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Congenital hyperinsulinism (CHI), although a rare disease, is an important

cause of severe hypoglycemia in early infancy and childhood, causing

preventable morbidity and mortality. Prompt diagnosis and appropriate

treatment is necessary to prevent hypoglycaemia mediated brain damage. At

present, the medical treatment of CHI is limited to diazoxide as first line and

synthetic somatostatin receptor ligands (SRLs) as second line options;

therefore understanding somatostatin biology and treatment perspectives is

important. Under healthy conditions, somatostatin secreted from pancreatic

islet d-cells reduces insulin release through somatostatin receptor induced

cAMP-mediated downregulation and paracrine inhibition of b- cells. Several

SRLs with extended duration of action are now commercially available and are

being used off-label in CHI patients. Efficacy remains variable with the present

generation of SRLs, with treatment effect often being compromised by loss of

initial response and adverse effects such as bowel ischaemia and hepatobiliary

dysfunction. In this review we have addressed the biology of the somatostatin

system contexualised to CHI. We have discussed the clinical use, limitations,

and complications of somatostatin agonists and new and emerging therapies

for CHI.
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Somatostatin perspectives in
congenital hyperinsulinism

Congenital hyperinsulinism is a rare disease with a significant

genetic component causing unregulated overproduction of insulin

through defects in the insulin-releasing pathway. The coupling of

insulin secretion to glucose concentration is not tightly regulated,

leading to episodes of severe and recurrent hypoglycemia. Several

causative mutations in multiple genes have been described to date.

The most severe forms are caused by recessive mutations inABCC8

and KCNJ11 coding for the subunits SUR1 and Kir6.2 of the ATP-

sensitive K+ (K-ATP) channel on the pancreatic b-cell membrane.

Homozygous and compound heterozygous mutations, as well as

dominantly inherited mutations in ABCC8/KCNJ11 cause diffuse

CHI,which isoftenunresponsive tofirst linediazoxide treatmentand

therefore suitable for therapywith second line somatostatin receptor

ligands (SRLs). In contrast, a subgroup of patients with paternally

inherited recessive mutations in ABCC8/KCNJ11 may have focal

disease, potentially curable by surgical excision of a solitary lesion.

Excess insulin in CHI precludes the development of ketones.

Therefore, in CHI there is the absence of both glucose and

ketones as primary and alternative fuel sources for brain cells,

leading to brain damage. In the short term, intravenous high

concentration dextrose and in some patients, continuous

administration of feeds with a high carbohydrate content are

used to prevent hypoglycemia. Excess carbohydrate

administration has the propensity to cause obesity and

interfere with the normal development of oral feeding. In

many such patients, diazoxide is ineffective, resulting in the
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need for a trial of SRL to reduce excess insulin secretion, before

resorting to irreversible sub-total pancreatectomy with

consequent development of insulin dependent diabetes and

exocrine pancreatic insufficiency.
Biology of the somatostatin system

Somatostatin is a peptide hormone first isolated from the

ovine hypothalamus and noted to be a somatotroph release-

inhibiting factor (SRIF) (1, 2). Outside the central nervous

system, somatostatin is also produced in d-cells of the pancreas,
in close proximity toa- and b-cells (3, 4), setting up opportunities
for fine paracrine regulation of both insulin and glucagon

secretion (5, 6), Figure 1. In the gut, somatostatin inhibits in

particular the secretion of gastrin, secretin, and VIP, delaying

gastric emptying. While the tetradecapeptide somatostatin-14 is

the prominent isoform in the hypothalamus, in the gut the larger

molecule somatostatin-28 is more prevalent. Somatostatin

exhibits pleiotropic actions thoughout the body, many of which

involve the inhibition of secretion of several hormones, hence its

name ‘endocrine cyanide’ (7).

Somatostatin has a wide range of therapeutic possibilities in

different tissues; to capitalize on the diversity of its actions, many

stabilized analogs and agonists have been synthesized over the

years, extending the half life of somatostatin for sustained

treatment effects (8). Octreotide is a first generation SRL, with

a greater potency than native somatostatin for the specific

somatostatin subtype 2 receptor and has a half-life of 90-120
FIGURE 1

The somatostatin induced inhibitory paracrine regulation of the islet system comprising of a, b and d-cells, with d-cells inhibiting sustained
insulin secretion and so preventing hyperinsulinism in the normal state.
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minutes. While short-acting octreotide continues to be used in

therapeutic practice in CHI, longer acting depot formulations

have been developed, and are approved for the treatment of

pituitary and neuroendocrine tumours (5, 9), but increasingly

used in the treatment of CHI.

