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The discovery of kisspeptin as a critical central regulatory factor of GnRH release has given
people a novel understanding of the neuroendocrine regulation in human reproduction.
Kisspeptin activates the signaling pathway by binding to its receptor kisspeptin receptor
(KISS1R) to promote GnRH secretion, thereby regulating the hypothalamic-pituitary-
gonadal axis (HPG) axis. Recent studies have shown that kisspeptin neurons located in
arcuate nucleus (ARC) co-express neurokinin B (NKB) and dynorphin (Dyn). Such neurons
are called KNDy neurons. KNDy neurons participate in the positive and negative feedback
of estrogen to GnRH secretion. In addition, kisspeptin is a key factor in the initiation of
puberty, and also regulates the processes of female follicle development, oocyte
maturation, and ovulation through the HPG axis. In male reproduction, kisspeptin also
plays an important role, getting involved in the regulation of Leydig cells, spermatogenesis,
sperm functions and reproductive behaviors. Mutations in the KISS1 gene or disorders of
the kisspeptin/KISS1R system may lead to clinical symptoms such as idiopathic
hypogonadotropic hypogonadism (iHH), central precocious puberty (CPP) and female
infertility. Understanding the influence of kisspeptin on the reproductive axis and related
mechanisms will help the future application of kisspeptin in disease diagnosis and
treatment. In this review, we critically appraise the role of kisspeptin in the HPG axis,
including its signaling pathways, negative and positive feedback mechanisms, and its
control on female and male reproduction.
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1 INTRODUCTION

Reproduction is essential to the survival of all species. The hypothalamic-pituitary-gonadal (HPG)
axis which consists of anterior hypothalamus, pituitary, and the gonads plays an indispensable role
in regulating reproduction in human and other animals (1). Female follicular development, egg
maturation, ovulation and spermatogenesis in male are highly driven by HPG axis (2). As the
promoter of HPG axis, the gonadotropin-releasing hormone (GnRH) neurons connect to their
neuronal network and send projections to the median eminence (ME) after they travel to medial
preoptic area (POA) (3, 4). They are final output cells of the neuronal network that controls
secretion of gonadotropins by the pituitary gland in all mammals (5). However, it is well known that
GnRH neurons lack estrogen receptor a and progesterone receptors, which indicates that the
n.org June 2022 | Volume 13 | Article 9252061
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positive and negative feedback effect of estrogen and
progesterone on the gonadal axis is not directly on GnRH
neurons, but mediated by other neurons (6).

Kisspeptin is a neuropeptide which was first discovered by
Lee et al. in 1996 (7). It was later found that it acts through the G-
protein-coupled receptor, GPR54 (8). Although kisspeptins were
first considered to be related to cancer metastasis, they were later
found be closely related to reproduction, in which they modulate
GnRH secretion, thus exerting a significant role in the regulation
of the HPG axis (9, 10). Later, as the reproductive role for
neurokinin B was discovered, kisspeptin was confirmed to be
associated with positive and negative feedback of estrogen. In
2006, scientists found that proNKB was expressed in most
prodynorphin-ir neurons in the rats arcuate nucleus (ARC),
and almost all proNKB neurons are immunoreactive to
prodynorphin, indicating that there is a close relationship
between Dyn and NKB (11). The location of kisspeptin,
neurokin in B(NKB) and dynorphin (Dyn) in the
hypothalamus are overlapped and frequently colocalized in a
very conserved region across species (11–13). By regulating the
secretion of NKB and Dyn, ARC kisspeptin neurons modulate
kisspeptin expression, thereby mediate the negative feedback of
sex steroids (14). Besides, kisspeptin neurons which located in
rostral periventricular region of the third ventricle (RP3V) (in
rodents) and preoptic area (POA) (in human) regulate estradiol
positive feedback by expressing ERa and cotransmitters such as
tyrosine hydroxylase, GABA and glutamate, with the latter two
have the effect of exciting GnRH neurons (15). These findings
made the understanding of the HPG axis more complete and
stimulated further interest in the field of the effect of kisspeptin
in reproduction.

Since the relationship between kisspeptin and reproduction
was reported, a large number of studies has been conducted
about the regulatory role of kisspeptin in the HPG axis and its
detailed mechanisms (10, 16–18).Besides, more and more studies
have shown that kisspeptin, as an upstream regulator of HPG
axis, plays an indispensable regulatory role in the beginning of
puberty and participates in various processes of female
reproduction whether in animals or human (9, 19). The
function of kisspeptin in male reproduction have also been
studied in a large number of amphibians, fish, rodents and
primate, while it is still less clear (20–23). The increasing
understanding of kisspeptin promotes the application of
kisspeptin in clinical diagnosis and disease treatment. In this
review, we summarize current understanding of the regulatory
role of kisspeptin on HPG axis and discuss the effects of central
and periphery kisspeptin on male and female reproduction.
2 KISSPEPTIN AND KISSPEPTIN
RECEPTOR

2.1 Kisspeptin
In 1996, KISS1 gene were first found by Lee et al. when they were
when studying different metastatic abilities of human melanoma
cells (7). Interestingly, because it was discovered at the place
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where Hershey’s chocolate was produced, its name came from a
kind of Hershey’s chocolate named kisses. In humans, KISS1 is
located on the long (q) arm of chromosome 1 at q32 with four
exons (7, 24). The KISS1 transcription start site (TSS) is located
between -153 bp to -156 bp upstream of the ATG in human (25).
The promoter of KISS1 contains numerous GC-rich elements,
which are the binding sites of Sp1 family proteins. Sp1 and Sp3
are universal transcription factors which function by forming
dimers. Sp1 activates the transcription while Sp3 represses it,
thus the ratio of Sp1 and Sp3 is crucial for the differential
expression of KISS1 in different tissues (26). The GC-rich
motifs are also the targets of estrogen induced kisspeptin
expression. Other regulators include Transcription Factor 1
(TTF1), ectoderm development (EED), Chromebox protein
homolog 7 (CBX7) and so on (25). Among the four exons, the
first two exons do not encode any peptides and the remaining
two can be partially translated, encoding a precursor peptide
containing 145 amino acids (24). The precursor, which has a 19
amino acid signal peptide, can further yield four short peptides,
namely kisspeptin-54 (kp-54), kisspeptin-13 (kp-13), kisspeptin-
10 (kp-10), distinguish by the number of amino acids,
respectively (27, 28). These peptides are collectively referred to
as kisspeptins, in which kp-54 is the main product. Kisspeptins
belong to the RF amide peptide family, with special Arg – Phe –
NH2 motifs in their C-terminal region, which contribute to their
binding to kisspeptin receptor (KISS1R) (27).

