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Various theories for the hormonal basis of diabetes have been proposed and debated
over the past few decades. Insulin insufficiency was previously regarded as the only
hormone deficiency directly leading to metabolic disorders associated with diabetes.
Although glucagon and its receptor are ignored in this framework, an increasing number of
studies have shown that they play essential roles in the development and progression of
diabetes. However, the molecular mechanisms underlying the effects of glucagon are still
not clear. In this review, recent research on the mechanisms by which glucagon and its
receptor contribute to the pathogenesis of diabetes as well as correlations between
GCGR mutation rates in populations and the occurrence of diabetes are summarized.
Furthermore, we summarize how recent research clearly establishes glucagon as a
potential therapeutic target for diabetes.
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peptide 1
1 INTRODUCTION

Diabetes is a metabolic disorder characterized by hyperglycemia resulting from an absolute
deficiency of insulin secretion (type 1 diabetes, T1D), or a combination of insulin resistance and
an inadequate compensatory insulin secretion (type 2 diabetes, T2D) (1). However, each type of
diabetes in animals and humans is accompanied by hyperglucagonemia (2–4), so glucagon excess is
more critical to the development of diabetes than insulin deficiency (4, 5). Increasing evidence
indicates that blocking glucagon and glucagon receptor (GCGR) can relieve hyperglycemia in
animals and humans, clearly establishing the important roles of glucagon and GCGR in the
pathogenesis of diabetes (6, 7).

Glucagon is a linearpeptide containing29 aminoacids. It is secretedby isleta cells andmainly targets
the liver cells (8).GCGRis aG-protein-coupled receptor (GPCR)mainlydetected in isletb cells and liver
cells (9).After glucagon specifically binds toGCGR, it promotes liver glycogenbreakdown and increases
blood glucose levels to stimulate insulin release (10, 11). Glucagon-like peptide 1 (GLP-1), mainly
expressed in intestinal L cells, activates glucagon-like peptide-1 receptor (GLP-1R) to adjustmetabolism
(12, 13). Glucagon and GLP-1 are derived from the same biosynthetic precursor proglucagon and are
involved in the regulation of lipid and cholic acid metabolism, thereby playing pivotal roles in glucose
metabolism and the pathogenesis of diabetes (7, 12, 13).

In this review, we explore the controversial relationships between glucagon and metabolic
disorders associated with diabetes based on recent research with an emphasis on recent evidence
supporting the important role of glucagon. We also elucidate the correlation between GCGR
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mutations in populations and the occurrence of diabetes.
Furthermore, we summarize drug strategies to provide a new
basis for the treatment of diabetes.
2 CONTROVERSY REGARDING THE
ROLE OF GLUCAGON IN METABOLIC
DISORDERS ASSOCIATED
WITH DIABETES