The wide array of effects of somatostatin is mediated by five

somatostatin receptor (SST) subtypes (SST1-5), each encoded by

a different gene (10). All somatostatin receptors are members of

the class-A subgroup of the G-protein coupled receptor (GPCR)

superfamily and activate Gi/o resulting in inhibition of adenylate

cyclase and a decrease in cAMP levels. In response to agonists,

SST2 is known to be phosphorylated by G protein receptor

kinases (GRKs) and recruits b-arrestins resulting in receptor

desensitization and internalization (11). These events and others

trigger a range of additional downstream signaling and anti-

proliferative effects. However, inhibition of the second

messenger cAMP is the primary pathway responsible for its

anti-secretory effects. SST2 on islet a-cells suppress glucagon

(12), while SST2 and SST5 are primarily responsible for the

suppression of insulin in b-cells (6) (Figure 1). In the b-cell,
cAMP is hypothesized to be an amplifier of insulin secretion

triggered by Ca2+ elevation (13); this process is targeted by SRLs

to reduce insulin release (Figure 2). It is likely that the

somatostatin actions are dependent on the density and

distribution of SST receptor subtypes in different tissues (6) as

well as variable receptor expression in CHI patients (14).
Intra-islet actions of somatostatin

The human pancreas includes 1-3 million pancreatic islets

(15) with a complex interplay between cell types. The secretion

of insulin and glucagon by b-cells and a-cells varies reciprocally
Frontiers in Endocrinology 03
as a response to plasma glucose levels. Somatostatin-secreting d-
cells are the third most common cell type, representing ~5-10%

of islet cells. They possess long neurite-like processes, which can

interact with many a- and b-cells (3, 16) making them suitable

candidates to exert paracrine regulation (Figure 1).

In isolated human islets, somatostatin is released in response to

increasing glucose concentrations (17). The regulation of

somatostatin secretion resembles that of insulin secretion from b-
cells (18, 19). Like b-cells, d-cells possess K-ATP channels that close
with increasing glucose concentrations resulting in membrane

depolarization and somatostatin secretion. These cells similarly

respond to sulfonylureas, such as tolbutamide. Indeed diazoxide,

which keeps theK-ATP channel complex in the open conformation

to prevent depolarization and inhibit insulin secretion in b-cells,
also inhibits somatostatin secretion from d-cells (20). Like other

pancreatic hormones, somatostatin is stored temporarily in

secretory granules within d-cells (21) and are released in response

to perturbations in inhibitory and excitatory influences.

Endogenous somatostatin is regulated by intra-islet

paracrine influences (22) and provides negative feedback to b-
cells soon after glucose stimulated insulin release to prevent

persistent insulin secretion in physiological states (23–26).

The emerging picture of healthy glucose-insulin secretion

coupling is less an isolated b-cell driven action, but more a finely

tuned paracrine counterbalance between all islet cell

components. In CHI, many of the genes that are mutated in

the b-cells of patients are also mutated in both a- and d-cells.
The net effect of the breakdown of this intra-islet homeostasis

results in the dysregulation of insulin secretion, leading to

significant hypoglycemia (26). More work is needed to unravel

how the effects of a-cell and d-cell dysfunction in CHI

pancreatic islets contribute to the overall pathophysiology of

CHI and determine individual phenotypes of disease.
FIGURE 2

The pancreatic b-cell in Congenital Hyperinsulinism showing somatostatin action through G-protein coupled somatostatin receptors on the cell
membrane. Elevation of intracellular ATP level drives K-ATP channel closure, membrane depolarization, and subsequent influx of Ca++ ions.
Increases in intracellular Ca++ and cAMP levels lead to the release of insulin. Somatostatin receptor activation induces the formation of Gi-GTP,
which inhibits adenylate cyclase, preventing the formation of cAMP, thus reducing insulin secretion.
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Somatostatin receptor distribution

A large number of studies have sought to characterize the

expression of SSTs in human pancreatic tissues, but cataloging

the differences between them is beyond the scope of this review

(6, 12, 27, 28). Taken together, somatostatin effects in b-cells are
predominantly mediated by SST2, SST5 and perhaps SST1, while

the impact of SST3 is unclear. SST4 does not appear to have

functional expression in the pancreas. In the a-cell, most

histological, expression and functional data points to the

conclusion that SST2 is the dominant receptor.

