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José Miguel Hinojosa-Amaya,
Autonomous University of Nuevo
León, Mexico
Katherine Araque,
Ascendis Pharma, United States

*CORRESPONDENCE

Fabio R. Faucz
fabio.faucz@nih.gov

SPECIALTY SECTION

This article was submitted to
Adrenal Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 28 April 2022
ACCEPTED 15 July 2022

PUBLISHED 29 August 2022

CITATION

Pitsava G, Maria AG and Faucz FR
(2022) Disorders of the adrenal cortex:
Genetic and molecular aspects.
Front. Endocrinol. 13:931389.
doi: 10.3389/fendo.2022.931389

COPYRIGHT

© 2022 Pitsava, Maria and Faucz. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 29 August 2022

DOI 10.3389/fendo.2022.931389
Disorders of the adrenal cortex:
Genetic and molecular aspects

Georgia Pitsava1,2, Andrea G. Maria2 and Fabio R. Faucz2,3*

1Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver
National Institutes of Child Health and Human Development, National Institutes of Health,
Bethesda, MD, United States, 2Section on Endocrinology and Genetics, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of Health, Bethesda
MD, United States, 3Molecular Genomics Core (MGC), Eunice Kennedy Shriver National Institute of
Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
Adrenal cortex produces glucocorticoids, mineralocorticoids and adrenal

androgens which are essential for life, supporting balance, immune response

and sexual maturation. Adrenocortical tumors and hyperplasias are a

heterogenous group of adrenal disorders and they can be either sporadic or

familial. Adrenocortical cancer is a rare and aggressive malignancy, and it is

associated with poor prognosis. With the advance of next-generation

sequencing technologies and improvement of genomic data analysis over

the past decade, various genetic defects, either from germline or somatic

origin, have been unraveled, improving diagnosis and treatment of numerous

genetic disorders, including adrenocortical diseases. This review gives an

overview of disorders associated with the adrenal cortex, the genetic factors

of these disorders and their molecular implications.
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1. Introduction

Adrenal glands are the major regulators of body homeostasis and endocrine stress

response (1). They are small yellowish structures located on the upper poles of the

kidneys, in the retroperitoneal area on the lateral edge of the vertebral column. They are

found within perirenal fat and are surrounded by the renal fascia. The left adrenal gland

is crescent-shaped, while the right is triangular. The weight of each gland in a healthy

adult is 8-10 g and the average dimensions are 5.0x3.0x0.6 cm. They are highly vascular

and receive their blood supply from 3 arteries: the superior, middle and inferior adrenal

arteries. These arise from the inferior phrenic artery, abdominal aorta and renal arteries,

respectively (2). The adrenal arteries form a capsular arteriolar plexus, which supplies the

adrenal glands. With respect to venous drainage, the right adrenal has a single vein that

drains directly to inferior vena cava, whereas the longer left adrenal vein drains into the

renal vein (3).
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The adrenal glands are comprised of two distinct parts, the

cortex and the medulla. The medulla found in the center of the

adrenal gland is composed of chromaffin cells and it is

dependent on tissue interactions with the adrenal cortex (4).

The cortex forms the outer part and is responsible for up to 90%

of the adrenal weight. The adult adrenal cortex plays a vital role

in normal physiology, being the site of steroid hormone

production (3, 5). It consists of three morphologically and

functionally distinct compartments. The outer zona

glomerulosa (ZG) makes up about 15% of the cortex and

produces aldosterone, a mineralocorticoid that controls blood

pressure by regulating intravascular volume through sodium and

water retention (6, 7). Beneath the ZG, is zona fasciculata (ZF),

that comprises a major part of the adrenal gland and is the site of

glucocorticoid synthesis. This is where cortisol is produced, a

hormone with important effects on the immune system,

metabolism and cardiovascular system. The innermost zone is

zona reticularis (ZR), which produces adrenal androgens

including androstenedione, dehydroepiandrosterone (DHEA),

as well as its sulfate, DHEAS (8).

Adrenal cortex cellular function is finely regulated by

complex mechanism that involve paracrine and endocrine

responses. Dysregulation of signaling pathways in the adrenal

cortex is associated with the development of adrenal tumors,

some are benign and most rarely, malignant tumors (9).