2.1 Insulinocentric Theory
The debate over the relative roles of hormones in the regulation
of diabetes-related metabolic disorders has spanned decades. In
1921, the discovery of insulin was regarded as one of the greatest
breakthroughs in the history of medicine. This led to the
establishment of the insulinocentric view, which proposes that
all diabetes-related metabolic disorders are directly caused by a
lack of insulin secretion (14). Glucagon was not yet characterized
and accordingly was not associated with these metabolic
disorders. The insulinocentric theory was accepted for over
half a century until Unger et al. proposed the bihormone
theory at a conference in 1975 (15, 16).
2.2 Bihormonal Regulation
According to the theory of bihormonal regulation, diabetes results
from the abnormal secretion of both insulin and glucagon (15, 16).
Some metabolic disorders associated with diabetes are directly
caused by insulin deficiency, such as elevated lipolysis, increased
proteolysis, and decreased glucose utilization. Others, such as
decreased glycogen synthesis, increased ketogenesis, elevated
hepatic glycogenolysis, and gluconeogenesis, are direct effects of
excess glucagon (15–18) (Figure 1). Glucagon has glucogenic,
ketogenic, and gluconeogenic functions and mediates severe
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endogenous hyperglycemia and hyperketonemia under a state of
insulin deficiency; thus, it is a direct cause of the substantial increases
in the levels of glucose and ketone in severe presentations of diabetes
(19). Inpatientswithdiabeteswith relatively steady levels of insulin, a
rise in glucagon causes hyperglycemia and glycosuria (17).
Glucagon suppression may be an effective adjunct to routine
antihyperglycemic therapy in patients with diabetes (20–22).
2.3 Glucagonocentric Hypothesis
Glucagonocentric hypothesis was proposed by Unger et al. based
on the following evidence: (a) hyperglucagonemia is present in
all forms of diabetes; (b) marked hyperglucagonemia is caused by
perfusing anti-insulin serum to the normal pancreas; (c) during a
total insulin deficiency, all metabolic manifestations of diabetes
can be suppressed by glucagon suppressors, like somatostatin,
and in global Gcgr knockout (Gcgr-/-) mice, demonstrating that b
cell destruction does not cause diabetes (4). Thus, compared with
insulin deficiency, glucagon excess plays a more essential role in
the development of diabetes.

Gcgr -/- mice were designed to further understand the role of
GCGR in the development of diabetes; these mice do not respond
to glucagon at any concentration, and their fasting blood glucose
levels are lower than those of wild-type mice. These knockout
mice exhibit enhanced glucose tolerance and elevated insulin
sensitivity during insulin tolerance testing (23). When b cells of
Gcgr -/- mice were destroyed by streptozotocin (STZ) and insulin
secretion was inhibited, animals did not develop hyperglycemia,
suggesting that Gcgr -/- mice do not develop T1D, even under a
state of insulin deficiency (24). After the transient repair of
defective Gcgr with an adenovirus vector, the blood glucose levels
of the mice increased after b cell destruction (25). When Gcgr
was inactivated again, blood glucose levels returned to normal,
suggesting that in the absence of glucagon, insulin deficiency
does not result in abnormal blood glucose levels, and that the
FIGURE 1 | Hormonal regulation of glucose homeostasis in the islet cells. This diagram illustrates the metabolic effects of glucagon and insulin. Blood glucose levels
influence secretion of insulin and glucagon. Insulin deficiency leads to elevated lipolysis, increased proteolysis, and decreased glucose utilization, while excess
glucagon leads to decreased glycogen synthesis, increased ketogenesis, elevated glycogenolysis, and gluconeogenesis. Red arrows refer to a stimulatory effect,
while blue arrows refer to an inhibitory effect.
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abnormal blood glucose concentration caused by insulin
deficiency can be restored by eliminating the effect of glucagon
(25). Hence, blocking Gcgr can restore hyperglycemia in rodent
models with insufficient insulin secretion; however, this effect
requires a certain number of b cells (26). Active GLP-1 was
identified in pancreatic perfusate from Gcgr -/- but not wild-type
mice (27), and FGF21 acts additively with GLP-1 to prevent
insulinopenic diabetes in mice lacking glucagon action (28),
which further reduces the risk of Gcgr -/- mice developing
diabetes. On the contrary, Gcgr knockout implies that glucagon
cannot function normally, which can cause a series of metabolic
problems, such as hyperglucagonemia and compensatory
hyperplasia of a cells (23, 29, 30). Therefore, the above
phenomena should be monitored in the development of GCGR
antagonists. The therapeutic potential of GCGR is not fully
recognized and should be a basis of further studies; however,
the established animal models provide an effective means for the
development of strategies to reduce the incidence of diabetes.
3 MECHANISM BY WHICH GLUCAGON
AFFECTS INSULIN SECRETION

In healthy people, high blood glucose stimulates b-cell insulin
secretion, and glucagon secretion is suppressed; low blood
glucose inhibits b-cell insulin secretion, and glucagon secretion
is stimulated (Figure 1). Nevertheless, hyperglucagonemia was
present in patients with diabetes, including T1D (31) and T2D
(32). No significant difference of plasma glucagon level was
found between T1D and T2D (31, 32). Absolute deficiency or
relative deficiency of insulin secretion weakened the inhibition of
insulin on glucagon (4).