The location of kisspeptin neurons are different between
rodents and human. In rodents, kisspeptin neurons were
discovered in ARC and the anteroventral periventricular
nucleus (AVPV) which extends into the periventricular
nucleus (PEN) (10, 29, 30). The latter two nucleus are also
known collectively as RP3V (31). In humans, kisspeptin neurons
were distributed predominantly in the infundibular nucleus and
sparsely in POA (32). Interestingly, kisspeptin neurons within
the rodent RP3V have obvious difference between male and
female. The number of kisspeptin neurons in female rodents is
prominently bigger than that in the male (33). In humans the
situation is similar as studies have observed that there are much
more kisspeptin fibers in the infundibular nucleus and rostral
preoptic area in women than in men (34).

Apart from these places, kisspeptin can also be found in
limbic and paralimbic brain regions in extra-hypothalamic areas
and placenta, pancreas, ovary and liver in peripheral areas (33,
35–37). In rat and human ovaries, Kiss1 mRNA is primarily
detected in granulosa cells, indicating that ovarian kisspeptins
are possibly synthesized by granulosa cells (38, 39).

2.2 Kisspeptin Receptor
Kiss1R, first known as G-protein coupled receptor 54 (GPR54),
AXOR12 or hOT7T175, was discovered in the rat brain in 1999
as an orphan receptor (17, 40). Being a G-protein-coupled
receptor of seven transmembrane domains, KISS1R is a kind of
Gq/11 protein-associated receptor. It was not until 2001 when
GPR54 was identified as a putative receptor for KISS1-derived
peptides (35, 36). In human, KISS1R is located on chromosome
19p13.3 and encodes a protein with 398 amino acids, which can
be detected in the cerebral cortex, thalamus, pons-medulla and
June 2022 | Volume 13 | Article 925206
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cerebellum in central areas (40, 41). In rodents, kisspeptin
receptor is expressed in POA and ARC in hypothalamus and
hippocampus outside of the hypothalamus (27, 35, 36, 40, 42). In
fact, most GnRH neurons express Kiss1R mRNA in both young
and adult mice (43). In the periphery, KISS1R mRNA exists in
plenty of tissues in human, including pancreas, stomach, small
intestine, thymus, spleen, lung, gonads and so on (35, 36). In
human ovary, KISS1R is expressed in corpus luteum, parietal
granulosa cells, granulosa cells, theca cells, oocytes, stromal cells
and epithelial cells (44). Unlike Kiss1mRNA is mainly expressed
in granulosa cells, KISS1R expression is obviously higher in
oocytes than that in granulosa cells (45). Also, KISS1R is
expressed in human endometrial stromal cells and placental
trophoblasts (46, 47).

2.3 Kisspeptin Signaling Pathway
After kisspeptin binds to KISS1R, the activated G protein-
coupled receptor will be dissociated into Gaq/11-GTP and Gbg
(48). Gaq/11 then activate phospholipase C (PLC)-b, a key
enzyme in the cytoplasm. Under the action of PLC-b,
phosphatidylinositol 4, 5-bisphosphate (PIP2) is hydrolyzed to
produce inositol- (1, 4, 5)-triphosphate (IP3) and diacylglycerol
(DAG). IP3 then combines with the IP3-sensitive Ca2+ channel,
inducing intracellular Ca2+ mobilization and release, which can
promote various different functions depending on the cell
context (27, 44, 49). An increase in Ca2+ could convey the
ability of hormone secretion of kisspeptin and regulate its
Frontiers in Endocrinology | www.frontiersin.org 3
ability to inhibit cell proliferation (50). DAG activates protein
kinase C, which subsequently causes phosphorylation signaling
cascade and finally leads to the activation of mitogen-activated
protein kinases (MAPKs), such as ERK1/2 and p38 (27)
(Figure 1). However, the ERK1/2 and p38 activation caused by
kisspeptin treatment varies between different cell types (50). In
Chinese hamster ovary K1 cells treated with kisspeptin-10,
ERK1/2 showed strong continuous phosphorylation, while p38
showed weak phosphorylation (27). Likewise, kisspeptin
can stimulate ERK1/2 activation while P38 MAPK is not
affected in cells from rat corpus luteum (51) and anaplastic
thyroid cancer cells (52). In HT-1080 cell line, excessive
expression with kisspeptin diminished synthesis of matrix
metalloproteinase-9 (MMP-9) enzyme activity by inhibiting
the translocation of nuclear factor kB (NF-kB), thereby
decreasing promoter binding of NF-kB to the MMP-9
promoter (53). DAG also activates a nonselective cation
channel (TRPC) and inhibits an inwardly rectifying potassium
channel (Kir) at the same time, thus causing continuous
depolarization of GnRH neurons and stimulates GnRH release
(54). Additionally, activated KISS1R can recruit b-arrestin-1 and
-2 to the membrane, which assist with KISS1R signaling (55, 56).
b-arrestin-1 and b-arrestin-2 have contrast effects, while b-
arrestin-1 promotes the phosphorylation of ERK1/2 while the
other inhibits the process. Other studies have also confirmed that
b-arrestin-1 and -2 play a role in modulating the ERK1/2
phosphorylation in different kinds of cells (57–59).
FIGURE 1 | Kisspeptin/KISS1R signaling pathways. Kisspeptin binds to KISS1R, inducing the intracellular portion of KISS1R phosphorylates Gq/11. Then PLC is
activated and it hydrolyzes PIP2 to IP3 and DAG. IP3 induces intracellular Ca2+ release from the endoplasmic reticulum, while DAG activates PKC, causing the phosphorylation
of MAPK, such as ERK1/2 and p38. Moreover, the activation of KISS1R recruits arrestin-1 and -2, which decreases and increases ERK1/2 phosphorylation, respectively. The
increase of intracellular Ca2+ changes ion channel permeability by block the inwardly rectifying potassium channel (Kir). The depolarization of GnRH neurons is caused by
activation of a nonselective cation channel (TRPC) and suppression of Kir by DAG and increased Ca2+. Through the signaling pathways above, kisspeptins activate
different MAPKs and cause the release of Ca2+, which contribute to hormone-releasing regulation, neuroendocrine function, antimetastatic and/or antiproliferative effects.
June 2022 | Volume 13 | Article 925206
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Thus, as mentioned above, kisspeptins stimulate KISS1R
through a variety of signaling pathways. In different cell types,
activation of KISS1R induces phosphorylation of different kinds
of MAPK, which finally take part in hormone-releasing
regulation, neuroendocrine function, antimetastatic and/or
antiproliferative effects of kisspeptins (50).
3 THE FUNCTION OF KISSPEPTIN IN
HPG AXIS