The advance of new technologies in the field of genetics

made possible to determine variations and structures at a

genone-wide level (10). Next generation sequencing (NGS)

became available at the beginning of the 21st century lowering

the costs of DNA sequencing beyond what is possible with

standard dye-terminator methods (11). In the clinical context,

NGS has greatly improved the discovery of disease associated

variants, facilitating not only faster and precise diagnosis but also

risk factor prediction for complex disorders (12). For example, a

recent study analyzed gene expressions in cortisol-producing

adenomas (CPA) with PRKACA mutation and compared to

GNAS and CTNNB1 mutant CPAs. NGS analysis revealed

differences between PRKACA mutant and GNAS and CTNNB1

mutant CPAs, such as increased cortisol production in PRKACA

mutant CPAs (13). This study allows better understanding of

pathways involved in CPA and also may direct a more precise

treatment approach for those individuals who harbors CPAs.

Another study made use of whole-exome sequencing to

determine the proportion of cells exhibiting the disease-

causing variant KCNJ5 p.G151R in an individual already

diagnosed with bilateral adrenal hyperplasia (BAH). The

results indicated a very low-level mosaicism (less than 0.5%)

in the germline DNA, while all adrenocortical cells tested from

11 different nodules harbored the disease-causing variant. This

finding has implication in patient prognosis and, family risk

prediction (14). In this review, we intend to highlight the

genomic and molecular aspects of adrenocortical tumors and

its implication in patient survival.
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2. Hormone secretion

The precursor of all adrenal steroid hormones is cholesterol,

which is found in circulating low-density lipoprotein (LDL)

particles. Briefly, LDL particles are taken up by adrenal cells

via LDL-receptor mediated endocytosis (15, 16). The vesicles

formed during this process subsequently fuse with lysozymes,

where hydrolysis generates free cholesterol. Alternatively,

cholesterol can either be uptaken from circulating HDL

cholesterol via the scavenger receptor class B type 1 (SR-B1),

or produced de novo from the acetyl coenzyme A (CoA) (17).

Cellular cholesterol that is in excess is stored in the form of

cholesteryl esters (CEs); the conversion of cholesterol to CEs is

catalyzed by the enzyme CoA-acetyltransferase (ACAT) (18). In

the adrenal glands, CEs act as the cholesterol ‘storage’ for the

production of steroid hormones (18).
2.1 Hypothalamic-pituitary-adrenal (Hpa)
axis: Glucocorticoid secretion

The secretion of glucocorticoids is regulated by the HPA

axis. Their synthesis is stimulated by ACTH, which is released

into the bloodstream by the anterior pituitary as part of a 241-

amino acid precursor, POMC. In turn, ACTH production is

regulated by corticotropin-releasing hormone (CRH), which is

released by the neuroendocrine neurons in the paraventricular

nucleus of the hypothalamus. Secretion of CRH is dependent on

circadian rhythm, as well as various stressors (fever,

hypotension, hypoglycemia) acting on the hypothalamus. The

HPA axis is a negative feedback system, in which cortisol acts as

a direct inhibitor of the synthesis of both ACTH and CRH.
2.2 Renin-angiotensin-aldosterone
system (RAAS): Mineralocorticoid
secretion

Secretion of mineralocorticoids is regulated mainly by the

RAAS and potassium, while it also responds acutely to ACTH

(19, 20). The juxtaglomerular (JG) cells in the afferent arterioles

of the kidney contain prorenin, which is inactive. When JG cells

are activated (in response to intravascular volume depletion, or

decreased sodium in the distal convoluted tubule or b-
activation) prorenin is cleaved to renin (18, 21). Once renin is

released in the blood it acts on angiotensinogen, which is

synthesized in the liver and is converted to angiotensin I (Ang

I) in the kidney by renin. Ang I is then converted to angiotensin

II (Ang II) by the angiotensin converting enzyme (ACE) in the

lungs. Ang II and potassium increase the expression of

aldosterone synthase (CYP11B2), while they also stimulate

aldosterone production and glomerulosa cell proliferation (22).
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In turn, aldosterone acts on mineralocorticoid receptors in

kidney cells, from the distal convoluted tubule to the cortical

collecting tubule. The result of its action is increased sodium

reabsorption and excretion of potassium and hydrogen ions.
2.3 Adrenal androgen secretion