Recent work from islets isolated from CHI patients

undergoing pancreatectomy for focal, diffuse, or anomalous

CHI (29) suggested less somatostatin activity than matched

controls (30). Intriguingly, SST2 was expressed in nearly all

CHI patients, while SST5 was expressed less frequently, although

one patient with diffuse CHI did not express either SST2 or SST5

(29). This observation needs to be replicated in other cohorts to

understand the real frequency of SST receptor expression

variation and the potential implication of selective SST

expression for optimal treatment of patients. Further, SST

receptor downregulation mechanisms need to be explored,

with initial work (14) suggesting a role for treatment related

expression variability in non-focal CHI.
Somatostatin receptor ligand use in
congenital hyperinsulinism

Somatostatin treatment was first described in a child with

CHI after 80% pancreatectomy (31), followed by use of a

continuous subcutaneous infusion via a pump in a 6-month

old infant with insulin excess (32). Following initial

demonstration of effect and the synthesis of compounds with

extended activity, SRLs are now available for many patients with

CHI unresponsive to diazoxide. The short acting SRL octreotide

has been used in the treatment of CHI (33, 34) as second line

therapy over the last two decades to prevent hypoglycemia and

subtotal/near-total pancreatectomy. Currently, SRL therapy is

not generally used as first line treatment, except in situations

where diazoxide treatment is contraindicated or in countries

where diazoxide is not readily available.
Short acting SRL treatment

The strategy to use octreotide subcutaneous injections

administered every 4 to 8 hours (35) or as continuous

infusions (36) brought some benefit in early observational

studies, but response to doses up to 40 mcg/kg/day were not

clinically effective to prevent pancreatectomy in the majority of

patients. However, following wider use, reports of improved
Frontiers in Endocrinology 04
outcomes and avoidance of pancreatectomy were noted (37, 38),

establishing octreotide as standard, albeit off-label therapy for CHI.

Octreotide is now commonly used as subcutaneous bolus injections

or by continuous subcutaneous infusions (using insulin pumps) in

doses typically ranging from 5 to 40microgram/kg/day (39).While

the use of higher doses have been reported, treatment effect is rare

beyond 20 micrograms/kg/day in most patients. For patients

requiring frequent injections or higher doses, short-acting

octreotide may be substituted by long acting SRL formulations

such as octreotide long acting release (e.g. Sandostatin™,

Olatuton™) or lanreotide autogel (Somatuline™).
Long acting SRL treatment

Long acting SRLs have been tried in small groups of patients

with reported success (40, 41) in obervational studies. They have

the advantage of reduced frequency of administration and

therefore the potential to improve patient quality of life (42).

However, depot injection can be painful and inefficiently dosed,

even when administered by trained staff (43). A number of

observational studies have reported on different markers of

efficacy (44, 45), but in the absence of a comparative or

control arm, the efficacy of such long acting SRLs cannot be

calibrated to meaningful outcomes such as the achievement of

normoglycaemia and harm-free survival. Further, objective

assessments of short and long acting SRLs have not been

undertaken to appreciate comparative benefits and risks, given

the repurposing focus for clinical use outside standardised

trial protocols.
Side effects of SRL treatment

Both octreotide and lanreotide possess similar SST receptor

pharmacological profi les (primari ly SST2 agonists)

(Supplementary Table 1) and are therefore expected to have a

similar range of both therapeutic and adverse effects. The long

acting depot preparations can persist in tissues for up to a month

or longer. In young children this might lead to cumulative effects

although the extent of accumulation of adverse effects is not

known (45).

The utility of octreotide and other SST2 agonists are often

complicated by loss of effect with increasing dose in the initial

phase of treatment. This downregulation of the SRL dose-

response curve is likely to be a consequence of receptor

desensitization and internalization, although demonstration of

this effect has not been shown in CHI pancreatic tissue.

Octreotide and other SRLs have a number of adverse effects

including the prolongation of gastrointestinal transit time,

abdominal discomfort, and fat malabsorption (46), which

could add to feeding problems or require treatment with

pancreatic enzymes. Biliary sludging and accumulation into
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stones (47) are reported in adults (46) and children (48)

although the need for cholecystectomy has not been described.

SRL therapy has been used for many years to reduce growth

hormone excess, mainly in adults. As SRL treatment also reduces

growth hormone secretion in children, regular auxology follow

up in CHI patients is required. While the incidence of growth

hormone deficiency following octreotide remains low (47), it is

possible and perhaps likely, that this side effect is under-reported

in the absence of long-term auxology datasets in CHI cohorts. As

growth is an essential component of childhood, careful

examination of stature and organ growth needs to be

undertaken with the increasing use of long acting SRLs in

CHI. Octreotide use in pregnant mothers with CHI also

predisposes the fetus to growth restriction, but may represent

the only therapeutic option (49) as alternatives such as diazoxide

cause unacceptable reduction in placental blood flow.

