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The tumor microenvironment is a dynamic, complex, and redundant network

of interactions between tumor, immune, and stromal cells. In this intricate

environment, cells communicate through membrane–membrane, ligand–

receptor, exosome, soluble factors, and transporter interactions that govern

cell fate. These interactions activate the diverse and superfluous signaling

pathways involved in tumor promotion and progression and induce subtle

changes in the functional activity of infiltrating immune cells.

The immune response participates as a selective pressure in tumor

development. In the early stages of tumor development, the immune

response exerts anti-tumor activity, whereas during the advanced stages, the

tumor establishes mechanisms to evade the immune response, eliciting a

chronic inflammation process that shows a pro-tumor effect.

The deregulated inflammatory state, in addition to acting locally, also triggers

systemic inflammation that has repercussions in various organs and tissues that

are distant from the tumor site, causing the emergence of various symptoms

designated as paraneoplastic syndromes, which compromise the response to

treatment, quality of life, and survival of cancer patients. Considering the

tumor–host relationship as an integral and dynamic biological system, the

chronic inflammation generated by the tumor is a communication mechanism

among tissues and organs that is primarily orchestrated through different

signals, such as cytokines, chemokines, growth factors, and exosomes, to

provide the tumor with energetic components that allow it to continue

proliferating. In this review, we aim to provide a succinct overview of the

involvement of cancer-related inflammation at the local and systemic level
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throughout tumor development and the emergence of some paraneoplastic

syndromes and their main clinical manifestations. In addition, the involvement

of these signals throughout tumor development will be discussed based on the

physiological/biological activities of innate and adaptive immune cells. These

cellular interactions require a metabolic reprogramming program for the full

activation of the various cells; thus, these requirements and the by-products

released into the microenvironment will be considered. In addition, the

systemic impact of cancer-related proinflammatory cytokines on the liver—

as a critical organ that produces the leading inflammatory markers described to

date—will be summarized. Finally, the contribution of cancer-related

inflammation to the development of two paraneoplastic syndromes,

myelopoiesis and cachexia, will be discussed.
KEYWORDS

cancer, tumor microenvironment, inflammatory mediators, cytokines, systemic
inflammation, paraneoplastic syndromes, systemic immune-inflammatory markers
Introduction

In 2020, GLOBOCAN estimated the global cancer statistics

as 19.3 million new cases and 10 million deaths yearly (1). The

increasing incidence and mortality rates reflect the growth and

aging of the population and the increase in risk factors associated

with socioeconomic development. Great efforts have been made

to detect cancer early; however, most cases are detected at

advanced stages.

Inflammation is a well-conserved process in which a distinct

subset of cells from the innate and adaptive immune response is

recruited to eliminate harmful agents in the host. This process

is essential for the host’s defense against pathogens and is

accompanied by tissue repair and wound healing to regulate

tissue homeostasis. However, when dysregulated, inflammation

contributes to the emergence and development of cancer. Tumor-

associated inflammation is a well-recognized tumor-enabling

characteristic that promotes or sustains the acquisition of some

characteristics termed the hallmarks of cancer (2, 3). During tumor

development, tumor-associated inflammation shapes the anti-

tumor immune response towards a more permissive and pro-

tumoral state (3). In this regard, the relationship between the

tumor and the immune response is well known; according to

immunoediting theory, at the early stages of tumor development,

the immune system exerts anti-tumor activity through

immunosurveillance (4). In this setting, as the tumor evolves, so

does its microenvironment and the immune response, favoring the

establishment of a pro-tumoral immune response. Several reports

have indicated that the shift from anti-tumor immunity towards a

pro-tumoral response is supported by a myriad of factors released

from the tumor, immune, and stromal cells into the tumor
02
microenvironment, which act to establish a persistent tumor-

associated inflammatory state (5).

Nonetheless, the tumor-associated inflammatory state not only

has repercussions in its immediate local microenvironment, but

the release of various components into the bloodstream that

promote or sustain inflammatory activity at the systemic level

primes a cancer-induced systemic inflammatory response (6). At

the plasma level, high concentrations of these proinflammatory

factors can affect different organs or systems, such as the endocrine,

nervous, dermatological, and hematological systems, among

others, resulting in the alteration of the expression of some

molecules or set of circulating cells, which are currently used as

markers of systemic inflammation associated with cancer (5). In

addition to the known cytokines, chemokines, and growth factors,

it is now recognized that exosomes are one of the main factors

capable of reaching different organs or systems, leading to the

development of additional comorbidities called paraneoplastic

syndromes (6). Among these paraneoplastic syndromes,

neuropathy, hypercalcemia, dermatomyositis, cachexia, and

dysregulated hematopoiesis cause detrimental effects on the

patient’s quality of life and are sometimes manifested before

cancer detection (7). In some instances, the clinical manifestation

of paraneoplastic syndromes contributes to the promotion of

tumor growth-promoting capabilities, leading to decreased

overall survival (8, 9).

The study of cancer initially focused on the tumor’s genetic

alterations and biological activity. Recently, the role of the

bidirectional interactions between the tumor and its

microenvironment as an integral and evolving biological

system has been considered. Although human tumors are

composed of heterogeneous cell populations, employing tumor
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cell lines and animal models has allowed us to deepen our

understanding of the participation of the microenvironment

throughout tumor development.

This review highlights the intricate signaling mediated by the

different components released in the tumor microenvironment

and their contribution at the systemic level. First, we will

describe the interaction between the tumor and the immune

cells and its evolution during tumor development. The local

production of immune-stimulating factors by the stroma and

immune inhibitory mediators induced or produced by the tumor

will also be considered. At the systemic level, the effect of the

main proinflammatory cytokines reaching their target organs

and their impact on the production of inflammation markers

will be addressed. Finally, the clinical manifestations associated

with the development of inflammatory cytokines-induced

paraneoplastic syndromes will be examined.
Tumor microenvironment

According to the multistep carcinogenesis model, a tumor is

shaped by a group of heterogeneous cells harboring genomic and

epigenomic alterations. Transformed cells carrying driver

mutations and epigenetic alterations activate aberrant signaling

pathways that hinder the apoptotic process and promote

uncontrolled cell proliferation. The growth of these

transformed cells leads to changes in tissue architecture, which

induces stress in the cells of the surrounding stroma, causing an

increase in the production of soluble inflammatory mediators

and growth factors and exosome release. These factors maintain

a chronic inflammatory microenvironment that enables

tumorigenesis (10). As the tumor grows, heterogeneous cell

populations are generated due to the high and stochastic

proliferation rate. Some of these new populations in the tumor

mass acquire immune evasion mechanisms or produce soluble

factors that modify immune cell phenotypes to support pro-

tumor activity (11).

It has been recognized that the tumor microenvironment

(TME) participates in cancer development and promotes the

acquisition of some hallmarks of cancer (2). The composition of

TME is heterogeneous; it is mainly composed of—but not

limited to—cells such as endothelial cells, cancer-associated

fibroblasts, pericytes, cancer stem cells, and immune-

inflammatory cells, in addition to diverse extracellular matrix

components (2).

In this context, the TME is a complex, redundant, and

dynamic network that is constantly evolving throughout

tumor development and progression. In this network, tumor,

immune, and non-immune cells establish membrane–

membrane and ligand–receptor interactions as well as

communicate through the paracrine, juxtacrine, and internal

secretion of various substances, such as proteins, different types
Frontiers in Endocrinology 03
of RNA, lipids, and biological mediators, which are delivered

through the production of exosomes (12–14). Exosomes are

vesicles between 40 and 160 nm in diameter. Exosomes arise

from an early endosome in a process mediated by the endosomal

sorting complex required for transport (ESCRT) (15). These

mature endosomes are also known as multivesicular bodies

(MVBs). MVBs can fuse with lysosomes for the degradation of

their contents or can fuse with the plasma membrane, releasing

their vesicles into the extracellular space (16). Exosomes can

contain proteins, RNA, DNA, lipids, and carbohydrates. Initially

considered as waste products of cells, exosomes are now known

to play an essential role in cell communication (17). Most

reports indicate that exosomes play paramount roles in tumor

cell invasion, metastasis, and angiogenesis. In addition,

exosomes are involved in modulating the TME, altering

cellular metabolism, and promoting or inhibiting the immune

response (18).

All of these interactions and molecule transfers activate

diverse signaling pathways that affect gene expression, support

the metabolic demands of different cell types, and induce the

synthesis of various proteins that act as critical biomolecules to

induce the participation of the immune response against

genotoxic insults, incipient tumor formation, and tumor

development (19, 20). During the early stage of tumor

development, a nascent transformed cell develops in close

interaction with the resident immune cells, among which the

incipient transformed cell proliferates to form a small group of

cells that lead to the distortion of the local tissue morphology. In

this regard, and as part of the innate immune response, natural

killer (NK) cells and resident macrophages eliminate susceptible

tumor cells by releasing cytotoxic molecules that insert

themselves into the tumor cell membrane, altering its

permeability and causing cell death (21). Throughout this

process, the dying cells expose molecules on their membrane

or release intracellular molecules that acquire a new function,

acting as alarmins or damage-associated molecular patterns

(DAMPs) that promote the recruitment of other populations

of immune cells, such as those involved in the adaptive

immune response.