ZR cells produce androgens, the most important of which

are DHEA and DHEAS (23). These are weak precursors that are

converted to testosterone and estrogens (such as estradiol) in the

peripheral tissues (24). It is established that steroidogenesis is

under the control of ACTH which stimulates the transport of

intracellular cholesterol into the adrenal cortex (25).
3. Disorders of growth of the
adrenal cortex

3.1 Adrenal hyperplasia

3.1.1 Congenital adrenal hyperplasia (CAH)
CAH is a group of autosomal recessive disorders of the

adrenal cortex caused by enzymatic deficiencies in the adrenal

steroidogenesis pathway (26, 27). Depending on the degree of

residual enzymatic activity, various forms of CAH have been

described in the literature, including the most severe form

(classic salt-wasting variant), followed by the classic simple

virilizing form as well as milder forms (non-classical variant).

3.1.1.1 21OH deficiency

More than 90% of CAH cases are due to deficiency in 21-

hydroxylase (CYP21A2) (Online Mendelian Inheritance in Man

[OMIM] #201910 (28). The gene encoding 21OH, CYP21A2, is

located on chromosome 6p21.3, within the human leukocyte

antigen (HLA) major histocompatibility complex locus (29).

CYP21A2 and CYP21A1P, a homologous pseudogene, are

approximately 30kb apart. Because of the high degree of

sequence homology between these duplicate genes, meiotic

recombination events are common in this region. Almost 95%

of CYP21A2 disease causing mutations are CYP21A1P-derived

variants or deletions used due to recombination events (30, 31).

Defects in 21OH result in impaired production of aldosterone

and cortisol and elevated precursors, most notably 17-

hydroxyprogesterone (17OHP), elevated levels of 17OHP are

used for the diagnosis of CAH. In addition, excess of androgens

occurs due to constitutive adrenal androgen synthesis, and

results in virilization.

The most severe form of 21OH deficiency is due to variants

that inactivate CYP21A2 completely. Without neonatal

screening, the phenotype in these cases manifests within the

first 2 weeks of life with a life-threatening adrenal crisis (32). In
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the non-classic cases, the adrenal crisis is prevented. This is

because some enzyme activity is preserved, and as a result

aldosterone and cortisol production are not completely

abolished (28, 33). The non-classic cases are thus characterized

by symptoms attributed to the androgen excess: premature

puberty, hirsutism and irregular menses. In some cases,

patients may present with few or no symptoms and are

identified by family genetic studies for other reasons (34).

Females with non-classic CAH usually present with similar

symptoms as those with polycystic ovary syndrome (PCOS),

including hyperandrogenism (clinical or biochemical), and

menstrual abnormalities (33, 35–37), and thus is difficult to

differentiate between the two, leading to misdiagnosis of non-

classic CAH as PCOS in some cases (38–40). Thus, it is

suggested that patients undergo measurement of 17OH-

progesterone levels followed by ACTH-stimulation test (41, 42).

3.1.1.2 11bOH deficiency

Approximately 8% of CAH cases are due to 11b-hydroxylase
(CYP11B1) deficiency (43). CYP11B1, encoded by CYP11B1, is an

enzyme regulated by ACTH, which catalyzes the conversion of 11-

deoxycortisol to cortisol in the zona fasciculata. Patients with

impaired 11-hydroxylation present with decreased corticosterone

and cortisol synthesis, accumulation of the precursor

deoxycorticosterone, and overproduction of adrenal androgens.

Although deoxycorticosterone is a weak mineralocorticoid, in

elevated concentrations it mimics the action of aldosterone,

suppressing the renin-angiotensin axis, increasing blood

pressure, and sometimes causing hypokalemia (43).

3.1.1.3 17OH deficiency

Deficiency of 17a-hydroxylase (CYP17A1) is rare, and

severely damaging variants in CYP17A1 result in absent

cortisol as well as androgens, causing puberty failure and

sexual infantilism (44). CYP17A1 is expressed in the ZF and

the ZR, but not in the ZG. Both 46,XY and 46,XX patients with

17OH deficiency have female external genitalia, and present at

puberty as phenotypically female. They have hypergonadotropic

hypogonadism without secondary sexual characteristics, and

low-renin hypertension.