3.1 Kisspeptin Stimulates Gonadotrophin
Release
In both animals and humans, kisspeptin is a powerful stimulator
of the HPG axis (17, 60). In 2003, Seminara et al. first conducted
studies to explore the relationship between kisspeptin and
reproductive axis in mice (9). They found that injecting GnRH
into kiss1r deficient mice improved their hypogonadotropic
symptoms, suggesting that the effect of kisspeptin was
mediated by stimulating GnRH release. In the following two
years, several studies have reported the underlying promoting
effect of kp-10 and kp-54 on LH secretion in rodents respectively
(10, 61–63), providing preliminary evidence for the effects of
kisspeptin in the process of GnRH release. More details have
been found gradually since 2005. Neuroanatomical studies have
confirmed that a large number of GnRH neurons were
distributed in POA, and more than 90 percent of GnRH
neurons express Kiss1R in mice (43). Projections from
kisspeptin neurons to GnRH neurons are different between
species (15). In mice, AVPV kisspeptin neurons fibers project
directly to GnRH cell bodies, while ARC kisspeptin neurons are
primarily apposed to GnRH processes which extend to the
median eminence (15). In human, kisspeptin neurons in the
hypothalamus project fibers into POA, stimulating GnRH
secretion which later acts on the pituitary and leads to LH and
FSH release (64, 65). Experiments have confirmed that central
and peripheral addition of exogenous kisspeptin stimulates this
reproductive cascade in both human and animals (63, 66).
Additionally, the use of a GnRH antagonist blocks the
promoting effect of kisspeptin (10), demonstrating that
kisspeptin sits at the top of the HPG axis. In recent years, the
application of modern methods confirmed the role of kisspeptin
more directly. Using an optogenetic approach, scientists have
found that the synchronous activation of ARC kisspeptin
neurons in vivo resulted in pulsatile LH release in rodents in a
sex steroid-dependent manner (67, 68). By transfecting Kiss1 to
Kiss1 knockout rats, Nagae et al. demonstrated the ARC KNDy
neurons were the generator of GnRH pulse and the presence of
more than 20% of ARC KNDy neurons was able to rescue
reproductive function (69).

Furthermore, it is important to notice that the production and
secretion of FSH and LH are affected by different GnRH pulse
frequencies and amplitudes, which is associated with various
signaling pathways. Low frequency of GnRH pulses is conducive
to FSH secretion, while high frequency of GnRH pulses tends to
cause the release of LH. In detail, high GnRH pulse frequency
Frontiers in Endocrinology | www.frontiersin.org 4
can activate the PKC/MAPK and Calcium/Calmodulin-
dependent kinase II (CaMK II) pathways and stimulate early
growth response-1 protein (Egr1) expression largely, thereby
increasing Lhb transcription and producing more LH. In
contrast, low frequency of GnRH pulses helps recruit the
histone acetyltransferase CREB-binding protein (CBP) to the
promoter, which stimulates Fshb transcription (70). At present,
LH is as an alternative marker for the effect of kisspeptins on
GnRH secretion. However, few studies have researched the role
of kisspeptin in regulating FSH secretion, which may be
attributed to the difficulty in accurate continued measurement
of serum FSH concentration. Taken together, the studies above
indicate that kisspeptin acts as a gatekeeper in the HPG axis,
controlling the onset of HPG axis by stimulating GnRH
secretion, and is related to LH pulsatile secretion (70).
3.2 Kisspeptin Mediates Negative and
Positive Sex Steroids Feedback
Apart from the stimulation of kisspeptin on GnRH, some studies
also explored the expression of Kiss1 mRNA in ARC and RP3V
respectively when exposed to sex steroids (71). The regulation in
these regions were found to be different, as estradiol stimulates
RP3V kisspeptin neurons while inhibits ARC kisspeptin neurons.
In addition, scientists found that during LH surge, the level of
KISS1 mRNA was raised in RP3V but was reduced in ARC (72).
These studies initially revealed that negative feedback is mediated
by ARC kisspeptin neurons, while positive feedback is modulated
by kisspeptin neurons in RP3V. The detailed mechanism has
been deeply studied in the last two decades. According to the
model built by scientists, NKB acts on KNDy neurons to cause
pulsatility and Dyn acts as the ‘brake’ halting pulses and
kisspeptin is the final output to GnRH neurons (Figure 2).
NKB acts in an autocrine/paracrine manner, inducing an
inward current to increase the membrane potential of KNDy
neurons, thus increasing the firing frequency of KNDy neurons
and causing increased Ca2+ oscillations which finally promote
the secretion of kisspeptin (73). The generation and termination
of GnRH pulses are closely related to the change in the balance
between stimulation (NKB) and inhibition (Dyn) tones, namely
the ratio of NKB to Dyn (73). The model has been supported by
mammal experiments and human studies. For example,
ovariectomy increased NKB expression in ARC of monkeys,
while estrogen treatment reduced it (74, 75). Post-menopausal
women were found to have higher expression of Kiss1 mRNA
(32). The hypertrophied neurons in their infundibular nuclei
expressed both ESR1 (encoding ERa) and NKB mRNA, showing
a similar distribution to that of kisspeptin neurons (76, 77). Also,
prodynorphin mRNA expression in the ARC decreased, showing
the mediating role of dynorphin in sex steroid negative feedback.
In general, humans KNDy neurons may mediate negative sex
steroid feedback in the infundibular nucleus by inhibiting the
secretion of kisspeptin and NKB and stimulating the secretion of
Dyn, causing reduced activity of the GnRH neuronal system, thus
affects the secretion of GnRH (18). In recent years the application
of optogenetics, GCaMP fiber photometry and mathematical
models have enabled scientists to observe direct activities of
June 2022 | Volume 13 | Article 925206
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neurons, perform long-term recordings and understand their
complex dynamic behaviors (78–80). High-frequency photo
stimulation of ARC kisspeptin neurons induced release of NKB
and Dyn (80). In a latest research, Moore et al. observed KNDy
neurons activity at a single cell level through in vivo calcium
imaging and found the activation of KNDy neurons was in a
temporal order (81). According to their study, some subsets of
KNDy cells act as “leaders” and others serve as “followers” during
each synchronized episode. These results offer more direct
evidence on the model.