At this point, some reports have indicated that the exosomes

released by tumor cells express class I and II MHC molecules

and can prime and activate the immune response. As tumor cells

develop and persistent growth occurs, the activation of the

immune response continues and chronic inflammation is

promoted, which initially stimulates an anti-tumor immune

response (see below). However, it is known that chronic

inflammation allows for the acquisition of new mutations and

increased genome instability. Chronic inflammation causes the

cellular composition of the tumor to become heterogeneous,

resulting in a progressive change in the activities of the immune

and stromal cells to promote a microenvironment that favors

progression, invasion, and metastasis (22–24).
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Participation of the immune
response in cancer

The relationship between chronic inflammation and cancer

development is well known and is considered a hallmark of

cancer (2). Virchow’s observations led him to propose that

chronic inflammation provoked by the presence of an immune

infiltrate was associated with the development of cancer (25).

Afterward, Dvorak reported similar features between

inflammation and cancer, such as proliferation, cell survival,

angiogenesis, and migration (26).

The immune system is composed of an intricate network of

cells, including NK cells, which are part of the innate lymphoid

cells (ILCs) (27) and NKT cells, along with macrophages and

dendritic cells (DCs), which are cells of the phagocytic

mononuclear system that are involved in antigen presentation.

As part of the adaptive immune response includes T lymphocytes,

such as CD4+ T and CD8+ T cells, and B lymphocytes (28). The

detailed study of tumor-infiltrating immune cells in biopsied

material obtained from cancer patients has indicated that

immune cells interact with tumor cells through the production

of diverse factors, such as cytokines, chemokines, the by-products

of cell metabolism, growth factors, and the components of

exosomes, which participate during the tumor development

stages (29). It has been suggested that immune cells and the

soluble factors they secrete induce a particular microenvironment

that, in the early stages of tumor development, supports anti-

tumor activities; nevertheless, the microenvironment evolves, and

in the advanced stages of the tumor, the immune cells are

modulated to promote tumor growth (29).

According to emerging knowledge on the biological role and

physiological importance of the different cells that compose the

immune system, it has been proposed that NK cells patrol the

human body to recognize normal self-cells, a process carried out

by two types of receptors. Thus, NK cell activation is tightly

regulated by an intricate balance between activation and

inhibition signals (30, 31). In a normal cell, the peptides derived

from self-proteins are loaded onto class I MHCmolecules and are

recognized by NK cells through the killer cell immunoglobulin-

like receptor (KIR). In contrast, the recognition of self-cell ligands,

such as the stress-induced proteins MICA, MICB, and ULBP-1, is

mediated by the natural cytotoxic receptor (NCR) (32, 33). In

tumor cells, tumoral peptides are associated with class I molecules,

impeding recognition by KIR receptors and triggering effector

activity. For full activation, NK cells depend on glycolysis and

oxidative phosphorylation (OXPHOS), which are modulated by

mTORC1 (34, 35). NK cells fight tumors by releasing cytolytic

molecules, such as perforin, granzymes, and granulysin, causing

the death of sensitive tumor cells. Some authors have also shown

that NK cells can release exosomes containing these cytolytic

molecules that reduce or eliminate malignant cells in both tumor-

bearing animal models and human tumor cell lines of distinct

origins (36–38).
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In addition, activated NK cells release several soluble mediators,

such as tumor necrosis factor-alpha (TNF-a); interferon-gamma

(IFN-g); interleukin (IL)-10; chemokines, including CCL3, CCL4,

CCL5, XCL1, etc.; and growth factors, such as granulocyte

macrophage colony-stimulating factor (GM-CSF), etc. (39). IFN-g
is known to be essential for immune cell activation; in NK cells, it

increases cell activity and cytolytic potential (40, 41). From this point

of view, NK cell overactivity increases the proportion of dying tumor

cells and releases more DAMPs are released, which act as “find me”

signals, and tumor antigens. These tumor-released compounds

promote the arrival of inflammatory and immune cells, initiating

an acute inflammatory process (42, 43). In this setting, tissue-

resident macrophages, dendritic cells (DCs), and recruited

monocyte-derived DCs comprise the mononuclear phagocytic

system (44, 45), playing a critical role in homeostasis, tissue repair,

the immune response, and cancer (46). In local tissues, resident and

immature DCs (iDCs) exhibit elevated phagocytic activity mediated

by the expression of a variety of pattern recognition receptors

(PRRs) (47), which recognize the DAMPs and tumor antigens

released from dead and dying tumor cells. Then, the iDCs trigger

a rigorous metabolic process to meet the cell’s energy demands,

including increased aerobic glycolysis, decreased OXPHOS with a

concomitant increase in nitric oxide (NO) production, and

increased fatty acid (FA) metabolism (48, 49). ROS production

regulates the acidification of the lysosomal compartment for the

degradation of phagocytosed antigens to peptides, while FA

metabolism supplies the components for cell membranes. During

these events, the endoplasmic reticulum and Golgi apparatus are

expanded for protein synthesis, which assists in the upregulation of

class II MHC molecules and antigen cross-presentation by class I

MHC molecules; the expression of the costimulatory molecules

CD80, CD86, and CD40; the expression of receptors for

chemokines; and cytokine secretion, including interleukin (IL)-1,

TNF-a, IL-6, IL-8, IL-12, IL-15, IL-18, etc. All of these activities

induce the progressive maturation of DCs to become professional

antigen-presenting cells (APCs). Then, the APCs travel to the lymph

node through the lymphatic vessels, a process in which glucose

metabolism plays a critical role (50, 51).

In the lymph node, DCs (mDCs) act as potent APCs that

stimulate the proliferation and maturation of naïve antigen-

specific CD4+ T cell clones and, by antigen cross-presentation,

the activation of naïve antigen-specific CD8+ T cells. In addition

to direct cell–cell interactions, some studies have indicated that

exosomes released by APCs can also induce T-cell activation. It

has been demonstrated that they express peptides associated

with class I and II MHC and costimulatory molecules. In

addition, they can also activate T and NK cells through the

NKG2D–NKG2D ligand interaction (52–58).

Soon after the initial T-lymphocyte priming, T cells upregulate

aerobic glycolysis, increasing glucose transporters and enzymes to

meet their energetic demands; glutaminolysis and increased amino

acid uptake favor OXPHOS for ROS and NO synthesis. In addition

to mitochondrial biogenesis, lipogenesis by the endoplasmic
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reticulum and Golgi apparatus are required. Following this PI3K-

AKT-mTORC1-dependent metabolic reprogramming, effector

CD4+ T cells secrete several cytokines, such as IL-2, IFN-g, etc.,
that induce the activation of specific transcriptional programs for

the stimulation of antigen-specific CD8+ T cells and the

overactivation of NK cells (59–61). The CD8+ T cells then

release various cytokines, such as IFN-g, IL-2, and TNF-a, and
synthesize cytolytic molecules to become effector cytotoxic T

lymphocytes (CTLs) (60, 62). After T-cell expansion, effector

CD4+ T cells and CTLs migrate through the bloodstream and

infiltrate the tumor, becoming critical cells for tumor destruction

(63). A recent report from Rezaei R et al. using a CT-26-induced

BALB/c mouse model of colorectal cancer indicated that when

incorporated into tumor-derived exosomes, miR-124-3p, which

acts as a post-transcriptional regulator of gene expression,

stimulates a potent antitumor immune response, diminishing T

regulatory (Treg) cells, reducing tumor mass, and increasing the

overall survival rate (64). This miRNA is downregulated in colon

cancer compared to non-malignant tissue, and in vitro studies have

indicated that in Treg cells, PD-L1 expression is inhibited by

cytokines such as TGF- b and IL-10 (65). All of this information

suggests the possible involvement of exosomes released by tumor

cells in the induction of a potent anti-tumor immune response.

The cytokines released by T cells create a positive feedback loop

that perpetuates the inflammatory process, as the array of pro-

inflammatory cytokines leads to the overstimulation of innate

immune cells. In addition, the overstimulated NK cells

upregulate the activity of tissue-resident macrophages and the

recruited neutrophils at the tumor site. These phagocytic cells carry

out the respiratory burst to further produce pro-inflammatory

cytokines and release ROS and NOS, promoting the M1 and N1

cell phenotypes, respectively. The induced anti-tumor activity leads

to the additional destruction of tumor cells (66). Exosomes released

by these metabolically activated cells mimic the tumoricidal activity

of M1 and N1 cells (67–69).

A chronic inflammatory process is induced when this cellular

circuit is maintained to eliminate tumor cells which mutations

generate immunogenic changes in the synthetized tumor proteins.

Reports have indicated that the chronic inflammatory process

causes the release of transferrin-bound iron, which accumulates in

the extracellular space. It is known that tumor cells take up this

element, which promotes the production of DNA-damaging ROS.

Increased DNA damage may lead to cell death in some vulnerable

tumor cells in a process known as cell death mediated by

ferroptosis (70). Conversely, these and other mutation-causing

factors could promote genomic instability and epigenetic changes

in other cells within the tumor cell population, which could lead to

the maintenance of cell viability and enhance tumor proliferation,

induce resistance to apoptosis, and, concomitantly, increase tumor

heterogeneity (71).