3.1.1.4 3bHSD2 deficiency

There exist two isoforms of 3b-hydroxysteroid
dehydrogenase: 3bHSD1 and 3bHSD2, encoded by HSD3B1

(the homologous type I gene) and HSD3B2, respectively.

HSD3B1 is expressed in the placental and peripheral tissues

(breast, prostate and skin), while HSD3B2 is expressed

exclusively in the adrenals and gonads (45). 3bHSD2 deficiency

is characterized by deficiency of both glucocorticoids and

mineralocorticoids, as well as by dehydroepiandrosterone

(DHEA) overproduction. DHEA is converted to testosterone by

extra-adrenal 3bHSD1, and patients present in infancy with
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underdeveloped 46,XY genitalia and – rarely – 46,XX

virilization (46).

3.1.1.5 Lipoid congenital adrenal hyperplasia

The most severe defect of steroidogenesis is lipoid congenital

adrenal hyperplasia (LCAH). LCAH is caused by defects in the

steroidogenic acute regulatory protein (StAR) and is

characterized by deficiency of all steroid hormones. StAR

regulates the transfer of cholesterol from the outer to the inner

mitochondrial membrane, a vital step in the initiation of

steroidogenesis. As a result, cholesterol cannot be mobilized.

Adrenal lipid droplets subsequently accumulate and are seen on

the autopsy, thus the name of the disorder. In both 46,XY and

46,XX patients, it presents with female external genitalia and an

adrenal crisis in the neonatal period (47).

Regarding the current treatment for CAH, there is no

consensus yet, therefore, it still remains a challenge. It usually

includes glucocorticoid and mineralocorticoid replacement

therapy (48).
3.2. Adrenocortical tumors

Adrenocortical tumors (ACTs) can be sporadic or familial,

unilateral or bilateral, and non-secreting or secreting. The latter

secretes various adrenal steroid hormones; the exact hormone

varies depending on the tumor type. Unilateral ACTs are

common, and approximately 10% of the general population

appears to have an adrenal cortical lesion (49). They are often

discovered incidentally when evaluating for another disease and

are thus called incidentalomas (50, 51). Once discovered, they

are evaluated by abdominal computed tomography (CT). The

vast majority of them are benign adrenocortical adenomas

(ACAs). Some ACAs are non-secreting, while others can

secrete cortisol and cause Cushing syndrome (5-47% of cases),

or aldosterone and cause Conn syndrome (1.6-3.3%) (50, 52).

The rest of ACTs are adrenocortical carcinomas (ACCs), which

are rare (prevalence 4-12 cases per million).

3.2.1 Benign cortisol-producing
adrenocortical tumors

Cushing’s syndrome (CS) has an estimated incidence of 39-

79 per million people per year in various populations, with a

female-to-male ratio of 3:1 (53–56). Data from various studies

suggest that there is an increased prevalence in people with

early-onset osteoporosis, type 2 diabetes, or hypertension, but

the precise estimates vary (57–60).

CS is characterized by cortisol overproduction. The cause of

80% of endogenous CS cases is over-secretion of ACTH by a

pituitary corticotroph adenoma or – less frequently – by a

neuroendocrine tumor (61–63). In rare cases, neuroendocrine

tumors such as pheochromocytoma and medullary thyroid
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carcinoma produce corticotropin-releasing hormone (CRH),

which then results in pituitary ACTH over-secretion (61–63). In

20% of the cases, CS is ACTH-independent, and the cause is the

primary overproduction of cortisol by the adrenal glands. In such

cases, the most frequent underlying pathology is a cortisol-

producing adenoma, while adrenocortical carcinomas and

bilateral adrenal hyperplasia are responsible for less than10% of

the cases (64). Bilateral adrenal hyperplasia in particular may be

either isolated, or part of a syndrome, and can be divided into two

entities based on the size of the nodules: primary bilateral

macronodular adrenal hyperplasia (PBMAH), which is

characterized by several nodules (diameter >10mm) (65), and

two micronodular forms. The latter are primary pigmented

micronodular adrenal hyperplasia (PPNAD) and isolated

micronodular adrenocortical disease (iMAD) (diameter <10mm)

(61–63, 66).