Additionally, ARC kisspeptin neurons are important targets
for progesterone feedback since progesterone receptor is
expressed in almost all ARC kisspeptin neurons, while only a
few is expressed in GnRH neurons (82, 83). As a neurosteriod,
the level of progesterone dramatically increased after ovulation,
which plays a role in inhibiting LH secretion. A study conducted
in ewes has shown that the use of progesterone receptor
antagonist in ARC kisspeptin neurons blocked the inhibiting
effect of progesterone on LH pulse while the same effects did not
occur when applying antagonist in POA (84). However, there are
some differences in this model between different species. For
example, the importance of NKB appears to be different between
Frontiers in Endocrinology | www.frontiersin.org 5
mice and human. NKB receptor-deficient mice show the same
reproductive ability as wild type mice while human with NKB/
NKB receptor mutations are reproductive incompetence (85–
88). Moreover, although KNDy neurons express both estrogen
and progesterone receptors, it seems that Dyn only mediates part
of estrogen negative feedback in rodents, also (13, 89).

By contrast, AVPV kisspeptin neurons are more related to the
positive feedback of estrogen. Estrogen feedback changes from
negative to positive in the end of follicular phase to mediate the
LH peak before ovulation. Emerging data suggest that AVPV
kisspeptin neurons are more site and species specific and more
sexually dimorphic (18). More than 70% AVPV kisspeptin
neurons are ERa positive and express cFos, an immediate early
gene whose expression represents increased neuronal activity
during the LH surge (15, 33, 83, 90). A research found that in
adult female mice more than one-third of AVPV kisspeptin
neurons connect to GnRH cell bodies and nearly all of them
express ERa (91). During the LH surge, AVPV kisspeptin
neurons were observed higher level of cFos expression, which
is an indication of increased activity of AVPV kisspeptin neurons
(92). Experiments also confirmed that AVPV kisspeptin neurons
are more active during estrogen positive feedback than negative
FIGURE 2 | The role of kisspeptin in HPG axis and the positive and negative feedback of sex steoids in female. The population of kisspeptin neurons are located in
anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC) in rodents. ARC kisspeptin neurons which coexpress NKB and Dyn are named KNDy
neurons. Acting in an autocrine/paracrine manner, NKB stimulates kisspeptin secretion while Dyn inhibit it, thus regulate the release of GnRH indirectly. In this way
KNDy neurons mediate negative feedback of estrogen and enables the generation and termination of GnRH pulse. AVPV NEURONS regulate the generation of
GnRH sulge, thus induce LH surge, which is more significant in female ovulation. Progesterone also plays an indispensable role in the generation of GnRH surge.
June 2022 | Volume 13 | Article 925206

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Xie et al. Role of Kisspeptin in Reproduction
feedback, as these neurons firing more action potentials and
present stronger rapid action potential bursts on proestrus
compared to other periods (93, 94). From these results
collectively, preliminary conclusion could be drew that
estrogen regulates AVPV kisspeptin neurons positively and
increasing their activity, thus releasing GnRH stimulator
kisspeptin and other cotransmitters, which induce the GnRH/
LH surge. Besides, It is now established that progesterone
receptors (PR), especially those expressed on kisspeptin
neurons, are essential for positive feedback induced LH surge,
since female mice lacking progesterone receptors exclusively in
kisspeptin cells did not yield obvious LH surges when exposed to
an estradiol-positive feedback paradigm (95–97). AVPV
kisspeptin neurons coexpress PR, suggesting that they are
targets for progesterone (96). A recent study found that
selective reintroduction of PR into AVPV kisspeptin neurons,
with other kisspeptin cells remaining PR absent, could rescue the
LH surge in OVX (ovariectomized) + E2 females, indicating that
PR in AVPV Kisspeptin neurons are enough for positive
feedback induction of the LH surge (97).

Interestingly, despite ERa signaling in AVPV kisspeptin
neurons is crucial for positive feedback, ERa signaling is not a
necessary condition for negative feedback in ARC kisspeptin
neurons, because mice with kisspeptin cells specifically lack ERa
still retain negative feedback after estradiol therapy (98). This
indicates that there is a redundant negative feedback path
independent of kisspeptin signaling. In male, the number of
AVPV kisspeptin neurons is very small (90). This sex-specific
difference is determined by gonadal hormones during early
neonatal development, in which neonatal testicular androgen
leads to the decrease of AVPV kisspeptin expression (99). In
male, ERa and androgen receptor (AR) are both expressed in
most kisspeptin neurons of the two main kisspeptin neuronal
populations (100). Compared with females, the detailed signaling
mechanisms that mediate the testosterone feedback seem to have
some differences between ARC and AVPV kisspeptin neurons.
In AVPV, the effects of testosterone seem to be mediated by ERa
or ERb, since estradiol treatment is able to fully mimic the effect
of testosterone (100, 101). In contrast to AVPV, ARC kisspeptin
neurons do not show notable degree of sexual dimorphism (102).
In conclusion, only the pulsatile LH release is evident in male
mammals, and androgen negatively feedbacks to regulate the
GnRH/LH pulse in order to maintain sustained spermatogenesis
and steroidogenesis. The function of kisspeptin in the male
AVPV is still unclear at present.
4 THE ROLE OF KISSPEPTIN IN
REPRODUCTION