Thus, the tumor comprises new tumor cell clones, increasing

phenotypic heterogeneity, and the tumor mass itself. Oncogenic

changes promote the activation of various signaling pathways in
Frontiers in Endocrinology 05
the heterogeneous tumor population, increasing the release of

exosomes with different molecules or soluble factors that

reinforce the inflammatory phase of chronic inflammation. For

example, driver mutations in genes, such as MYC, K-RAS, or

RET activate signaling pathways that promote the synthesis and

release of proinflammatory cytokines, such as IL-8, IL-1, and

CXC chemokines (72–74).

Depending on the tumor type, stage of tumor progression,

genetic background, clinicopathological characteristics of the

patient, etc., the distribution and density of non-malignant

cells infiltrating the tumor vary greatly. Tumor and non-

malignant cells produce several cytokines, growth and

differentiation factors, chemokines, lipids, and nucleic acids

that are released or loaded into exosomes, generating a wide

array of molecules that promote cancer. Various research groups

have published excellent reviews describing the signaling

pathways involving cytokines, growth factors, and exosome

components that may play a role in cancer (14, 18, 54, 75–77).

In the more advanced stages of cancer development, the

surrounding tumor, stromal, and immune cells show a high rate

of proliferation that requires high metabolic activity, resulting in

the release of various by-products. In addition to the factors

released by the various cells that make up the tumor, these

metabolic by-products create a complex and changing

microenvironment, which gradually promotes cancer cell

survival and tumor mass growth. High metabolic activity is

indispensable due to the chronic inflammatory process induced

by the tumor. The increased energy and biosynthetic requirements

mediated by increased glucose uptake and aerobic glycolysis favor

the tumor’s proliferation, differentiation, and growth and affect

the stromal cells. During this metabolic reprogramming, tumor

cells produce—or induce the immune and stromal cells to

produce—several cytokines that stimulate tumor growth while

inhibiting or blocking the effector activity of immune cells. Some

of the cytokines produced include IL-10, IL-6, IL-4, HighMobility

Group-Box 1 (HMGB1) protein, etc., while several growth factors

are generated as well, such as Epithelial Growth Factor (EGF),

vascular endothelial growth factor (VEGF)-A, transforming

growth factor-b (TGF-b), platelet-derived growth factor subunit

A (PDGF-A), angiopoietin-like 4 (ANGPTL4), etc.; information

about these factors is summarized in Table 1. In addition, some

chemokines and their receptors play an important role in the

TME and are expressed by tumor, immune, and stromal cells. Due

to their anti- and pro-tumor effects, a-chemokines, i.e., CXC

chemokines that contain a CXC motif at their N-terminus, have

attracted attention. Some reports have indicated that CXCR3 and

its corresponding ligands, CXCL14 and CXCL16, recruit primary

immune cells with immune regulatory functions and pro-tumor

activities, such as tumor-associated macrophages (TAMs) and

neutrophils (TANs), myeloid-derived suppressor cells (MDSCs),

and Treg cells (120–122). Chemerin was initially described as a

chemotactic factor for NK cells, macrophages, and myeloid and

plasmacytoid DCs (123–125), favoring tumor infiltration by
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leukocytes and the regulation of cell metabolism. Current reports

indicate that different cell types produce chemerin, including

fibroblasts, epithelial cells residing in the tumor niche, and cells

from distant organs, such as hepatocytes and adipocytes (126–

128). Although most tumors downregulate the expression of

chemerin, the potential pro- and anti-tumor activities of this

molecule have been reported in the TME and have been suggested

as a prognosis marker (129). More information on this topic is

beyond the scope of this review; however, further information can

be obtained from previous studies (130, 131).

In the TME, the high proliferation rate of tumor cells

induces hypoxia, leading to hypoxia-induced acidosis caused
Frontiers in Endocrinology 06
by the release of lactate (132). During this metabolic

reprogramming in liver cancer, the lncRNA HULC modulates

the activity of crucial glycolyt ic enzymes through

phosphorylation (133). In addition, LINC00261 promotes

aerobic glycolysis in pancreatic cancer by activating the miR-

222-3p/HIPK2/ERK axis (134). The participation of exosomes

during hypoxia is an emerging research area. In one study, the

long-intergenic non-coding RNA regulator of reprogramming

(LINC-RoR) contained in the exosomes released by

hepatocellular cancer cells under hypoxic conditions was

shown to lead to increased HIF-a expression and the poorer

survival of patients (135). In addition, in colorectal cancer,
TABLE 1 Cytokines and Growth Factors associated with cancer-related inflammation.

Cytokine Primary Target Cell Biological activity in cancer Ref.

IFN-g Macrophages, NK, and T-cells Up-regulates expression of MHC-I and-II molecules and antigen presentation. Inhibits proliferation of
tumor cells and induces necroptotic cell death.

(78–
80)

IL-1 NK, T-, M1 macrophages, and tumor
cells

Promotes systemic and local inflammation. Facilitates angiogenesis through activation of endothelium and
metastasis. Participates in mobilization of HSPCs in bone marrow to yield MDSCs.

(81,
82)

IL-2 T-CD4/CD8 and NK cells Drives the activation of tumor-infiltrating CD8+ T cells. (83)

IL-4 Th2 cells, basophils, eosinophils, and
macrophages

Decreases the activity of TAM and CD8+ T cells. Induce the expression of Th2 cytokines modulating the
antitumor immune response. Induce a regulatory phenotype on NK cells by modulating DCs. Stimulates
the growth of tumor cells and cell death resistance.

(84–
88)

IL-6 Monocytes, macrophages, endothelial
cells, B- and T-cells, and tumor cells

Regulation of acute phase response, activation of T helper cells. Promotes the growth of tumor cells and
favors their survival. Implicated in angiogenesis.

(89–
91)

IL-8 Neutrophils, endothelial cells, and
pericytes

Attraction of MDSCs into the tumor. Activation of angiogenesis. Regulation of stem cell properties. (92,
93)

IL-10 T-, B-, dendritic cells (DCs), Th2
lymphocytes, Tregs, and macrophages

Inhibits the expression of MHC class I and II molecules and antigen presentation in APCs and tumor cells.
Contribute to immunosuppression by hindering the effector activity NK, Th1, and CD8+ T cells. Negatively
correlates with tumor-infiltrating CD8+ IFN-g+.

(94–
97)

IL-12 NK, APCs, and T-cells Promotes proliferation and cytotoxic effect of NK cells. Enhance the anti-tumor activity of M1 and Th1
cells.

(98)

IL-17 Mucosal tissues, fibroblast, epithelial,
endothelial, Th17, NK cells, and
monocytes

Contributes in tumor growth, metastasis and cancer-related inflammation. (99,
100)

IL-18 Th1, NK, DCs, macrophages,
keratinocytes, and B cells

Pro-inflammatory cytokine. Cooperates with IL-12 inducing IFN-g production from T helper and NK cells,
leading to NK cell activation; up-regulates antigen presentation and exhibits antiviral and antitumoral
functions. Suppress tumor growth by downregulating VEGF production within tumor.

(101,
102)

TNF-a Neutrophils, macrophages,
monocytes, and endothelial cells

Increase tumor cell growth, angiogenesis, and metastasis. Participates in promoting cancer-associated
inflammation.

(103)

TGF-b MDSCs, Tregs, and tumor cells Increase the expression of PD-1 on intra-tumoral CD8+ T cells resulting in their dysfunction and
exhaustion. Inversely correlates with the frequency of CD8+ T cells in the tumor niche. Suppress the
cytotoxic activity of NK cells. Promotes the activation of the EMT program.

(104–
107)

GM-CSF Lymphocytes, macrophages,
fibroblast, endothelial cells, and
tumor cells

Promotes DCs differentiation, in response to cytokine or inflammatory stimuli, activates the effector
functions of myeloid cells at the resolution of inflammation to promote wound healing and tissue repair.

(108)

G-CSF Fibroblast, stromal cells, monocytes,
macrophages, and endothelial cells

Stimulates extramedullary hematopoiesis in the liver. Causes the differentiation of HPSCs into myeloid
precursors in bone marrow. Recruits DCs and activates Tregs and secretion of Th2 cytokines.

(109,
110)

PDGF Platelets, macrophages, osteoblasts,
fibroblasts, and tumor cells

Chemoattractant of fibroblasts. Stimulates angiogenesis and activation of EMT. (111–
113)

VEGF Smooth muscle cells, keratynocytes,
platelets, endothelial cells,
neutrophils, macrophages, and tumor
cells

In endothelial cells induces a mitogenic effect and resistance to cell death. Promotes apoptosis of CTLs
through Fas-FasL in tumor vasculature. Hampers the maturation of DCs.

(114–
116)

EGF Epithelial cells, fibroblast, platelets,
endothelial cells, glands, and tumor
cells

Over-expression correlates with TGF- b, tumor growth, metastasis, and resistance to anti-tumor agents (117–
119)
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LINC00152 has been shown to be released in exosomes under

hypoxic conditions, participating in the pathogenesis and

progression of this cancer (136, 137). The production and

secretion of lactate by tumor and infiltrating immune cells

induce a gradual reconversion of immune cells from anti-

tumor to pro-tumor activity to promote tumor immune

evasion and support the migration and invasion of tumor cells

(138, 139).