The cAMP/PKA pathway is the main regulator of cortisol

production (67). PKA (protein kinase A) consists of two

regulatory subunits and two catalytic subunits that – under

normal conditions – are bound together. In adrenocortical cells,

the pathway is activated by the binding of ACTH to MC2R, a G

protein-coupled receptor (GPCR). This triggers an increase in

cAMP levels, which binds to the PKA regulatory subunits

causing the release from the catalytic subunits. The catalytic

subunits, then translocate to the nucleus, where they

phosphorylate, and thus activate, transcription factors that

promote cortisol synthesis (Figure 1) (68).
3.2.2 Primary bilateral macronodular adrenal
hyperplasia (PBMAH)

PBMAH is usually diagnosed in patients at 40-65 years old

that present CS and low levels of ACTH, or - more recently -

when investigating an adrenal incidentaloma. Many terms have

been used over the years to describe PBMAH. Such terms

include primary macronodular adrenal hyperplasia (PMAH),

autonomous macronodular adrenal hyperplasia (AMAH),

bilateral macronodular adrenal hyperplasia (BMAH), and

‘huge’ or ‘giant’ macronodular adrenal disease. Another term,

ACTH-independent massive bilateral adrenal disease

(AIMBAD), has also been used in the past, but in later studies

the secretion of cortisol appeared to be regulated by

corticotropin and thus, this term is not used anymore (69).

In general, PBMAH presents with bilateral macronodules and

enlargement of the adrenal glands. In the majority of cases (77-

87%), the macronodules exhibit ectopic or excessive expression of

G-protein coupled receptors, including luteinizing hormone/

choriogonadotropin (LH/hCG) responsible for Cushing

syndrome during pregnancy and after menopause (70), glucose-

dependent insulinotropic peptide (GIP) that is responsible for

food-dependent Cushing syndrome (71), serotonin 5HT,

catecholamines, Ang II, glucagon and vasopressin (65, 72–77).

The binding of these receptors to their ligands mimics the result of
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ACTH binding to MC2R leading to activation of cAMP/PKA

pathway and thus excessive cortisol secretion (78). So far, the exact

molecular mechanism of the ectopic receptor expression has not

been completely elucidated (79).

Genetic variants resulting in increased activity of the cAMP/

PKA pathway via a variety of mechanisms have been reported in

patients with PBMAH. For example, variants in PDE11A, that

encodes phosphodiesterase type 11A, have a prevalence of 24-

28%, whereas inactivating germline variants in PDE8B, encoding

phosphodiesterase type 8B, and PRKACA copy number gains,

have also been encountered (80–83). Another component of the

cAMP/PKA pathway associated with PBMAH is the Ga subunit,

encoded by GNAS1 (84). Activating variants in GNAS1 cause

McCune-Albright syndrome, which is associated with ‘café au

lait’ spots, polyostotic fibrous dysplasia, precocious puberty and

hyperfunction of multiple endocrine glands (84). These GNAS1

variants are somatic and lead to continuous activation of the

cAMP/PKA pathway and thus, cortisol-producing adenomas

(85). Finally, in a case report of an isolated case of bilateral

adrenal hyperplasia, the synergistic action of two variants

(p.C21R and p.S247G) on the same allele of MC2R (encoding

the melanocortin 2 receptor/ACTH receptor) resulted in

autonomous cortisol secretion via constitutive activation of the

cAMP/PKA pathway (86). This case is remarkable in that if

those defects had happened in isolation, they would have led to

receptor inactivation (86).

Rarely, PBMAH can occur as part of genetic tumor

predisposition syndromes such as familial adenomatous

polyposis (APC), multiple endocrine neoplasia type 1 (MEN1)

and hereditary leiomyomatosis (FH) (83, 87–89). It is important

to mention that these genetic alterations are associated with
Frontiers in Endocrinology 05
other tumors and are responsible only for a limited number of

PBMAH cases. Additionally, PBMAH can be associated with

aromatase expression leading to elevated estrogens,

independently of sex (79).