4.1 Kisspeptin Regulates Pubertal Onset
Puberty is described as the development of secondary sexual
characteristics, the maturation of gonads, and the acquisition of
reproductive competence (103). The process of puberty is
complex and associated with thousands of genes (5). During
the onset of puberty, the pulsatile release of GnRH from the
Frontiers in Endocrinology | www.frontiersin.org 6
hypothalamus plays a major role, which is the result of a couple
of excitatory and inhibitory factors. For example, the excitatory
factors include catecholamines and glutamate while the
inhibitory factors include gamma-aminobutyric acid (GABA)
and Opioid peptide (103). Among these excitatory factors, it is
well known that the kisspeptin occupies an indispensable
position. The KISS1 mRNA expression increases significantly
when people transit from juvenile to adult in AVPV although the
expression of KISS1R mRNA does not have a detectable change
in mice (43). The underlying mechanism involves reduction of
EED and Cbx7, dissociation of Polycomb Group (PcG) and
recruitment of trithorax Group (TrxG) elements at the Kiss1
promoter, which finally increases Kiss1 transcription (104, 105).
In females, the late development of the POA kisspeptin neuron
projection to the GnRH neuron cell body in the pubertal period
leads to the generation of the GnRH surge, thus resulting in the
LH surge and the first ovulation (5).

In 2003, two independent studies reported patients with KISS1R
gene inactivation or deletion mutation suffered familial or sporadic
forms of idiopathic (or isolated) hypogonadotropic hypogonadism
(iHH), which manifested as sexual immaturity and reproductive
inability due to the defection of GnRH secretion (9, 106). The
phenotype of human KISS1R mutation is also present in kiss1r
knockout mice and rats (9, 107). By contrast, mutations which
cause KISS1R hyperactive in humans result in central precocious
puberty (CPP). In 2008, a mutation (Arg386Pro) in the kisspeptin
receptor gene which results in extended activation of intracellular
signaling pathways when responding to kisspeptin was identified in
a girl with idiopathic CPP (108). Many studies have confirmed that
girls with CPP had higher serum kisspeptin levels than normal
controls (109–111). It suggested that the mutant may increase the
promoting effects of kisspeptin on GnRH release, thereby speeding
up the HPG axis maturation. Another mutation, p.P74S,
discovered in a boy with CPP in 2010, has been confirmed to
cause kisspeptin more resistant to degradation, suggesting an
increased availability of bioactive kisspeptin as another
mechanism of precocious puberty (112). In another study, the
first compound with the ability to block kisspeptin actions in
vivo and in vitro, namely p234, has been used in pubertal female
mammals for experiments. Scientists has demonstrated that the
application of p234 in rats for 7 days preceding puberty resulted in
delayed puberty onset (113). In contrast, the addition of exogenous
kisspeptin led to earlier puberty in rats and monkeys (114, 115).
These results imply that kisspeptin plays an integral role in the
coordination of pubertal onset.

In summary, kisspeptin is more likely to act as an amplifier of
a series of GnRH secretion events rather than the trigger of
puberty onset (116). In fact, other partners of kisspeptin neurons
such as Substance P, NKA, RFRP-3 and a-MSH also take part in
the regulation of puberty timing (70). To be exact, the precise
control of puberty onset depends on the interaction and
coordination of a large neuronal network.
4.2 Kisspeptin and Female Reproduction
Female reproduction is deeply regulated by the hypothalamic–
pituitary–ovarian (HPO) axis. The ovary is closely related to
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follicular maturation, ovulation, corpus luteum formation and
secretion of the steroid hormones. The distribution of kisspeptin
in the ovary has obvious temporal and spatial specificity,
showing its closed relationship with ovarian functions. Being a
critical regulator, kisspeptin modulates female reproduction in
several aspects, including gonadotropin secretion, follicular
development, oocyte maturation and ovulation (17, 44, 117).

4.2.1 The Role in Follicular Development
In human, kisspeptin levels increase from early follicular to
preovulatory phase (118). In the process of follicular
development, Fernandois et al. showed that kisspeptin affects
the primary and secondary follicle recruitment through reducing
the FSH receptor (FSHR) expression (119). In both 6- and 10-
month-old rats, local administration of kisspeptin into the ovary
reduced the number of total antral follicles (including atretic
follicles) and the use of kisspeptin receptor antagonist p234
played the opposite role. In an in vitro experiment, kisspeptin
prevents the increase in FSHR expression produced by ISO (a b-
adrenergic agonist), acting as a functional antagonist. Besides,
kisspeptin can upregulate the level of serum anti-Müllerian
hormone (AMH), which is a vital dimeric glycoprotein in the
regulation of follicle development. Produced by preantral and
small antral follicles, AMH exerts its regulatory role though
attenuating primordial follicle recruitment and changing the
sensitivity of follicles to FSH (120, 121). The study found that
serum AMH level increased after local administration of
kisspeptin and decreased after the use of p234 in 6- and 10-
month-old rats. To sum up, kisspeptin may negatively affect the
development of preantral follicles by upregulating AMH and
downregulating the expression of FSHR in the ovary.

4.2.2 The Role in Oocyte Maturation
It is well known that the preovulatory LH surge triggers the
resumption of meiosis and the progression to metaphase II (MII)
during each reproductive cycle (122). Besides, the direct effect of
kisspeptin on oocyte maturation has been studied in porcine
cumulus-oocyte complexes (COCs). Adding kisspeptin to
porcine COCs in vitro promotes oocyte maturation, suggesting
kisspeptin acts on oocytes directly (123). The mechanisms may
include upregulating the expression of C-MOS, growth
differentiation factor 9 (GDF 9) and bone morphogenetic
protein 15 (BMP 15) (124). C-MOS plays a stimulating role in
various processes during oocyte maturation, including the
meiosis process, normal spindle and chromosome formation,
and reactivation of purified maturation promoting factor after
first meiosis. Also, GDF 9 and BMP 15 take part in regulating
follicle development, oocyte maturation, ovulation, luteinization
and other physiological processes (124–127).

It has been found that cumulus granulosa cells (GCs) play a
vital role in regulating oocyte maturation. Chakravarthi et al. has
observed a remarkable expression of kisspeptin in gonadotropin
treated GCs while KISSR in oocytes, suggesting that GC-derived
Kisspeptin may have a direct function on oocytes KISS1R to
modulate oocyte maturation via a MAPK signaling pathway (45,
128, 129). The kisspeptin expressed in GCs is estrogen receptor b
(ERb) dependent since the expression of kisspeptin in GCs is
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absent in ERb knockout rat ovaries. Consistent with the findings
above, the administration of kisspeptin can increase the maturity
of oocytes without cumulus cells in both wildtype and ERbnull

rats (45). Therefore, kisspeptin may have a persistent and direct
effect on oocytes in an autocrine and paracrine manner.