Tumor cells increase their iron uptake to supply their

bioenergetic demand. Iron metabolism impacts DNA

synthesis, cell cycle progression, and morphogenesis in

physiological processes during normal cell life. This metabolic

program also participates in invasion, metastasis, and EMT

(140). However, as mentioned previously, increased

cytoplasmic iron levels could induce a type of cell death

known as ferroptosis (141). Cells undergoing ferroptosis

release DAMPs associated with cell death, such as HMGB1,

ATP, etc. (142). In the TME, extracellular ATP released by dead

or dying cancer cells is hydrolyzed by several families of

ectonucleotidases (143), mainly CD39 and CD73, which are

expressed by immune and endothelial cells (144, 145). These

enzymes are responsible for the conversion of extracellular ATP

to adenosine. Adenosine accumulation in hypoxic cancer tissue

is sensed by A2AR and A2BR receptors on immune cells that

hamper the anti-tumor immune response. It is known that

A2AR blocks the immune cells secretion of IFN- g and IL-2.

At the same time, A2BR prevents antigen presentation by mDCs

and induces the polarization of M1 to M2 macrophages and the

stimulation of MDSCs (146, 147).

Additionally, metabolic reprogramming activates signaling

pathways that lead to aberrant gene expression due to epigenetic

changes that alter tumor and stromal cells. These metabolic

changes produce cells that also display the pro-tumor properties,

such as cancer-associated fibroblasts (CAFs), induced by the

TGF- b and EGF secreted by the tumor (148). In addition, they

produce several chemokines; TGF- b ; IL6; some growth factors

such as hepatocyte growth factor, insulin-like growth factor, etc.;

and release exosomes. Furthermore, this environment favors the

recruitment of MDSCs (149), TAMs (150), mesenchymal stem

cells (MSCs) (151), and Tregs (152, 153). The role of exosomes

in promoting the participation of these subsets of immune cells

displaying pro-tumoral activity is discussed in the following

reviews (154, 155).

In the TME, the accumulation of cytokines, chemokines,

soluble factors, and a mixture of biomolecules in exosomes

compromises the immune response during the advanced stages

of cancer (156–158). Soluble factors with immunosuppressant

activity, such as IL-10, TGF-b, IL-4, IL-6, etc., impair the function

of NK cells (159, 160) and CTLs (161, 162) by inhibiting their

effector activity and downregulating the expression of transcripts

coding for cytolytic molecules. This cytokine environment induces

the differentiation of CD4+ T to Treg cells (163–165) and

maintains a stage of dedifferentiation in MDSCs by enhancing
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the expression of TGF-b and IL-10. In addition, tumor-resident

MDSCs produce cyclo-oxygenase 2 (COX-2), arginase 1 (ARG1),

inducible NO synthase (iNOS), IL-10, and indoleamine 2,3-

dioxygenase (IDO), which accentuate the suppressor milieu

(166). In hypoxia, pyruvate is reduced to lactate, which

decreases the local pH. Moreover, IL-4 or IL-13 stimulates the

polarization of the macrophages from the M1 toM2 phenotype to

support tumor progression and angiogenesis (167) (Figure 1).
The systemic effect of tumor
microenvironment-derived
cytokines

Studies performed with cancer patients and animal models

have studied several local and systemic cytokines. In cancer

patients, diverse cytokines and soluble factors showing pro- and

anti-inflammatory activities may be detected as free circulating

or exosome membrane-bound molecules (168). Reports have

indicated that the cytokines IL-1, TNF-a, IL-6, G-CSF, and GM-

CSF mainly act at the systemic level, affecting the function of

some organs (169). Our group quantified eight cytokines at the

systemic level in smoking patients with lung adenocarcinoma

and found a significant increase in IL-2, IL-4, IL-6, and IL-10

compared to their levels in healthy smoking subjects. Among

these cytokines, the concentration of IL-6 was the highest in the

peripheral blood of cancer patients, showing an increase of

approximately sevenfold. To explain the increased systemic

levels of IL-6, several reports from distinct groups, including

ours, have pointed out that tumor cells from different types of

cancers produce this cytokine (170, 171). Currently, the roles of

these cytokines in cancer have gained considerable attention. In

particular, those cytokines acting at the systemic level have been

associated with the development of some clinical signs or

symptoms of paraneoplastic syndromes.
TNF-a

As discussed in the previous section, the tumor and its

stroma release cytokines that act on various systems and

organs. TNF-a is a pro-inflammatory cytokine with diverse

functions that participates in homeostatic and distinct

pathological conditions. The biological activity of TNF-a is

exerted via binding with its cognate receptors: TNF-a receptor

1 (TNFR1) and 2 (TNFR2). TNFR1 is ubiquitously expressed

in cells and is activated by the transmembrane or the soluble

form of TNF-a. To the contrary, the expression of TNFR2 is

limited to specific cells, such as immune and endothelial cells

and cells of the central nervous system, and its activation

mainly depends on the transmembrane form of the ligand

(172). The role of these receptors in homeostasis has been

described. The activation of TNFR1 mainly promotes
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inflammation, the induction of cell death via apoptosis or

necroptosis, and tissue degeneration.

Conversely, the activation of TNFR2 is associated with cell

survival and the wound healing process (172). Once TNF-a is

produced and released into the bloodstream, this cytokine can reach

the adipose tissue, where itmodifies the adipocytes glucose and lipid

metabolism. In this regard, TNF-a decreases glucose uptake by

inhibiting the signalingpathways triggeredby insulinand, as a result,

downregulates the mRNA and protein expression of GLUT-4 (173,

174). Simultaneously, TNF-a activates lipolysis via the inhibition of

the peroxisome proliferator-activated receptor (PPAR)- g and

CCAAT enhancer-binding protein, causing an increase in the

expression of neutral lipases (175). These observations might

explain the increased levels of serum lipids detected in cancer;

however, more studies are required to demonstrate the role of

TNF-a during the dyslipidemia observed in cancer (176).

Studies in cancer patients have demonstrated that cancer-

associated systemic inflammation is associated with a sense of

pain or hyperalgesia from an unknown source. In peripheral

nerves, TNF-a is linked with this phenomenon. In this setting,

the interaction of TNF-a with TNFR1 causes the activation of

the p38/MAPK signaling pathway, which culminates in the

activation of Na+ and K+ ionic channels in peripheral nerves,

leading to pain generation (177, 178).

In addition, the findings from a recent study indicated that

in hepatocellular carcinoma, TNF-a released in exosomes
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promoted osteoclast differentiation. During this phenomenon,

the TNF-a stored in the exosomes produced by hepatocellular

Huh-7 cells caused the expression of osteoclast-associated

differentiation markers when added to murine macrophage/

monocyte cell lines through the activation of the NF-kB/
cathepsin K/triiodothyronine receptor auxiliary protein axis.

These findings explain the tendency of hepatocellular cancer

cells to generate bone metastases (179).
Interleukin-1

IL-1 is a pleiotropic cytokine that is involved in various

inflammatory processes. IL-1 belongs to the Ig-like receptor

superfamily, which is characterized by the presence of the Toll/

interleukin-1 receptor (TIR) domain. The TIR domain is

essential for the biological activity of IL-1 (180, 181). The

ligands of the IL-1 family are IL-1, IL-18, IL-33, and IL-36.

These agonists bind to three receptors: IL-1a and IL-1b perform

cell activation when bound to IL-1R1; IL-18 is a ligand of IL-

18Ra; IL-33 binds to ST2 (IL-1R4); and IL-36a, b, and g are

agonists of IL-1Rp2 (IL-1R6). The primary function of this

family of ligands and receptors is to participate in

inflammatory processes (182, 183).

IL-1a and IL-1b are encoded by different genes and have

minimal homology. IL-1a is synthesized as pro-IL-1a, which
FIGURE 1

Systemic effects and paraneoplastic syndromes caused by cancer-associated inflammation. During the advanced stages of tumor development,
tumor and stromal cells release an array of soluble factors, such as cytokines, chemokines, growth factors, metabolic by-products, exosomes,
and ncRNAs, which sustain the local inflammatory state. Moreover, these soluble factors, when released into the bloodstream, reach distinct
organs, systems, and tissues, causing alterations in their function and the production of diverse molecules and subsets of cells, which can be
employed as biomarkers to assess cancer-related systemic inflammation. Created with BioRender.com.
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can be proteolytically cleaved by calpain, granzyme B, elastase,

and chymase. When the mature form of IL-1a is released, it acts

as an “alarmin,” activating the innate immune response against

noxious stimuli (184). IL-1b is a critical player in the

inflammasome. The activation of the inflammasome in innate

immune response cells, such as monocytes and neutrophils,

occurs when pathogen-associated molecular patterns (PAMPs)

and DAMPs bind to Toll-like (TLRs) and NOD-like (NLRs)

receptors. The assembly of the inflammasome causes the cleavage

of pro-caspase 1, and caspase 1 is released, which then cleaves pro-

IL-1b and pro-IL-18. IL-1a and IL-1b establish chronic

inflammation in the process of carcinogenesis (185). In IL-1/IL-

1R1 knockout murine models, it was observed that IL-1 was a

critical factor in the inflammatory process associated with 3-

methylcholanthrene carcinogenesis (186). Both IL-1a and IL-1b
participate in the systemic inflammation associated with cancer.