More recently, germline variants in the armadillo repeat-

containing 5 (ARMC5) have been found to implicate in the

pathogenesis of PBMAH, with their prevalence estimated

between 21%-26% (90, 91). ARMC5 is a cytosolic protein that

had no enzymatic activity, and its function depends on

interactions with other proteins (92). ARMC5 is located on

chromosome 16p11.2. In mice, as well as in vitro, ARMC5 has

been shown to play an important role in regulating

steroidogenesis, proliferation, apoptosis, T-cell differentiation

and immune responses (92–95). Most of the patients

harboring ARMC5 variants had adrenal CS, with the

hypersecretion of cortisol being more severe compared to that

seen in patients that had ARMC5 variants that were predicted to

be benign or did not have ARMC5 variants. In addition,

damaging variants or deletions in ARMC5 were identified in

several families with PBMAH (96, 97), whereas an association of

ARMC5 with primary hyperaldosteronism was also reported in

2015 (98).

In a small number of cases, somatic variants in genes

participating in other biological processes have been described.

These include two chromatin regulator genes, DOTIL (that

encodes a histone H3 lysine methyl-transferase) and HDAC9

(that encodes a histone deacetylase) (99). In addition, a study of

two siblings from a family that segregated PBMAH implicated

the Endothelin Receptor type A EDNRA, which encodes a G-

coupled protein. However, this association remains to be

confirmed in follow-up studies (100).
FIGURE 1

Schematic representation of activation of the cyclic adenosine monophosphate (cAMP) signaling pathway in normal adrenocortical cells.
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A meaningful update of the 2022 WHO classification of

adrenocortical tumors was recently summarized byMete and co-

workers early this year. As a result of the advance on next

generation sequencing studies, it is possible to recognize that

PBMAH is caused by germline variants in one out of many

susceptible genes, with a second hit in the somatic cells. These

findings strongly suggest a neoplastic instead of hyperplastic

condition. To avoid a misnomer for the disease, the 2022 WHO

classification changed the nomenclature of primary bilateral

macronodular adrenal hyperplasia to bilateral macronodular

adrenocortical disease (101).

3.2.3 Primary pigmented nodular adrenal
disease (PPNAD)

PPNAD is most commonly diagnosed in children and young

adults and is a rare cause of ACTH-independent hypercortisolism.

It is most commonly part of Carney complex (CNC), an

autosomal dominant tumor predisposition syndrome. CNC

presents with various endocrine tumors including pituitary

adenomas, thyroid benign tumors, and testicular Sertoli cell-

calcified tumors, as well as non-endocrine tumors, most

commonly pigmented skin lesions, skin and cardiac myxomas

(102, 103). PPNAD in patients with CNC has a prevalence close to

60% (104, 105).

With respect to the molecular background, CNC is caused

by germline inactivating variants in the PRKAR1A gene, located

at the 17q24.2-24.3 locus (CNC1 locus). PRKAR1A variants are

found in 37% of patients with the sporadic form of the disease

and in more than 70% in the typical familial forms, with almost

100% penetrance (105, 106). PRKAR1A encodes the regulatory

subunit type 1a (R1a) of PKA. As a result, inactivating

PRKAR1A variants result in aberrant activation of the cAMP/

PKA pathway. To date, approximately 140 pathogenic variants

have been reported (https://PRKAR1A.nichd.nih.gov/hmdb/

mutations.html). The majority of them are located in exons

2,3,5,7, and 8 while about 20% are located in intronic sequences

and affect splicing (105, 106). Most of the variants are small

deletions and insertions, base substitutions or combined

rearrangements involving up to 15bp (107). In almost all cases

(90%), the genetic alteration leads to a premature stop codon.

Subsequently, the transcripts containing the premature stop

codon are degraded by nonsense mediated decay (NMD). As a

result, the amount of RIa protein produced is half of the normal

amount (107–109). Large chromosomal deletions involving the

PRKAR1A gene, even though rare, have also been identified

(110, 111). Occasionally, the pathogenic variant (missense, short

in-frame insertions/deletions and splice variants) may lead to the

production of an abnormal protein that is incapable of

responding appropriately to cAMP levels or properly bind to

the PKA catalytic subunits (108, 112).