Glucagon’s role in intra-islet paracrine regulation is essential.
Svendsen et al. (27) used isolated perfused pancreas from wild-
type, Glp-1r knockout, diphtheria toxin-induced proglucagon
knockdown, b cell-specific Gcgr knockout, and Gcgr−/− mice to
examine glucagon-induced insulin secretion. They found that
paracrine glucagon actions are required for maintenance of
normal insulin secretion, and intra-islet glucagon signaling
involves the activation of both GCGR and GLP-1R. Loss of
either GCGR or GLP-1R does not change insulin responses,
whereas combined blockage of both receptors significantly
reduces insulin secretion (27). Additionally, Gcgr -/-mice show
normal blood glucose levels and increased glucagon levels in
glucose-stimulated insulin secretion (GSIS) tests after treatment
with 10 mM (33) or 12 mM (27) glucose. This is similar to levels
observed in control mice, suggesting that the insulin-promoting
effect of glucagon is achieved mainly via GLP-1R. However, as
the cognate downstream receptor of glucagon, the physiological
significance of b-cell GCGR remains subtle. Zhang et al. (34)
states that glucagon potentiates insulin secretion via b-cell
GCGR at physiological but not high concentrations of glucose,
and b-cell GCGR activation promotes GSIS more than GLP-1R
in high fat diet. These findings indicate that GCGR contributes to
glucose homeostasis maintenance during nutrient overload.
These studies emphasized the indispensable roles of GCGR on
Frontiers in Endocrinology | www.frontiersin.org 3
b cells in mediating both the glucose balance and catabolic state
and implied that GCGR is closely related to the pathogenesis of
diabetes. Accordingly, studies of the mechanisms by which
GCGR regulates insulin secretion are of great significance.

In pancreatic b cells, GLUT2, a glucose transporter protein, is
required for GSIS (35). Glucose binding toGLUT2 is a key pathway
leading to increased ATP levels, deionization, increased
intracellular calcium concentration, and enhanced insulin
exocytosis. GLUT1 expression decreased in Gcgr–/– mice but
increased in wild-type mice after glucose stimulation (36). As a
paracrine hormone, glucagon binds to GCGR with high affinity,
while also exerting a “spillover” effect by binding to GLP-1R with
low affinity (37). After glucagon binds to GCGR and GLP-1R on b
cells, the activated receptors engage the G protein Gas, which
stimulate the generation of cyclic adenosine monophosphate
(cAMP) (34, 38–40). The response of glucagon to glucose mainly
depends on cAMP signaling in islet b cells and the increased cAMP
level promotes insulin release (39, 41) (Figure 2).
4 ASSOCIATION OF GCGR MUTATIONS
WITH DIABETES IN VARIOUS
POPULATIONS

T2D, also called non-insulin dependent diabetes mellitus, is a
common disorder with complex traits. Multiple genomic scans
have identified different loci associated with T2D, including a
locus on chromosome 17q24-25 (42, 43) and GCGR on
chromosome 17q25, which might be explained by linkage
identified in the same region (44). GCGR mediates glucose
homeostasis by binding to glucagon and may contribute to the
pathogenesis of T2D and the development of b-cell dysfunction,
resulting in a deficient insulin response in some patients with
T2D. Further studies are needed to determine the effect of
hepatic glucagon resistance on metabolic disorders and its
association with the occurrence of diabetes. Chronic
hyperglycemia increases the protein expression of GCGR in
the liver and decreases downstream glucagon signaling, leading
to liver glucagon resistance (45, 46). GCGR mutations may be
related to hyperglucagonemia via the impairment of endogenous
glucagon autofeedback, to high hepatic glucose output in T2D
via elevated glycogenolysis and/or gluconeogenesis, and to
abnormal insulin secretion via the glucagon resistance of b
cells in T2D.