Tumor and stromal cells in the tumor microenvironment produce

and release IL-1.

Recent reports have indicated that cancer-derived exosomes

from prostate and lung cancer as well as glioblastoma cell lines

stimulate the production and release of IL-1b in immune and

non-immune cells (187–189). In this setting, cancer-derived

exosomes may trigger distinct intracellular signaling pathways

in receptor cells, culminating in NF-kB activation and the

subsequent expression of the IL-1b gene or the activation of

inflammasomes through NLRP3 for the cleavage of pro-IL-1b
into its active form (190, 191). In support of this, Linton et al.

reported that exosomes derived from pancreatic ductal

adenocarcinoma (PDAC) cell lines caused the polarization of

M0 into immunosuppressive pro-tumoral M2 macrophages,

which increased the production and release of IL-1b (327). In

this regard, PDAC-derived exosomes were shown to contain

increased levels of arachidonic acid, leading to its subsequent

metabolism into free fatty acids, which activate inflammasomes

through NLRP3 (193). Several reports have indicated that IL-1 in

circulation affects several organs and may contribute to

establishing paraneoplastic syndromes, such as cachexia (see

below) (194–197).
IL-6

Low blood levels of IL-6 ranging between 1 and 5 pg/mL

have been reported under normal conditions (198). In addition,

soluble forms of the receptors IL-6R and gp130 have been

detected. After local production by tumor cells in the

inflammatory niche, IL-6 is released into the bloodstream and

eventually reaches the liver, where it has several biological effects

on hepatocytes. In one study, an increase in the production of

acute phase proteins (APPs), such as C-reactive protein (CRP),

serum amyloid A (SAA), fibrinogen, haptoglobin, and a1-
antichymotrypsin, and an opposing decrease in albumin,

fibronectin, and transferrin were detected. In addition, IL-6
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regulates the transporters of iron and zinc associated with

anemia that are detected in chronic inflammation (199). IL-6

also promotes megakaryocyte maturation in the bone marrow,

increasing the serum platelet count (200).

The varied effects induced by IL-6 are detected mainly in

chronic inflammatory diseases. In addition, this cytokine exerts

various biological actions on the distinct types of immune cells,

maintaining a deregulated and persistent positive feedback loop.

IL-6 has evident pleiotropic effects in hematopoiesis,

inflammation, the immune response, and cancer.
Parameters to assess systemic
immune-inflammatory markers

The liver is a primordial organ that eliminates waste and

toxic compounds, mainly found in dietary products, or harmful

particles from pathogens. In addition, it provides nutrients and

produces mediators that alert immune cells to induce an

inflammatory response that eliminates harmful agents and

induces the restoration of tissue homeostasis. The products of

pathogens (PAMPs) or those derived from the host’s damaged

cells (DAMPs) induce the release of acute phase proteins from

the liver (201, 202). Kupffer cells and macrophages produce

proinflammatory cytokines, such as IL-6, IL-1b, and TNF-a, to
generate a series of products associated with the inflammatory

response (203, 204). These cytokines activate resident cells, such

as hepatocytes, endothelial cells, hepatic stellate cells, and diverse

immune cells, from the hepatic arteries and portal vein in the

liver. In addition, the liver releases diverse enzymes that

inactivate harmful drugs and produces serum proteins, such as

albumin and coagulation factors (205) (Figure 1).

Local inflammation appears to be reflected at the systemic

level, and this is supported by several studies (6, 206, 207). Routine

hematological parameters have been used in recent years as

indicators of systemic inflammation. Among these simple

parameters, the proportions of circulating inflammatory cells,

including the white blood cell (WBC) count, lymphocyte count,

neutrophil count, platelet count (PLTs), mean platelet volume

(MPV), and levels of hemoglobin (Hb) and serum CRP, have been

screened (208, 209). Analyte-based scores or ratios of some of

these parameters have been reported to assess systemic

inflammation, and their correlation with the prognosis of

numerous pathologies, including cancer, has been described.

The Glasgow prognostic score/modified Glasgow prognostic

score (GPS/mGPS) is an inflammatory indicator (210, 211). The

GPS/mGPS reflects the systematic inflammatory response and

nutritional status. Recent studies have shown that the GPS/

mGPS is a novel inflammatory index that can predict outcomes

in various cancers (212–214). However, the molecular

mechanisms underlying the relationship between the GPS/

mGPS and poor prognostic outcomes are still unclear. A

plausible explanation is that an elevated GPS/mGPS may
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reflect an individual’s immune and nutritional status. The GPS/

mGPS comprises albumin and CRP; both are acute-phase

proteins synthesized in the liver. The CRP level is regulated by

several pro-inflammatory cytokines, such as IL-1, TNF-a, TGF-
b, IFN-g, and IL-6 (215). Studies have shown that IL-6 correlates

with OS and SOC in CRC, and its effect could explain the

promotion of tumorigenesis and metastasis (216, 217).

Additionally, CRP is associated with the activity of infiltrated

immunecells, includingDCs,T cells, andNKcells (218, 219).Many

studies have shown that CRP is an independent biomarker for

predicting prognostic outcomes in various cancers (220, 221). The

serum albumin level is used to evaluate liver function and

nutritional status. Hypoalbuminemia is a common feature of the

systemic inflammatory response, cancer recurrence, and

metastasis. In addition, it has been shown to be positively

correlated with the OS and CSS of patients with various cancers,

including CRC and ovarian cancer (222, 223).
Albumin

Albumin is a low-molecular-weight protein of 66 kDa

consisting of a single polypeptide chain with 585 amino acid

residues that is fully synthesized in the liver, which produces

approximately 15 g daily. Albumin maintains a plasma

concentration of 35–45 g/L and is the most abundant protein in

plasma, contributing to the maintenance of oncotic pressure and

the permeability of the microvasculature. In addition, it has been

implicated in importantmetabolic functions as it transports several

endogenous ligands, such as free FAs, bilirubin, and ion metals, as

well as some exogenous ligands (224, 225). Albumin expression is

mainly regulated at the transcriptional level. Decreased albumin

synthesis leads to hypoalbuminemia, which contributes to the

development of edema by the transudation of fluids into

extravascular spaces. TNF-a is a key cytokine involved in the

inhibition of albumin synthesis, although other cytokines, such as

IL-1b and IL-6, may contribute as well.

The serum albumin level is a marker of nutritional status,

and a level less than 35 g/L is considered to indicate

hypoalbuminemia. Albumin acts as an anti-inflammatory

molecule; its increase is associated with blocking the migration

of neutrophils through the endothelium by decreasing the

expression of VCAM-1 in a TNF-a-dependent manner (226).

Regardless of the disease, decreased serum albumin has been

proposed as a risk factor and predictor for morbidity

and mortality.
Platelets

Platelets, or thrombocytes, are nonnucleated and discoidal

fragments derived from precursor megakaryocytes during

megakaryopoiesis. Platelets maintain normal hemostasis and
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participate in several biological processes, such as the control of

blood vessels and their interactionswith endothelial cells. They also

form a platelet plug with various extracellular matrix components,

which inhibits vascular leakage. In addition, they are vital in acute

and chronic inflammation due to their release of cytokines and

chemokines that attract leukocytes and favor immune cells to reach

the damaged tissue for wound healing. Furthermore, they are

critical participants in the pathophysiology of several diseases,

including cancer (227–229). Platelet characteristics have been

found to be significantly associated with the clinical outcomes of

several pathologies. Two of these features are the number of

circulating platelets, designated as the platelet count, and the

mean platelet volume (MPV).

The complete blood count includes the platelet count and

the MPV. The platelet count quantifies the number of platelets in

the blood; there are usually between 150,000 and 450,000

platelets in each microliter. Platelet parameters are used in the

diagnosis of a patient’s general condition and have a prognostic

value in some pathologies. A platelet count is related to

pathologies associated with a chronic condition (229). MPV is

a measure of platelet size that results from a higher production

by megakaryocytes; hence, it indicates if there are more young

platelets circulating in the bloodstream. The MPV ranges

between 7.5 and 12.0 fl (229). The value is inversely related to

the platelet count, hemostasis maintenance, and the preservation

of a constant platelet mass. MPV is a marker of platelet activity,

and it has been related to prothrombotic and proinflammatory

diseases (230).

Under inflammatory conditions, the increase in IL-6 causes an

increase in the ploidy of megakaryocytic nuclei and an increase in

the cytoplasmic volume, leading to the generationof a largenumber

of platelets. These platelets migrate to the site of inflammation,

where they undergo activation and are depleted, triggering a

decrease in the MPV of the patient’s blood during the

development of the inflammatory process (229).
Fibrinogen

Fibrinogen is produced in the liver during general acute-

phase inflammatory provocation. Inflammatory cytokines

induce fibrinogen synthesis by hepatocytes and Kupffer cells.

Several reports have indicated that IL-6 is a key cytokine that

promotes fibrinogen production due to the presence of several

IL-6 response elements in the fibrinogen genes. In addition, IL-6

regulates fibrinogen transcripts via the MEK-ERK signaling

pathway (231, 232).