In newborn babies, particularly those preterm, the risk of

necrotizing enterocolitis, possibly arising from reduced

splanchnic vascular flow, is significant and can be life

threatening (50, 51). Such risk persists beyond the neonatal

period, thus necessitating careful review in follow-up of all

patients. Although not life threatening, all forms of short and

long acting SRLs have the propensity to cause hepatitis (45, 52),

an adverse effect that precludes long-term use in the absence of

data demonstrating normal hepatic outcomes in later life. Less

commonly reported adverse effects include pancreatic exocrine

insufficiency (53) and long QT syndrome with potential risk for

cardiac arrythmias (54). Octreotide can also cause drug induced

pancreatitis (55), an effect that needs to be heeded through

stepped down withdrawal of treatment prior to pancreatectomy

in CHI patients. Although not widely reported in CHI,

octreotide can cause hair loss (56), an effect that might seem

trivial but could have significant impact on the psychosocial

well-being of older children.
Emerging somatostatin
receptor ligands

Several SRLs have been utilised in the treatment of CHI,

mainly in those are unresponsive and in those who experience

adverse effects from diazoxide treatment. On the whole there is

treatment benefit (45) although quantification is imprecise and

probably unreliable. Further, loss of initial treatment effect often

seen with octreotide is also likely to be present with long acting

SRLs, causing later recurrence of hypoglycaemia.

It is likely that SRLs in development for other conditions

such as acromegaly [e.g. paltusotine, https://clinicaltrials.gov/

ct2/show/NCT04837040] may also be repurposed for use in CHI

patients. An example of such a SRL is pasireotide, currently

FDA-approved for the treatment of Cushing’s disease in adults.

In clinical trials in Cushing’s disease, treatment with pasireotide
Frontiers in Endocrinology 05
resulted in increases in glucose levels, suggesting collateral

pancreatic effect (57). Pasireotide possesses a greater potency

for stimulated cAMP inhibition of SST5 than octreotide or

lanreotide while also possessing some potency for SST2 and

SST3 (58) (Supplementary Table 1). Pasireotide has been

observed to result in less inhibition of glucagon secretion than

octreotide (57), an effect that may be beneficial in the

counterregulatory response to hypoglycaemia in CHI patients.

Schwetz et al. (59) described the use of pasireotide effectively to

control persistent hypoglycemia in an adult patient with CHI

like features. Mooij et al. (60) reported on the use of both short-

acting pasireotide injections and long-acting pasireotide in an

infant with homozygous ABCC8 mutations; hypoglycaemia

frequency improved but was not sufficient to prevent near-

total pancreatectomy. Similar to the off-label use of other long

acting SRLs, the long term treatment benefit of pasireotide

remains to be clarified.

The use of off-label SRLs has prompted the development of

new agonists targeting specific SST receptors, in particular SST5.

A First in Human study to assess the safety, tolerability, PK, and

PD of HTL0030310 compared to pasireotide has been registered

in 2019 [https://www.clinicaltrials.gov/ct2/show/NCT03847207]

but results are not yet available.

An orally-available selective nonpeptide SST5 agonist,

CRN02481, has been shown to suppress insulin secretion and

increase glucose levels in both oral glucose tolerance tests and a

sulfonylurea model of hyperinsulinism (61, 62). CRN02481

prevented fasting hypoglycaemia and amino acid-stimulated

insulin secretion in a Sur1-/- mouse model of CHI (63).

Moreover, CRN02481 significantly decreased insulin secretion

in human islets isolated from two patients with CHI and one

patient with Beckwith-Weideman Syndrome (BWS) CHI,

providing ex-vivo demonstration of efficacy in targeted

hyperinsulinaemic patients (63).
Conclusions

The biology of SST receptors and ability of SRLs to activate

specific receptor subtypes to reduce excess insulin is important

in the understanding of the pathobiology and treatment

perspectives in CHI. Pharmacological targeting of SST

receptors reduces insulin release directly, bypassing K-ATP

channel defect dysregulation, thereby providing treatment

alternatives to diazoxide-unresponsive CHI patients. Both

short and long acting SRLs have been used as second line

treatments with similar therapeutic and adverse effect profiles.

SRLs with specific b-cell action are currently being developed;

these drugs may have improved efficacy and reduced adverse

effect profiles, providing much needed therapeutic choice before

considering irreversible sub-total pancreatectomy as a last resort

for the treatment of severe and recurrent hypoglycaemia.
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