinology | www.frontiersin.org 12
Antiresorptive Treatments
In spite of the negative bone effects of bariatric surgery, the
optimal medical management for these patients has not been
elucidated yet (5). In fact, use of antiresorptive therapy (i.e.,
bisphosphonates and denosumab) is potentially burdened by a
high risk of adverse events in this particular population (228).

The major risks for oral bisphosphonates are reflux and
anastomotic ulceration (229). On the other hand, the
administration of intravenous bisphosphonate and denosumab
may be complicated by severe hypocalcemia and tetany in
patients without adequate calcium or vitamin D levels.

According to clinical practice guidelines of American
Association of Clinical Endocrinologists, the Obesity Society,
and the American Society for Metabolic and Bariatric Surgery for
the peri-operative nutritional, metabolic and nonsurgical
support of bariatric surgery (224), bisphosphonates may be a
considered in bariatric surgery patients affected by osteoporosis
after appropriate assessment and treatment for calcium and
vitamin D insufficiency. Moreover, if oral malabsorption is
suspected or potential anastomotic ulceration risk is evaluated,
intravenously bisphosphonates should be preferred.
Recommended dosages of orally and intravenous administered
bisphosphonates in bariatric surgery patients with osteoporosis
are summarized in Table 4. In spite of this, no clinical trial data
regarding the use of bisphosphonates in post-bariatric patients
are available to date.

The risk related to malabsorption is the failure in reaching the
optimal blood level and the to obtain the therapeutic effect. If
malabsorption is suspected, a safe choice should be risedronate,
as a pharmacokinetic study in non-bariatric surgery patients
demonstrated that it was absorbed along the small bowel
independently of the site of administration (stomach,
duodenum or terminal ileum), and the range of absorption is
not affected by the rate of administration (aqueous solution or iv
infusion) (230). A trial on risedronate in sleeve gastrectomy
FIGURE 5 | Putative mechanisms linking post-bariatric surgery weight loss to changes in bone cells.
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patients is ongoing (NCT03411902), and study design only has
been published (231).

Considering the risk of gastric ulceration, studies in non-
bariatric patients demonstrated that bisphosphonates differ in
their potential effect in damaging the gastroesophageal mucosa.
In fact, in postmenopausal women received 5 mg risedronate or
10 mg alendronate daily for 2 weeks, risedronate was associated
with fewer endoscopically detected gastric ulcers than
alendronate (232), probably related to the structural differences
in the nitrogen-containing group.

Thus, intravenously bisphosphonates have been proposed for
bone management in postoperative bariatric patients. The safety
considerations for zoledronate 5 mg once a year and ibandronate
3 mg every three months includes the onset of flu-like syndrome
(low-grade fever, muscle and joint pain) and renal adverse
events, particularly in high-risk patients (i.e., dehydration,
concomitant nephrotoxic medications, myeloma kidney) (233).
Recently, a pilot study explored the safety and efficacy of
zoledronic acid in preoperative post-menopausal women who
were planning RYGB: a single dose of zoledronate appeared to
transiently (2 weeks) reduce bone turnover markers, but at 24
weeks after surgery an increase in CTX versus baseline was
observed, although the rise was less than that observed in the
controls, even without differences in total hip BMD (234).
Moreover, a trial to determine the efficacy of zoledronic acid in
preventing bone loss associated with sleeve gastrectomy is
ongoing (NCT04279392).

A major concern in the administration of intravenously
bisphosphonates is the occurrence of hypocalcemia, in
particular after gastric bypass; thus, adequate vitamin D level
should be ensured because a bypassed small bowel may not be
able to absorb calcium enough to compensate the effects of
bisphosphonate binding to bone matrix (235).

In this framework, data on denosumab are evenmore scanty. A
randomized placebo-controlled trial to establish the role of
denosumab to prevent bone loss after RYGB or sleeve
gastrectomy is ongoing (NCT04087096). The same observations
of iv bisphosphonates regarding the risk of hypocalcemia should
be considered for denosumab treatment (236).
PHYSICAL EXERCISE AND
REHABILITATION

As previously mentioned, bariatric surgery induces a decline in
muscle mass, which is responsible for the 10-28% of total body
Frontiers in Endocrinology | www.frontiersin.org 13
weight loss (237, 238). A prospective cohort study on 184
patients who underwent SG showed that the prevalence of
sarcopenia increases from 8% up to 32% within one year after
surgical procedure (239). Muscle waist and sarcopenia were
found to be independently associated with several adverse
outcomes, including functional decline, a higher rate of falls as
well as a higher risk of hospitalization and mortality (OR 3.596,
95% CI 2.96-4.37) (240). Therefore, during follow-up of patients
after bariatric surgery, the assessment of BMD, muscle mass and
strength, physical activity and fitness should be considered (241).
With the aim at improving these parameters, individual
interventions of physical activity and rehabilitation have been
proven to be effective in preserving muscle mass and endurance
capacity, in reducing the risk of bone fractures and in improving
quality of life (242–245).