In association with other molecules, fibrinogen participates

in coagulation, fibrinolysis, and cellular and matrix interactions

that support cell migration, inflammation, and wound healing.

An increased risk of cardiovascular disease has been associated

with elevated fibrinogen levels (233). Cancer patients present

with malfunctions in the coagulation process, and this molecule
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has been associated with cancer development. Fibrinogen binds

to growth factors, such as fibroblast growth factor-2 (FGF-2,

bFGF) and (VEGF, to enhance tumor growth and increase the

migration, invasion, and metastasis of tumor cells, as well as

angiogenesis—processes which are considered to be hallmarks of

cancer. The fibrinogen/albumin (F/A) ratio is considered a

promising inflammation-based marker. A high FAR was

shown to be associated with clinical–pathological features and

survival in some cancers (234). However, multicentral clinical

trials are needed to analyze the clinical impact of this

relationship on medical oncology.

The evidence presented thus far provides an explanation for

the usage of these hematological parameters and their diverse

relationships to analyze the systemic inflammatory state. These

ratios are associated with prognosis and survival in

inflammatory diseases, including cancer (235). Owing to the

extensive information indicating the prognostic value of these

ratios, we only refer to those works in which these indices were

assessed in the most frequent types of cancer. The reported ratios

are indicated in Table 2.
Paraneoplastic syndromes

Understanding the local inflammation associated with

cancer allows for a better understanding of the interaction

between tumor cells, immune cells, stromal cells, and the

soluble factors released by this system. The release of

proinflammatory factors from tumor or stromal cells—in the

form of soluble factors or those contained in exosomes—into the

bloodstream alters the production of APPs, metabolites, and
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cells, which impacts organs and systems, causing the appearance

of symptoms unrelated to the tumor itself, called paraneoplastic

syndromes (6). Approximately 8% of cancer patients present one

or more paraneoplastic syndromes. Paraneoplastic syndromes

are classified as neurologic, rheumatologic, dermatologic, or

hematologic, depending on the type of tumor (264, 265). The

manifestation of paraneoplastic syndromes has detrimental

effects on patient’s quality of life and outcome. In addition,

some paraneoplastic syndromes may exhibit tumor-promoting

capabilities (7). In this section, we will discuss the development

of myelopoiesis and cachexia.
Stimulation of myelopoiesis in cancer-
related inflammation

One of the main targets of pro-inflammatory mediators in the

bone marrow is a process known as hematopoiesis, whereby

hematopoietic stem and progenitor cells (HSPCs) differentiate

into mature blood cells. Under physiological conditions,

denominated as steady-state hematopoiesis, local and external

signals promote the retention of HSPCs in the bone marrow. For

this purpose, the bone marrow stroma cells, including endothelial,

vascular, and osteolineage cells and macrophages, participate in a

well-orchestrated network to control the proliferation and

differentiation of HSPCs (266). However, during acute systemic

infection or inflammation, factors released from pathogens and

damaged cells, as well as proinflammatory cytokines (IL-6, IL-1b,
and TNF-a), impact HSPCs and stromal cells, causing the rapid

mobilization and differentiation of HSPCs into myeloid cells, a

process known as emergency myelopoiesis (267, 268).
TABLE 2 Available systemic inflammation indices predicting prognosis and outcome in cancer patients.

Index Calculation Ref.

Glasgow prognostic score (GPS) CRP ≤ 10 mg/L and albumin ≥35 g/L Score 0
CRP ≤ 10 mg/L and albumin <35 g/L Score 1
CRP>10 mg/L and albumin ≥35 g/L Score 1
CRP>10 mg/L and albumin <35 g/L Score 2

(236–238)

Modified Glasgow prognostic score (mGPS) CRP ≤ 10 mg/L and albumin ≥35 g/L Score 0
CRP ≤ 10 mg/L and albumin <35g/L Score 0
CRP>10 mg/L and albumin ≥35 g/L Score 1
CRP>10 mg/L and albumin <35 g/L Score 2

(238–241)

C-reactive protein-to-albumin (CAR)
CRP

Albumin
(242–244)

Neutrophil-to-lymphocyte ratio (NLR)
Neutrophil   count
Lymphocyte   count

(245–248)

Derived neutrophil-to-lymphocyte ratio (dNLR)
Neutrophil   count

White   cell   count − neutrophil   count
(249–252)

Monocyte-to-lymphocyte ratio (MLR)
Monocyte   count
Lymphocyte   count

(248, 253–255)

Platelet-to-lymphocyte ratio (PLR)
Platelet   count

Lymphocyte   count
(256–258)

Systemic immune-inflammation index (SII) Neutrophil * PLR (259–262)

Aggregate index of systemic inflammation (AISI) Neutrophil * platelet * MLR (263)
f

CRP, C-reactive protein.
rontiersin.org

https://doi.org/10.3389/fendo.2022.929572
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Aguilar-Cazares et al. 10.3389/fendo.2022.929572
In cancer, it has been demonstrated that tumors take

advantage of emergency myelopoiesis to rapidly expand pools

of myeloid-derived cells showing immune suppressive and

tumor-promoting activities (266). These cells are known as

MDSCs and can be classified as granulocytic (CD11b+CD14-

CD15+) or monocytic (CD11b+CD14+CD15-) depending on

the myeloid progenitor from which they were derived (269).

As mentioned above, the plasma concentration of

proinflammatory cytokines, such as IL-1b, TNF-a, and IL-6,

increases in several types of cancer due to the sustained

inflammatory environment caused by the tumor and its

stroma. These cytokines, along with other bioactive soluble

factors, such as GM-CSF and G-CSF, travel freely in

circulation or are stored in exosomes reaching the bone

marrow, causing the proliferation, mobilization, and skewed

differentiation of HSPCs towards myeloid cells (270). Reports

on G-CSF have indicated that as the G-CSF level in the bone

marrow decreases, the expression of maintenance molecules for

HPSCs, such as CXCL12, osteopontin, Kit-1, angiopoietin, and

vascular cell adhesion molecule 1 (271) increases, thus

promoting their proliferation. In the bone marrow, IL-6 binds

to IL-6R—which is mainly expressed on hematopoietic

multipotent progenitors but not in short- or long-term

repopulating HPSCs—suppressing the differentiation of

lymphoid cells and stimulating myeloid differentiation (272).

Marigo et al. demonstrated in mice that GM-CSF, G-CSF, and

IL-6 in the bone marrow caused the activation of the master

regulator of emergency granulopoiesis, the C/EBPb
transcription factor, which is responsible for the differentiation

of HSPCs into MDSCs and their immunosuppressive activity

(273). Initial studies in humans by Wu et al. showed that

increased frequencies of HSPCs and granulocytic progenitors

in different cancer types were found in cancer patient’s blood

compared to those of healthy donors (274). The increase in these

cell populations was negatively correlated with several clinical

parameters, including the time to progression and the stage of

the disease, suggesting that activated bone marrow myelopoiesis

is a phenomenon that promotes tumor progression.

However, these proinflammatory cytokines are not only

responsible for the expansion and differentiation of HSPCs in

the bone marrow. In a mouse model of breast and lung cancer,

Sayed et al. found that hematopoiesis was biased towards

myelopoiesis due to the action of TNF-a released from

infiltrating CD4+ T cells (275). During this process, TNF-a
caused a skewed differentiation of HSPCs towards MDSCs, with

a concomitant decrease in erythroid and lymphoid precursors

(275). In this scenario, TNF-a acted on HSPCs and MDSCs

through TNFR-2, upregulating the expression of the caspase-8

inhibitor c-FLIP and promoting their survival (276). In these

works, it has been demonstrated that tumor-promoting

inflammation has profound systemic effects during the

advanced stages of cancer, causing biased hematopoiesis

toward the production of immunosuppressive myeloid cells
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and sustaining tumor progression. In addition, the results

from these studies have helped to explain the altered

percentages of hematological inflammatory parameters

detected in cancer patients by the effect of these pro-

inflammatory cytokines and growth factors in the bone marrow.

In recent years, owing to the use of NGS approaches and

elegant in vivo models, it has been shown that hematopoiesis is

altered and biased towards myelopoiesis in the early stages of

tumor development (277). Surprisingly, pro-inflammatory

cytokines play a significant role during this process by

activating hematopoiesis in the bone marrow to direct the

production of myeloid progenitors and micro-RNAs

(miRNAs) delivered from the tumor. The TME plays a critical

role in controlling this process. Some of these tumor-associated

miRNAs, such as miR-23b-3p, miR-27a-3p, and miR-671-5p, in

bone marrow downregulate the expression of genes involved in

B-cell receptor signaling and antigen processing. With this work,

it is tempting to speculate that other subsets of non-coding RNA,

in addition to miRNAs, are released from the tumor or its

stroma to activate myelopoiesis in the bone marrow. However,

studies to demonstrate this proposal are required.