GCGR is regarded as a candidate gene for the pathogenesis of
T2D and GCGR mutations with similar frequencies have been
found associated with T2D (47). Polymorphisms in the GCGR
gene are associated with T2D in Caucasians (48). The Gly40Ser
variant of GCGR (c.118G >A) causes a change from glycine (at the
40th amino acid residue) to serine. In French and Sardinian
familial T2D groups, 5% and 8% of randomly selected patients
with diabetes, respectively, showed Gly40Ser mutations. These
percentages are substantially higher than the frequencies of any
other candidate gene mutations reported previously (47). Gough
et al. examined patients from three geographically distinct regions
in the United Kingdom and the Gly40Ser mutation was present in
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Jia et al. Glucagon and GCGR in Diabetes
15/691 patients with T2D and 1/425 geographically matched
controls (48), suggesting that individuals with the Gly40Ser
mutation may be predisposed to T2D. GCGR mutation
frequencies have been examined in other populations and
regions. However, the Gly40Ser mutation was not detected in
studies involving subjects of Japanese (49–52), Finnish (53), Dutch
(54), Utahans (55), German (54, 56), Russian (57), Indian Tamil
(58), Han Chinese (59), Taiwanese (60), Brazilian (61), and Italian
(44) descents. Another study (62) conducted in different areas of
Sardinia did not find low insulin secretion in the population
carrying this mutation in contrast to the earlier 1995 study (47).
It showed that the Gly40Ser variation was not related to T2D in
the Sardinian population and that its frequency varied among
regions in Sardinia. Although no such association was found in
Brazil, reduced insulin secretion was observed in Gly40Ser carriers
(61). Based on a genetic analysis of 64 children with diabetes, the
Gly40Ser mutation may be associated with T2D susceptibility in
China (63). It reduces the binding of GCGR and glucagon and
insulin secretion; this observation led Hansen to hypothesize that
the Gly40Ser mutation in GCGR can lead to the abnormal
functioning of islet b cells and may predispose carriers to
diabetes, possibly by impairing glucagon-mediated signaling and
decreasing the sensitivity of the target tissues to glucagon (64).

In addition to the relationship between the Gly40Ser
mutation and T2D, an elevated frequency of GCGR mutations
has been found in probands from multiple (affected sibling pair)
families with T1D, also known as insulin-dependent diabetes;
however, the lack of preferential transmission from heterozygous
parents to affected siblings with T1D suggests population
stratification (48). Overall, this Gly40Ser mutation may
promote islet b-cell dysfunction, resulting in deficient insulin
responses in patients with diabetes.

Together, these findings suggest that the contribution ofGCGR
to diabetes may vary and mutations in this gene play only a small
role in determining the susceptibility of an individual to diabetes
Frontiers in Endocrinology | www.frontiersin.org 4
and the observed genetic heterogeneity of diabetes. Given the
heterogeneity of the disease, the importance of GCGR for diabetes
susceptibilitymayvaryamongethnicitiesowing to thedifferences in
genetic and environmental factors. GCGR is a polymorphic gene.
The absence of a GCGR polymorphism (Gly40Ser) at one site does
not rule out mutations associated with susceptibility to diabetes in
other regions. For example, in addition to Gly40Ser, homozygous
missense mutations (P86S) have been found in GCGR; these
mutations contribute to the formation of an ineffective GCGR,
resulting in hyperglycemia and extreme a-cell proliferation (65).
Recent studies have reported 250 missense variants in human
GCGR (66, 67). GCGR shows lower allelic diversity and fewer
missense variants and variants with trait associations than the
other class B1 GPCRs. These observations support the crucial role
of the glucagon system in metabolism and indicate that the
predominant signaling pathway mediating the physiological
effects of GCGR is the one mediated by Gas. These findings
provide a clear link between molecular mechanisms and clinical
phenotypes. The metabolic phenotypes related to several missense
variants of GCGR have been investigated in case studies and in
studies of genetically engineered animals, including V368M and
V369M (68, 69). Further research is needed to explore the
relationship between GCGR variants and diabetes.
5 GLUCAGON-RELATED THERAPIES
FOR DIABETES

Several emerging glucagon-based therapies are under pre-clinical
and clinical development.