4.2.3 The Role in Ovulation
Ovulation is a complicated process described as the follicle
rupture and oocyte release, which is mediated by the LH
surge and is regulated by a series of specific genes (130). At the
end of the follicular phase, high levels of estrogen act on AVPV
kisspeptin neurons, promoting the release of kisspeptin which
then cause the cascade of GnRH surge, LH peak and ovulation
(25). The functions of LH peak are achieved by upregulating of
COX-2 and producing prostaglandin (131). It has been
confirmed that peripheral kisspeptin administration induces
ovulation in many species such as rats (61) and ewes (132). In
fact, the effect of kisspeptin on ovulation is mainly achieved by
increasing the levels of LH and FSH. Subcutaneous
administration of kisspeptin markedly elevated plasma FSH
and LH levels in 25-day-old female rats (61). In human, the
LH pulses increased immediately after an administration of
kisspeptin-10 (118). Kisspeptin-54 induced ovulation in mice
by stimulating precisely timed endogenous LH release of
consistent amplitude and duration (133). Both the expression
of ovarian Kiss1 mRNA and the ovulation efficiency in rats could
be reduced by the administration of COX-2 inhibitor or COX
non-selective inhibitor, indicating that the upregulation of COX-
2 may act on the expression levels of kisspeptin to induce LH
peak (19).

The role of ovarian kisspeptin in ovulation may not be
indispensable because in Kiss1r knockout mice, standard
gonadotropin priming could induce ovulation (9), indicating
that the ovarian kisspeptin signaling is not nexessary for
ovulation. However, although the oocyte quality between
neuron-specific Kiss1 and Kiss1R knockout mice and wild type
mice shows little difference, the knockout mice presented
obviously fewer ovulated oocytes and corpora lutea. This
suggests the GnRH plus gonadotropin stimulation is not
sufficient to reverse the loss of function due to Kiss1r
knockout (134).

4.2.4 The Role in Reproductive Behaviors
Lordosis is an important posture adopt by non-primate female
mammals in response to male mounting, characterized by
ventral arching of the spine and elevation of the hips to
facilitate penile penetration (135). A study has shown that
female Kiss1-knockout mice were unable to exhibit normal
lordosis behavior despite estrogen and progesterone
replacement (136), while kisspeptin 10 injection in Kiss−/−

females robustly stimulated lordosis behavior. Optogenetic
activation of RP3V kisspeptin neurons caused strong firing and
provoked the sexual behavior of lordosis, showing that RP3V
kisspeptin neurons are essential for lordosis (136). The effect of
kisspeptin is closely associated with NO, which is potentially a
key transmitter downstream of kisspeptin neurons. Furthermore,
this study also found that kisspeptin neurons induce mate
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preferences in female mice driven by olfaction via GnRH
neurons. Together, these observations illustrate the crucial role
of kisspeptin in controlling the sexual behaviors in female mice.
However, ovariectomized Kiss1r-knockout mice showed normal
female sexual behaviors such as lordosis after hormone replaced
(with estrogen and progesterone) treatment (137). Consistent
with this result, lordosis behavior is also unaffected in an
additional transgenic mouse model which completely lacks
GnRH immunoactivity in adulthood. These surprising results
implied that the kisspeptin receptor is not necessary for normal
lordosis behavior in female mice while sufficient sex steroid
replacement is. In other words, kisspeptin-mediated lordosis is
not dependent on GnRH signaling (136). One reasonable
hypothesis is that kisspeptin-mediated-lordosis is facilitated via
NPFF receptors as both NPFFR1 and NPFFR2 have been found
in brain areas which are important in female sexual behavior
(136, 138). However, the hypothesis has not been confirmed by
any research at present.

4.3 Kisspeptin and Male Reproduction
Spermatogenesis is a complex process in testis in which the
spermatogonia develop into male gametes through the adjustment
of mitotic, meiotic and differentiation events (20). Each component
of testis and the overall function are controlled by hypothalamic-
pituitary-testicular axis. As the gatekeeper in HPG axis, GnRH
induces the production of sex steroid by Leydig cells and the
processes of spermatogenesis through LH and FSH released by
the pituitary. Many studies have demonstrated the distribution of
kisspeptin and its receptor proteins in the testes in multiple species
including non-mammalian vertebrates such as frogs, fish and
mammals such as rodents, goats and monkeys (21, 139–141). The
major producer of kisspeptin is considered to be Leydig cell since
scientists have detected the substantial expression ofKiss1mRNA or
protein in Leydig cells in various mammalian and non-mammalian
species such as mice, horses, goats and frogs (141–144). Besides,
kisspeptins were also expressed in epididymis. Mele et al. observed
the differential kisspeptin expression in caput and cauda rat
epididymis, while it is still not clear whether epidermal
kisspeptins assist with maturation of sperm (140). In mammals,
gene expression profiling showed that the initiation of kisspeptin/
kiss1r expression in mouse testis and the formation of spermatozoa
happened at the same time, indicating there is a connection between
spermatogenesis and testicular kisspeptin/kiss1r system (145). In
general, testicular kisspeptin system may act in the regulation of
Leydig cell activity, spermatogenesis, and sperm function.

As for steroidogenesis, it has been reported that testosterone
levels decreased after the administration of different doses of kp-10
(25). Other studies reported that kp-10 dramatically increased total
testosterone plasma levels in the acute phase while chronic
administration was associated with a decrease. In adult Wistar
rats, chronic subcutaneous administration of kp-54 (50 nmol/d) in
long term (13 days)decreased testicular weight, induced
seminiferous tubules to degenerate (146). Continuous
subcutaneous injection of kp-54 led to testicular degeneration
after only 12 hours, at the time when LH and FSH were still
considerably increased (147). Based on the results, the reduction of
testosterone was attributed to central hyper-stimulation of the HPG
Frontiers in Endocrinology | www.frontiersin.org 8
axis, which needs to be further confirmed. However, some studies
got different results. For example, a study reported that neither acute
nor chronic injection of 50 nmol/kg kisspeptin-10 failed to induce
degeneration of rat seminal tubules (148). According to the
difference in results above, it is difficult to draw some exact
conclusions at present.