In addition to proinflammatory cytokines and non-coding

regulatory RNA, myelopoiesis is controlled directly or indirectly

by the metabolites released from the tumor as part of the

metabolic reprogramming of cancer cells (2, 278). For

example, the direct control of myelopoiesis by metabolites

involves the participation of oxysterols and desmosterol in the

differentiation and expansion of MDSCs. These cholesterol

metabolites bind to retinoic acid-related orphan receptors

expressed in the cell precursors of MDSCs (278). They have

been detected in distinct pathologies, such as obesity, metabolic

disorder, diabetes, and cancer (279). Recent evidence from

Vladimirov et al. demonstrated that colorectal cancer patients

had significantly increased values of cholesterol serum

precursors compared to healthy donors, suggesting that

cholesterol metabolism is altered in cancer (280). This

evidence allows us to speculate that such patients might

present altered myelopoiesis and thus increased numbers of

MDSCs and other immunoregulatory cell populations; however,

intensive research using in vitro and in vivo models in distinct

types of cancer is needed to confirm this hypothesis. The

activation of aerobic glycolysis indirectly affects cancer

metabolic reprogramming in myelopoiesis. In a triple-negative

breast cancer mouse model, Li et al. demonstrated that aerobic

glycolysis stimulated the release of G-CSF and GM-CSF via C/

EBP-b and liver-enriched activator protein. This glycolytic-

dependent production of G-CSF and GM-CSF was correlated

with increased MDSCs and low T lymphocyte counts in breast

cancer patients (281). Although these results are pioneering,

more studies are necessary to uncover the complete impact of

altered metabolism on myelopoiesis in cancer.

Recent studies have demonstrated that hematopoiesis can

occur outside the bone marrow under distinct inflammatory
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conditions, a phenomenon known as extramedullary

hematopoiesis (269). In cancer, extramedullary hematopoiesis is

mainly found in the liver and spleen, where HPSCs or myeloid

progenitors arrive (282). In this setting, the accumulation of

immunosuppressive cells, such as MDSCs, Tregs, and erythroid

progenitor cells, in the spleen was found in a mouse model of

breast cancer. Several reports have demonstrated that

splenectomy in animals bearing tumors is associated with a

decrease in the number of peripheral MDSCs cells and

cytokines related to HPSCs mobilization (9, 283). In this

scenario, a survival benefit was achieved due to decreased tumor

growth following the splenectomy, suggesting that extramedullary

hematopoiesis has a critical role in sustaining tumor growth and

progression. However, in humans, a concomitant splenectomy

following colon, liver, gastric, and pancreatic cancer has not

shown any beneficial effects on patient’s overall survival (284).

Nevertheless, owing to technical and experimental barriers, little is

known about this process in humans; thus, most of the studies in

this field are performed using animal models. For this reason,

further research exploring the implications of extramedullary

hematopoiesis in solid human tumors is required.

In solid tumors, the shift in anti-tumoral immunity towards

a pro-tumoral response not only depends on the reshaping of the

local tumor microenvironment by cytokines, chemokines,

metabolic by-products, exosomes, or other released factors.

The development of populations showing immune regulatory

functions occurs in distinct and distant organs away from the

primary lesion due to the systemic release of the factors

mentioned above. In this setting, a considerable increase in the

production of MDSCs in the bone marrow and secondary

lymphoid organs and their subsequent migration to the tumor

support the development of some cancer hallmarks by providing

growth and angiogenic factors, cytokines, chemokines, and

extracellular matrix remodeling enzymes (285) (Figure 1). In

addition, these MDSCs strengthen the immunosuppressive

tumor microenvironment by releasing immunomodulatory

cytokines, metabolites, and other soluble factors and by

expressing immune checkpoints on their surface, thus causing

the recruitment of M2 macrophages, N2 neutrophils, and

Tregs (286).
Cachexia in cancer-related inflammation

Advanced tumors release a spectrum of factors that induce

systemic inflammation, which is reflected in paraneoplastic

syndromes, such as cachexia. Cancer cachexia is a multifactorial

syndrome characterized by progressive sarcopenia that may be

accompanied by a loss in adipose tissue. This pathology involves a

harmful protein and energy balance and an abnormal metabolism

due to anorexia. Cachexia cannot be reversed entirely with

nutritional support, resulting in a detriment to the quality of life
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of cancer patients (287). In addition, cachexia is responsible for

20–30% of deaths in patients with advanced cancer. Tumors in

which cachexia may develop include pancreatic, gastric, colon,

lung, Hodgkin’s and non-Hodgkin’s lymphoma, breast, sarcoma,

and leukemia (288).

The cellular mechanisms that induce cachexia are not yet

fully understood; thus far, it is known to be a syndrome that

involves several organs and is orchestrated at the systemic level

by inflammatory factors released by the tumor and its

microenvironment. Although systemic inflammation is not

considered in the current classification as a parameter for

diagnosing cancer cachexia, several authors have considered

the measurement of inflammatory markers, such as CRP and

IL-6, at the blood level (289). Biswas and Acharyya (290)

mentioned that factors secreted directly by the tumor and

non-tumor cells of the neoplastic microenvironment can

mediate cachexia and other syndromes. These factors can

directly interact with various tissues, such as muscle, liver,

brain, and adipose tissue, and can induce metabolic

reprogramming, leading to a negative metabolic energy state at

the systemic level.

As mentioned above, as tumors continue to proliferate, the

lack of oxygen and nutrients induces hypoxia. Hypoxia generates

critical changes, for example, the metabolic turnover of tumor cells

for energy. A hypoxic microenvironment releases several factors,

including VEGF (291), which induces angiogenesis and recruits

inflammatory cells, such as macrophages. In addition to the above

components of the tumor microenvironment, the release of

DAMPs by dead cells increases inflammation and generates

extra-tumoral cytokines. Another important metabolite in cancer

that contributes to tumor development and results from metabolic

turnover is lactate (292, 293). The hypermetabolism of tumor cells

leads them to consume large amounts of glucose and excrete lactic

acid, which has pleiotropic activity, is involved in energy

metabolism, has an immunosuppressive function, and promotes

angiogenesis (294).

Lactate in the liver is converted to glucose in a process called

gluconeogenesis. The glucose generated can be utilized by both

the tumor cells and the host organism, increasing blood glucose.

This hyperglycemia leads to insulin resistance, which is related

to muscle wasting. The relationship between the tumor and liver

via lactate is called the Cori cycle and is considered as a futile

cycle in cancer cachexia (292). Insulin resistance in patients with

cachexia, as well as in murine models, has been associated with

muscle wasting and is induced by TNF-a (295). Noguchi et al.

found a high correlation between TNF-a expression in muscle

tissue obtained from the intestine of cancer patients and insulin

resistance and muscle wasting. After tumor resection, the

patients showed complete improvement in insulin resistance

(296). More recent studies using a murine model of C-26 colon

adenocarcinoma cell cachexia showed that insulin resistance

occurred before weight loss. In the quadriceps muscle of these
frontiersin.org

https://doi.org/10.3389/fendo.2022.929572
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Aguilar-Cazares et al. 10.3389/fendo.2022.929572
mice, the expression of four muscle atrophy-promoting genes,

Atrogin-1, and MuRF-1, ubiquitin ligases E3 and Bnip3, was

increased (297). Systemic inflammation is also associated with

skeletal muscle wasting during cancer cachexia. The ubiquitin-

proteasome pathway is activated during cachexia and is

responsible for the degradation of most skeletal muscle

proteins. Type IIB muscle fibers in an ApcMin/+ mouse

model, which produced colon polyps, were shown to be highly

susceptible to IL-6-mediated muscle wasting, as it induced the

overexpression of the Atrogin-1 gene (298). In mouse bladder

and colorectal cancer models, increased TNF-a, IL-6, and IL-1

in circulation and decreased muscle mass were associated with

high Atrogin-1 and MurRF1 expression (299).

Among the factors that tumors can release are exosomes,

which may contain molecules that promote muscle wasting. In a

mouse model of cachexia, a group of researchers found that

cachexigenic tumors released Hsp70/90 heat shock proteins into

extracellular vesicles; furthermore, they participated in muscle

wasting through TLR4 activation (300). Similarly, miR-181a-3p

found in exosomes from a conditioned medium of oral

squamous cell carcinoma induced endoplasmic reticulum

stress and skeletal muscle wasting (301). Another study

showed that HMGB1 protein, a DAMP contained in the

exosomes of CT26 mouse colon cancer cells, induced the

expression of the Atrogin1 and MuRF1 genes, leading to

muscle wasting through the activation of TLR4/NF-kB axis

(302). Another factor in exosomes that promotes muscle

wasting is growth differentiation factor 15 (GDF-15), identified

in the exosomes of CT26 colon cancer cells. GDF-15 can interact

with C2C12 myotube cells, regulate Bcl-2/caspase, and induce

cell apoptosis, favoring muscle atrophy in cancer cachexia (303).

The insulin resistance and systemic inflammatory cytokines

in cancer cachexia patients also impact adipose tissue (304). In

adults, adipose tissue is composed primarily of white adipocytes

(WAT), although brown adipocyte fat deposits (BAT) exist in

specific anatomic locations, such as the perivascular viscera and

periviscus. BAT can also be found in supraclavicular, axillary,

and inguinal subcutaneous fat and the intestinal walls (305). The

difference between WAT and BAT is that the latter contain

many mitochondria expressing uncoupling protein-1 (UCP-1).