5.1 GCGR Antagonism
GCGR antagonism has been proposed as a pharmacological
approach to treat T1D or T2D, including the use of small
molecule antagonists, monoclonal antibodies (mAb) against
FIGURE 2 | Activation of GCGR and GLP-1R to promote insulin secretion in islet b cells. Glucagon binds to GCGR and GLP-1R on b cells and the activated
receptors engage the G protein Gas. This results in adenylate cyclase activation and cAMP formation. Glucose binds to GLUT2, which increases ATP levels and
intracellular calcium concentration, and enhances insulin exocytosis. The increase in intracellular cAMP levels activates PKA, which also promotes insulin exocytosis.
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GCGR, and antisense oligonucleotides that reduce expressionof the
receptor (70–73). Relevant clinical trials have shown that they can
reduce blood glucose levels through inhibition of glucagon action
(74–76); however, several adverse effects, such as increased LDL-
cholesterol (LDL-c), ALT level, and bodyweight, have been
observed (74, 77).
5.1.1 GCGR Antagonists
Several GCGR antagonists have been developed to improve
glucose tolerance, insulin secretion, and glucose control in
animals (78, 79), and have shown remarkable efficacy in
patients with T2D, such as MK-0893, MK-3577, LY2409021
and LGD-6972 (76, 80–82). They upregulate circulating GLP-1
level by promoting intestinal L-cell proliferation and GLP-1
production in T2D (82). MK-0893 and MK-3577, which were
advanced to phase II clinical trials, led to robust glucose lowering
in patients with T2D; however, their adverse effects, such as
increased LDL-c and ALT level, have hindered their clinical
development (83–86). LY2409021 significantly reduced blood
glucose and HbA1c levels with a lower risk of hypoglycemia (80,
81), but it increased liver fat (87). LGD-6972 is an allosteric
GCGR antagonist, structurally different from other small
molecule GCGR antagonists. It was well tolerated at all tested
doses and did not cause hypoglycemia (88, 89), but additional
details on biochemical differentiation are lacking and this
compound does not appear to be under active clinical
development (71).
5.1.2 GCGR mAbs
With the cessation of clinical trials of GCGR antagonists and
better understanding of the protein structure of GCGR,
antibodies against GCGR have been developed. GCGR mAbs
have good specificity, strong targeting, and are relatively easy to
source. They can not only return blood glucose and HbA1c to
normal levels when administered to mice with T1D not treated
with insulin (73), as well as patients with T1D (90), but also show
a strong hypoglycemic effect in mice and monkeys with T2D (91,
92). They can even induce b cell regeneration by the
transdifferentiation of a portion of pancreatic a cells or d cells
into b cells (93). REMD 477 is a fully competitive mAb against
GCGR. A single dose of REMD-477 significantly reduces insulin
requirement in patients with T1D, which improves glycemic
control in patients without serious adverse reactions (90).
Another GCGR mAb, REGN1193, has good safety and
tolerability, but transient elevation of transaminases was also
observed (94). Overall, GCGR mAbs are promising for
improving glycemic control and have great research promise.
5.1.3 GCGR Antisense Oligonucleotides (GR-ASO)
GR-ASO inhibits the effect of glucagon mainly by decreasing the
expression of GCGR mRNA (95). The intraperitoneal
administration of GR-ASO to db/db mice and Zucker diabetic
fatty (ZDF) rats decreases (nearly normalizes) non-fasting blood
Frontiers in Endocrinology | www.frontiersin.org 5
glucose levels (95). GR-ASO improves b-cell function (i.e.,
improves the insulin response to intraperitoneal glucose
stimulation) and substantially improves glucose tolerance in
normal and ZDF rats. However, Gcgr-/- mice and other
animals treated with GR-ASO show extensive islet a-cell