In the process of spermatogenesis, in vivo kisspeptin
administration accelerates spermatogenesis until sperm
production in fish (149). During the late stage of spermatogenesis,
the administration of kp-13 regulated sperm motility and caused
momentary sperm hyperactivation, with a slow raise of sperm
intracellular Ca2+concentration in human, suggesting the effects of
kisspeptin to the sperm is achieved via the increase of Ca2+ levels
(150). The use of p234 blocked the above effects of kp-13, indicating
that the role of kisspeptin in human spermatogenesis is direct.
Similar results were also obtained in rodents (22).

In terms of reproductive behaviors, male mice with Kiss1r
knocked out are unable to show normal male sexual behaviors,
such as mount, thrust and ejaculation (137). However, the failure
can be compensated by testosterone, although the proportion of
male ejaculation in testosterone substituted kiss1r knockout mice
was lower than that in the wild type (137). Recent studies have
concentrated on the positive role of the amygdala (MeA) kisspeptin
system in modulating sexual behaviors (151, 152). It is reported that
KISS1 mRNA expression in male MePD (posterodorsal medial
amygdala) is higher than that in female (153). After exposing to
female urine, MeA kisspeptin neuronal activity in male mice
showed a doubled increase with an accompanied LH surge,
indicating the important role of the amygdala kisspeptin system
in olfactory-reproductive pathways (154). Moreover, the results
triggered by intra-MePD and intra-cerebral injection of kp-10 are
not exactly the same, the intra-MePD injection can induce penile
erection in addition to inducing LH release, revealing that the
enhancement of erectile function is achieved through the direct
action of kisspeptin on MePD (152). However, in a recent study,
DREADD (designer receptor exclusively activated by designer
drugs)-mediated activation of MePD kisspeptin neurons in male
mice caused notable levels of sexual behaviors such as mounts,
intromissions, and ejaculations in the presence and absence of
DREADDs-induced activation of these kisspeptin neurons,
suggesting the role of MePD kisspeptin neurons is limited (151,
155). Also, in humans, male patients with KISS1R mutations
successfully became fertile after treated with exogenous hormonal
(156). These interesting findings showed that kisspeptin receptors
may be important but not essential for male mammalian
spermatogenesis and certain reproductive behaviors (157). Since
there is not much research on it, it awaits further delineation.
5 KISSPEPTIN AND REPRODUCTIVE
DISEASES

As kisspeptin is an upstream regulator of GnRH neurons, it is
related to some diseases associated with impaired HPG axis. It is
widely known that the mutation of KISS1R gene lead to
abnormal puberty onset, manifesting with CPP or iHH. A
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survey in Korea has shown that girls with CPP had higher serum
kisspeptin levels compared with same aged prepubertal controls
(111). The relevant contents have been mentioned in part 3.1.

PCOS is a common female reproductive endocrine disease
whose typical clinical manifestations include infertility, ovulatory
dysfunction, hyperandrogenism and so on (44). PCOS women
show elevated LH/FSH, which indicates the impaired feedback of
GnRH pulses (158). Due to the role of kisspeptin in LH release, the
kisspeptin level in PCOS patients is speculated to be higher. This
hypothesis has been supported by a large number of studies in
human, most of which showed that the serum kisspeptin level of
patients with PCOS is significantly higher than that of healthy
controls (159, 160). Also, the role of ovarian kisspeptin has been
confirmed in a previous study. The administration of kisspeptin in
woman who accepted in vitro fertilization was found to change gene
expression in granulosa lutein cells remarkably, triggering a higher
expression of FSH and LH receptor, and higher expression of genes
associated with ovarian steroid synthesis and action (161). In animal
models, the expression kisspeptin only increased in PCOS models
with increased LH and normal weight, while in androgen induced
models kisspeptin expression were significantly suppressed (158,
162). In general, kisspeptin affects LH secretion and steroidogenesis
through central and periphery pathways in PCOS women, while it
needs more surveys and studies in both human and animals to
illustrate and confirm its detailed role.

Hyperprolactinemia is another reproductive endocrine disease
characterized by high level of serum prolactin (PRL) and
hypogonadotropic anovulation which leads to infertility (163). It
has been reported that kisspeptin neurons are the targets of PRL, as
PRL receptors are expressed in most kisspeptin neurons but few
GnRH neurons (164). Ovariectomized rats which accepted
exogenous PRL were observed to have higher expression of
phosphorylated signal transducer and activator of transcription 5
(pSTAT5) and reduced kisspeptin expression in ARC kisspeptin
neurons, suggesting the direct effect of PRL on ARC
kisspeptin neurons (163, 165). It seems that PRL acts on ARC
kisspeptin neurons and results in reduction of GnRH levels, thereby
leads to the decrease of LH levels and ovulation inhibition.

Currently kisspeptin is related to various reproductive
diseases although the detailed role remains to be explored.
Understanding the role of kisspeptin in the occurrence of these
reproductive endocrine diseases will provide a theoretical basis
for the treatment of these diseases in the future.
6 POTENTIAL ROLES OF KISSPEPTIN IN
CLINICAL APPLICATION

In recent years, many attempts have been made to explore the
possibility of kisspeptin as a new diagnostic marker or
therapeutic option. In humans, the plasma level of kisspeptin
(kisspeptin-54) increases dramatically throughout pregnancy,
making it possible to detect early pregnancy by measuring
plasma kisspeptin concentrations (166). Also, because
kisspeptin is produced by trophoblasts and trophoblast
invasion is underway 5 days after blastocyst transplantation,
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plasma kisspeptin concentrations during the peri-implantation
period may reflect the early developmental events associated with
pregnancy outcome (167). In a comparative study, Sullivan-Pyke
et al. measured serum kisspeptin in 20 women with 6-10 weeks of
intrauterine pregnancy (IUP) and 20 women who suffered
spontaneous abortion (SAB) at a similar time. They found the
median serum kisspeptin levels were significantly higher in IUP
women (1.50ng/ml) than in SAB women (0.20ng/ml), indicating
that kisspeptin is detectable in serum in early pregnancy and can
discriminate SAB from IUP (168). Also, as mentioned above,
girls with CPP had higher serum kisspeptin levels compared with
healthy girls (109–111). However, serum kisspeptin levels are not
able to become a single diagnostic tool because the evident
overlap limits its use, while it may still be useful as an
adjunctive tool in the diagnosis of CPP.