This molecule “uncouples” an electron in the process of ATP

synthesis via OXPHOS across the inner membrane of the

mitochondrion, which generates heat (306). Virtually all fat

ingested in food is stored as WAT. In states of excessive

exercise or prolonged fasting, triglycerides in WAT are

degraded by three lipases: adipose triglyceride lipase (ATGL),

hormone-sensitive lipase (HSL), and monoacylglycerol lipase

(MGL). The regulation of lipases is highly influenced by several

hormones, such as insulin, catecholamines, and growth

hormone (307, 308).

In cancer cachexia, various cytokines, such as TNF-a and IL-

6, promote the lipolysis of triglycerides in WAT (309). Shaw and
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Wolfe found increased lipolysis associated with increased blood

fatty acids in patients with cachexia (310), indicating that lipid

metabolism is dysregulated in cachexia states. In a muscle stem

cell model, as well as in models of cachexia induced by human

kidney neoplasia in mice, researchers observed that the process

of muscle atrophy was preceded by an increase in FA b-
oxidation as well as inflammatory factors, such as IL-1 b, IL-6,
IL-8, and TNF-a. In this work, blocking FA b -oxidation using a

carnitine-palmitoyltransferase-1 inhibitor also blocked muscle

wasting (311). Another mechanism of adipose tissue

degradation is the browning of WAT. For a long time, it was

believed that the function of WAT was lipid storage, while BAT

was involved in heat dissipation and the regulation of

temperature (312). It is now known that WAT can be

converted to BAT via specific mechanisms, such as

hypothermia. The browning of WAT has been associated

with cachexia.

Petruzzelli et al., using several genetically engineered mouse

models, observed that the browning of WAT was an event that

preceded muscle wasting. They also showed that IL-6 and

catecholamines increased UCP-1 expression in the WAT of

these cachexic mice (312). Recently, a study in cancer patients

with and without cachexia showed an association between

tumor-derived factors and inflammatory changes in the

adipose tissue of the cachectic patients (313), suggesting that

factors released by the tumor and its microenvironment modify

adipose tissue metabolism. Exosomes have been found to play an

important role in adipose tissue wasting.

Exosomes derived from cell lines and the plasma of gastric

cancer patients contain ciRS-133, which induces the browning of

WAT (314). Exosomes derived from lung adenocarcinoma cell

lines containing TGF- b were shown to inhibit adipogenesis in

primary adipocyte cultures from healthy subjects (315). The

miR155 in gastric cancer exosomes was shown to promote the

browning of adipose tissue through the transcription factor

CCAAT/enhancer-binding protein b, which upregulates

UCP1 (316).

Finally, circulating inflammatory cytokines produced by the

tumor microenvironment affect the central nervous system,

amplifying and orchestrating the symptoms of cancer-associated

cachexia and causing anorexia, fatigue, and the wasting of muscle

and fat tissue. In particular, a loss of appetite has been associated

with hypothalamus inflammation. The nucleus of the

hypothalamus regulates energy homeostasis (290, 317, 318).

Increased cytokine expression in the brain alters the

neurochemistry of the hypothalamus nucleus, where cytokines

activate pro-opiomelanocortin (POMC) and cocaine- and

amphetamine-regulated transcript (CART) neurons, which

mediate satiety and reduce food intake. The activation of

these neurons induces serotonin release, suppressing appetite. In

addition, cytokines are likely to inhibit neuropeptide Y (NPY) and

agouti-related peptide (AgRP) neurons, which mediate appetite
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and energy intake. These changes in the neurochemistry of the

hypothalamus result in a “resistance” to signals that inform the

brain of energy deficits in the periphery. As mentioned above,

adipose tissue wasting leads to the circulation of free FA, which

generates a satiety signal in the hypothalamus, contributing to

anorexia (290, 317, 318). On the other hand, some reports have

indicated that the stimulation of the hypothalamic–pituitary–

adrenal axis with IL-1 induces the release of glucocorticoids that

act on skeletal muscle and accelerate protein degradation (317,

319, 320).

Cancer patients present two types of damage: that produced

locally by the tumor, which can be direct damage to the organ

where it is located, and immunopathological damage that occurs

when the tumor and the tumor microenvironment release

compounds that cause metabolic derangement and systemic

inflammation, such as in cachexia. IL-1, IL-6, and TNF-a play

an essential role at the systemic level as inducers of cancer

cachexia (321). In the 1970s, although there was not yet a

methodology with sufficient sensitivity to measure these

cytokines in cancer patients and obtain consistent results,

treatment with anti-TNF- and IL-6 antibodies was proven to

be effective in reducing cachexia in mouse tumor models (322).

Jafri et al. proposed a cachexia index to estimate the degree

of cachexia in patients with advanced non-small-cell lung

carcinoma (NSCLC) and to identify which patients might

respond to cancer cachexia treatment (323). This index

considers albumin; the skeletal muscle index, which results

from comparing abdominal and paraspinal muscle scans

between the time of diagnosis and one month later; and the

NLR (323). In another paper, a sarcopenia index was defined as

the muscle area at the third vertebra/height2, and values of ≤ 55

cm2/m2 for men and ≤ 39 cm2/m2 for women indicated

sarcopenia. This index was correlated with CRP and the

neutrophil/lymphocyte ratio in patients with small-cell lung

carcinoma. Sarcopenia was found to have a linear relationship

with CRP (324). Finally, Barrer et al. found that the neutrophil/

lymphocyte ratio was associated with weight loss in patients with

colon, lung, and prostate cancer cachexia (325).

The cachexia syndrome is characterized by the metabolic

dysregulation of carbohydrates, lipids, and proteins in various

organs and the sympathetic activation of the nervous system. All

this leads to a poor quality of life for patients, and their diminished

physical condition may not be suitable for treatment. The

incidence of the anorexia–cachexia syndrome is high in cancer

patients, affecting the evolution of the underlying disease at the

clinical level. Unfortunately, its clinical management is complex in

cancer patients. Consequently, cancer patients severely

compromised nutritional status and weight loss remain standard

features. It is essential to recognize and treat this syndrome early,

together with antitumor therapy, to prolong survival and

positively influence the quality of life of cancer patients.
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Concluding remarks and perspectives

During the uncontrolled growth of tumors, several

inflammatory factors, including—but not limited to—

cytokines, chemokines, growth factors, metabolites, and

ncRNAs, are produced and released by both tumor and

stromal cells. The continuous release of these factors causes

impacts at the local level; their delivery into the bloodstream

reaches other systems or organs, such as the liver, nervous

system, bone marrow, adipose tissue, skeletal muscle, etc. In

this setting, the continuous presence of these factors, in

particular IL-6, IL-1, TNF-a, G-CSF, and GM-CSF, promotes

cancer-associated systemic inflammation. Due to their

pleiotropic activity, these molecules impact distinct subsets of

cells, such as endothelial, epithelial, mesenchymal, neurologic,

and hematologic cells, amplifying the inflammatory state and the

clinical manifestations of the aberrant function of organs and

systems, known as paraneoplastic syndromes. Paraneoplastic

syndromes have detrimental effects on the patient’s quality of

life and can sometimes cause their demise.

In addition, paraneoplastic syndromes can be exacerbated

during the administration of cytotoxic antitumor therapies

focused on eliminating tumor cells. Because advanced-stage

tumors deregulate communication between the immune,

endocrine, and neurological systems, a deeper we believe that, in

addition to using antitumor agents, knowledge of the regulation of

neuro–endocrine–immune intercommunication during cancer-

associated inflammation will to could favor the development of

upcoming therapies that will impact patient survival and quality of

life. In support of this proposal, recent reports have demonstrated

that nonsteroidal anti-inflammatory drugs may be used in cancer

to reduce systemic inflammation (326). However, in clinically

advanced tumors, cancer-associated systemic inflammation is

dysregulated at another level; thus, these anti-inflammatory

drugs would have no effect. Furthermore, the use of steroid

drugs, such as glucocorticoids, could suppress the antitumor

immune response, as they block the function of CD8+ effector T

and NK cells (327). To address this issue, models that capture the

complexity of tumor–host organ interactions will help clarify the

picture and offer new therapeutic alternatives to improve

patient outcomes.
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DM dos R, Radloff K, et al. Systemic inflammation in cachexia – is tumor cytokine
expression profile the culprit? Front Immunol (2015) 6:629. doi: 10.3389/
fimmu.2015.00629

314. Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng T, et al. Exosomal circRNA
derived from gastric tumor promotes white adipose browning by targeting the miR-
133/PRDM16 pathway. Int J Cancer (2019) 144:2501–15. doi: 10.1002/ijc.31977

315. Wang S, Li X, Xu M, Wang J, Zhao RC. Reduced adipogenesis after lung
tumor exosomes priming in human mesenchymal stem cells via TGFb
signaling pathway. Mol Cell Biochem (2017) 435:59–66. doi: 10.1007/s11010-
017-3056-3

316. Liu Y, Wang M, Deng T, Liu R, Ning T, Bai M, et al. Exosomal miR-155
from gastric cancer induces cancer-associated cachexia by suppressing
adipogenesis and promoting brown adipose differentiation via C/EPBb. Cancer
Biol Med (2022) 19. doi: 10.20892/j.issn.2095-3941.2021.0220
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