In this context, several studies have demonstrated that
physical activity during weight loss is able to prevent the
reduction of BMD (100, 246, 247). In 2016, Muschitz et al.
conducted an interventional study in 220 patients after RYGB
and SG procedures with the aim of assessing the differences in
serum markers of bone turnover and BMD between an
intervention group (supplementation of vitamin D, calcium,
protein, and physical exercise) and a non-intervention group
after 2 years from surgical procedure (248). The physical activity
intervention consisted of an aerobic and strength exercise
program including Nordic walking for 45 minutes for at least 3
times a week and strength training for 30 minutes for at least 2
times a week, for two years. The results showed that the
supplementation combined with physical exercise exert a
positive effect on long-term outcome in bone protection after
bariatric surgery, by modulating serum levels of sclerostin, CTX,
DKK-1 and PTH, and counteracting the loss of the spine, hip and
total body BMD. One year later, Campanha-Versiani and co-
workers evaluated the role of physical exercise after RYGB in
influencing BMD and bone turnover markers in a group of
patients undergoing a regular and supervised exercise program
compared to a control group (249). In this study, physical
exercise combined weight-bearing and aerobic exercises two
times a week for 36 weeks. One year following RYGB, the
intervention group showed a lower decrease in total BMD and
at the lumbar spine and hip than the control group, without
significant differences in terms of serum concentrations of bone
remodeling markers.

Recently, Diniz-Sousa et al. conducted a systematic review
and meta-analysis to extensively evaluate the effect of physical
exercise and training on BMD at clinically relevant skeletal sites
TABLE 4 | Recommended dosages of orally and intravenously bisphosphonates in bariatric surgery patients affected by osteoporosis.

Type of bisphosphonates Route of administration Dose Frequency

Alendronate os 70 mg week
Risedronate os 35 mg week

os 150 mg month
Ibandronate os 150 mg month

iv 3 mg 3 months
Zoledronate iv 5 mg year
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during the first year after bariatric surgery (250). Meta-analysis
showed that the decrease in BMD after bariatric surgery can be
attenuated from 0.7 to 3.7 percentage points with an exercise
training intervention. In particular, exercise training induced a
positive effect on BMD at femoral neck [standardized mean
difference (SMD)=0.63 (95% CI 0.19-1.06)], total hip [SMD=0.37
(95% CI 0.02-0.71)], lumbar spine [SMD=0.41 (95% CI 0.19-
0.62)], and 1/3 radius [SMD=0.58 (95% CI 0.19, 0.97)] as
compared to standard medical interventions.

Overall, the evidences suggest that physical exercise
after bariatric surgery is fundamental, as it prevents bone loss
and muscle depletion during the drastic weight reduction
period (142, 205, 251). Exercise programs that include high-
impact loading, resistance and strength training as well as
aerobic exercises seem to be effective in counteracting the
negative effects of bariatric surgery on BMD and bone
microarchitecture (142, 252, 253).

Being bariatric surgery patients exposed to multiple systemic
risks and particularly for cardiovascular diseases and
musculoskeletal impairment, a tailored rehabilitation program
through a multidisciplinary approach is key to optimize post-
bariatric surgery management (254). The multidisciplinary
approach integrates different clinical specialties including
endocrinology, clinical nutrition, psychiatry, rehabilitation
medicine, as well as health professionals such as nursing,
physiotherapy and occupational therapy (255). A post-bariatric
surgery rehabilitation project should comprise a number of goals:
1) preventing surgical-related complications, 2) enhancing
physical function through adapted physical activity, 3)
addressing bariatric-related disabilities as well as socio-
environmental and psychological barriers, 4) promoting
education on nutritional management, and 5) providing
primary or secondary prevention for cardiovascular diseases
(254). The rehabilitation program should thus combine
musculoskeletal reconditioning, functional mobility, balance
training, muscle strengthening, aerobic exercises or physical
endurance, activity of daily living (ADL) training, nutritional
and psychological support, weight management, and monitoring
of clinical aspects (254).
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CONCLUSIONS

Bone changes after bariatric surgery may have effects that go well
beyond the acute phase of weight loss. Bariatric surgery,
especially malabsorptive procedures, increases bone turnover,
decreases bone mass, and enhances the fracture risk. These
consequences advocate the need to adequately study, monitor
and support skeletal health and micronutrient supply in bariatric
surgery patients to avoid short- and long-term damage in bone
density. There is collective evidence that bone density estimation
by DXA can be improved by HR-pQCT to better classify patients
at risk of osteoporosis. To compensate for nutritional and
mechanical deficits after surgery, replenishment with calcium
citrate and high-dose vitamin D plus scheduled exercise
programs are mandatory. Noticeably, absorption problems and
potential ulceration of anastomosis should be considered before
prescribing oral bisphosphonates. In patients who fail to
achieve BMD improvements post-surgically, intravenous
bisphosphonates and/or denosumab should be considered,
with calcium and vitamin D being critical to avoid
hypocalcemia. Yet, RCTs are needed to determine whether
anti-osteoporotic therapy is effective and safe for preventing
high-turnover bone loss and treating osteoporosis in this
population. Finally, it is of utmost importance to consider
bone health before deciding the type of bariatric surgery a
patient with obesity should be subjected to.
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