proliferation and significantly elevated circulating proglucagon-
related peptide levels (96). Recently, ISIS-GCGRRx (76), IONIS-
GCGRRxN (97), and ISIS 325568 (98) have been shown to
attenuate glucagon-stimulated hepatic glucose production and
glucose fluctuations. They support the treatment of GR-ASO in
patients with T2D.
5.2 GLP-1R Agonists
The most well-characterized biological function of GLP-1 is to
potentiate glucose-dependent insulin secretion, which makes the
GLP-1R an attractive target in the treatment of T2D (99). Thus,
GLP-1R agonists are clinically used as anti-diabetic drugs (100).
Glucagon not only acts to antagonize insulin in the fasting state
but also functions in the fed state and promotes insulin secretion
to maintain normal blood glucose levels (34). The insulin-
promoting properties of glucagon are mediated by GCGR and
GLP-1R in b cells (27, 33, 101); however, GLP-1R is the main
receptor to exert an insulin-stimulating effect (101). It is
reasonable to assume that even with GCGR mutations in b
cells, glucagon binding to GLP-1R exerts an insulin-promoting
effect that can reduce blood glucose concentrations in patients
with diabetes. Although GLP-1R agonists have been used for the
treatment of diabetes, their efficacy is limited by target receptor
desensitization and downregulation via the recruitment of b-
arrestins (102, 103). GLP-1R agonists with decreased b-arrestin-
2 recruitment have shown promising effects in recent preclinical
and clinical studies (104). Understanding the mechanisms of
action may resolve these issues with the application of GLP-
1R agonists.
5.3 GCGR and GLP-1R Co-Agonists
Owing to the traditional view that the main effect of glucagon is
to increase blood glucose levels, the idea of increasing glucagon
concentration as a means of reducing glucose levels initially met
resistance. Nevertheless, the action of glucagon on GCGR and
GLP-1R (regulators of insulin secretion and energy metabolism)
has a significant effect on systemic glucose homeostasis (105). On
the one hand, GCGR and GLP-1R co-agonists can activate GLP-
1R to promote insulin secretion and then reduce blood glucose.
On the other hand, they can activate GCGR, promote lipid
metabolism and reduce body weight (106–108). Since human
islets have more mixed a-b cell interfaces, the ratio of GCGR to
GLP-1R may be particularly vital to human islet function (8,
109). SAR425899 is a novel polypeptide with a co-excitatory
effect on GCGR and GLP-1R, which can reduce blood glucose
and HbA1c levels and reduce body weight in patients with T2D;
however, it has an adverse effect on the gastrointestinal tract
(110). It also improves postprandial blood glucose control by
significantly enhancing b cell function and slowing glucose
June 2022 | Volume 13 | Article 928016
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absorption rate (111). These findings highlight the possible
clinical relevance of dual agonist peptides that simultaneously
stimulate the synthesis of GCGR and GLP-1R and may drive the
development of novel antidiabetic drugs.
6 CONCLUSIONS

In this review, we provide a clear overview of various theories of
hormonal regulation of diabetes, with a focus on the essential roles
of glucagon and its specific receptor in the pathogenesis of
diabetes. Although GCGR and glucagon play important roles in
diabetes, the mechanisms and role of mutations still needs to be
explored. We summarized the pleiotropic effects of glucagon,
future research prospects, and the development of novel
therapeutic strategies. This area of research remains challenging
but exciting. Further research on islet a cells, glucagon, and GCGR
Frontiers in Endocrinology | www.frontiersin.org 6
signaling pathways is expected to provide a basis for developing
new strategies for diabetes prevention.
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