As for therapeutic option, kisspeptin is found to have
potential in stimulating oocyte maturation and inducing
ovulation in infertile women. In 2014, a clinical study found
that single administration of kisspeptin-54 induced female egg
maturation in women who accepted in vitro fertilization (169),
suggesting its potential application in treating women with
infertility. Kisspeptin and its agonist are also be regard as
potential therapeutic options of some reproductive diseases. In
a clinical study, repeated administration of kp-54 successfully
induced ovulation in two out of seven women with PCOS (170).
Abbara et al. compared the therapeutic effect of nanopeptide
KISS1R agonist MT-602 and kisspeptin 54 in PCOS women and
found both MVT-602 and kp54 induced a LH peak with similar
amplitude (171). Recent studies also reported the application of
kisspeptin as a future therapeutic option in treatment of
hyperprolactinemia. The administration of kisspeptin
successfully caused LH pulses via stimulating GnRH in women
with hyperprolactinemia (172). In another study, the use of
kisspeptin induced recover of gonadotropin secretion and
ovarian cyclicity (173). In addition, based on the fact that high
dose of kisspeptin leads to desensitization of HPG axis,
kisspeptin may be applied in the treatment of sex hormone-
dependent malignancies. For example, prostate cancer is a kind
of androgen dependent malignancy and the current primary
treatment is androgen deprivation therapy (ADT) (174). Two
animal studies have confirmed that chronic administration of the
kisspeptin analog, TAK-448 caused stronger inhibiting effect of
HPG axis than GnRH analog and obviously suppressed
testosterone and LH release, indicating its great anti-tumor
growth potential (175, 176).
7 CONCLUSION AND FUTURE
DIRECTIONS

The discovery of kisspeptin was a milestone in the field of
reproductive biology. The last two decades have seen an
explosion in kisspeptin literature, which elucidated of the
pivotal role of kisspeptin in the control of HPG axis.
Kisspeptin acts upstream of GnRH and thus regulates the
secretion of LH and FSH, following paracrine promoting and
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inhibiting inputs from NKB and Dyn, signals directly to GnRH
neurons to control pulsatile GnRH secretion, thus regulates the
secretion of LH and FSH. Through the G-protein-coupled
receptor, KISS1R, kisspeptin acts in the onset of puberty and
maintenance of mammalian fertility. Although there is some
difference between sexes in neuroanatomy and function, the
functions of kisspeptin are apparent in both male and female.
On the one hand, kisspeptin in hypothalamus acts on HPG axis,
regulating reproduction processes through secretion of LH and
FSH. On the other hand, periphery kisspeptin has a direct effect
on the gonads in an autocrine-paracrine manner. In female,
ovarian kisspeptin negatively regulate preantral follicular
development and increase the maturity of oocyte. In male,
kisspeptin are closely associated with spermatogenesis although
the detailed role is not completely clear. Kisspeptin also regulates
reproductive behaviors in both male and female including
lordosis in female and mount, thrust or ejaculate in
male (Figure 3).

The large number of experiments on mammals in recent
years has significantly improved our understanding of the role
of kisspeptins and related mechanisms. Modern approaches
such as optogenetics, mathematical models and in vivo calcium
imaging have made huge contribution to the solution of long-
existing questions such as the mechanism of negative and
positive feedback and the functions of kisspeptin/KISS1R
system in female reproduction. However, there are still some
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questions which need further exploration. For instance,
although many new advances have been made in male
reproduction, the role of kisspeptin in steroidogenesis, sperm
function and reproductive behaviors are not completely clear.
The different results in experiments need further researches to
explain. Recently the differential expression of kisspeptin
receptor in epidermis was discovered, while its specific effect
on sperm maturation is not confirmed yet. Besides, the
potential effects of kisspeptin on testicular germ cells and
somatic cells were studied by tissue and cell culture
experiments, and its role in vivo is not fully understood
(157). Also, most current studies were only conducted on
animal models, thus more powerful evidence are needed to
prove the relevance of these findings to human. In addition to
the two main populations of kisspeptin neurons, a small
number of kisspeptin neurons was also found in the limbic
system of the brain (such as amygdala, the lateral septum, the
dorsomedial and ventromedial hypothalamic nuclei, etc.). The
function and precise lineage of these kisspeptin populations are
also worthy of further exploration (70, 102). The development
of new technologies will help bring new ideas about the
unknown field.

Based on the essential effects of kisspeptin in reproductive axis
summarized in this review, kisspeptin and its analogues may be
used for diagnostic and therapeutic goals. This needs more data,
more translational work and larger studies to expand our
FIGURE 3 | The distribution of kisspeptin in central and peripheral areas and its role in reproduction. In hypothalamus, kisspeptins are located in two main neuron
populations, ARC/infundibular nucleus and AVPV. In the peripheral areas, kisspeptin are mainly discovered in ovary and testis. GCs are the main cell which product
Ovarian-derived kisspeptin, while Leydig cells are considered to product testicular kisspeptin. Kisspeptins are also found in other organs such as pancreas, liver, placenta,
etc. (not depicted in the figure). Kisspeptin in the hypothalamus functions through HPG axis, while gonads-derived kisspeptin might act directly in a autocrine-paracrine
manner. In terms of the function, kisspeptin is likely to act as an amplifier of a series of GnRH secretion events, which are vital for normal puberty onset. Central and peripheral
kisspeptins exert a role in various processes of female and male reproduction, maintaining the normal progress of follicular development, oocyte maturation, ovulation in female
and spermatogenesis in male. In addition, kisspeptin is also essential in both male and female reproductive behaviors, regulating mount, ejaculation and thrust in male and
lordosis in female.
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knowledge of kisspeptin. In conclusion, a complete understanding
of the expression, function, and potential molecular mechanisms
of kisspeptin/KISS1R in the HPG axis and its role in reproduction
will bring new inspiration to the diagnosis, treatment and
prevention of some reproductive diseases.
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