In some families without variants in PRKAR1A, the

causative gene has not been identified yet; however, genetic

linkage analysis of tumors has shown that there is another
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affected locus on chromosome 2p16 (CNC2 locus) (113, 114).

The majority of those cases have been diagnosed with CNC later

in life (115). In addition, a single patient with CNC that

presented with abnormal skin pigmentation, acromegaly and

myxomas, was found to harbor copy number gains of locus

containing the PRKACB gene (116). Moreover, a recent study

with 353 CNC patients and/or PPNAD, showed that the

majority of patients with isolated PPNAD harbored a germline

c.709-7del6 variant (105).

Dur ing the pas t yea r s , va r i an t s a ff e c t ing the

phosphodiesterase genes PDE11A and PDE8B have emerged as

putative causes of PPNAD. The loci harboring these genes had

the most significant associations in a genome-wide association

study performed on individuals lacking genetic defects in GNAS

or PRKAR1A, while the locus harboring PDE11A showed the

largest loss-of-heterozygosity in tumor samples (117). In

addition, targeted sequencing of PDE11A revealed that patients

with CNC that also had PPNAD and/or testicular large cell

calcifying Sertoli cell tumors were more likely to have variants in

PDE11A, compared to patients without these tumors (118). All

of these patients also had germline variants in PRKAR1A, raising

the possibility that PDE11A variants act as genetic modifiers that

elevate the risk for PPNAD and/or LCCSCT in CNC. With

regards to PDE8B, a single nucleotide variant (c.914A>C/

p.His305Pro) was detected in a 2 year old female patient

diagnosed with PPNAD; the variant was inherited from the

patient’s father. This variant was subsequently shown to lead to

decreased PDE8B activity in vitro (119).

It is worth noting that variants in PDE11A and PDE8B have

been found in other types of adrenocortical tumors as well. In

addition to PBMAH tumors (described above), haploinsufficiency

of PDE11A has been implicated in ACA and ACC (80), and in

vitro studies have demonstrated that putative PBMAH-causing

variants compromised the enzymatic activity of PDE11A (81).

Furthermore, in a cohort of patients with adrenocortical tumors

without variants in PRKAR1A, GNAS, or PDE11A, 7 patients

harbored variants in PDE8B (82). Two of these variants were then

experimentally shown to decrease protein activity (82).

Recently, genes encoding for the catalytic subunits of PKA

have also been implicated in micronodular PBMAH. A study of

two patients with familial PBMAH, and of three patients with

sporadic iMAD, identified germline copy number gains of the

locus that harbors PRKACA, which encodes the Ca catalytic

subunit. Tumor samples from these patients revealed elevated

basal as well as cAMP-stimulated PKA activity (120, 121). In

addition, copy number gains involving the PRKACB locus

(which encodes the Cb catalytic subunit), were reported in a

patient with CNC that presented with myxomas, acromegaly,

and abnormal skin pigmentation. The patient was found to have

increased cAMP-induced kinase activity in lymphocytes,

resembling what is seen in CNC patients with PRKAR1A

variants. Moreover, increased Cb levels were found in several

cell types as well as in breast myxoma cells (116).
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Finally, the wingless-type-(Wnt)-b-catenin pathway has also

been suggested to play a role in micronodular BAH. Somatic

variants in the b -catenin gene (CTNNB1) were found in two

(11%) patients with PPNAD in a previous study, with one of

these patients also harboring a PRKAR1A variant. These

variants were encountered in larger adrenocortical adenomas

that arose within the context of PPNAD, and were absent from

the surrounding hyperplastic adrenocortical tissue (122). A

different study landed further support to the involvement of

the Wnt-b-catenin pathway, by showing accumulation of b-
catenin in PPNAD tissues, as well as activating somatic CTNNB1

variants in macronodules, but not in micronodules or the

contralateral adrenal gland (123).
3.2.4 Cortisol-producing
adrenocortical adenomas (ACA)

Cortisol-producing adenomas exhibit overactivation of the

cAMP/PKA signaling pathway. The most prevalent CPA-

causing defect is alteration of the catalytic a-subunit of PKA
(PRKACA) and the most common variant has been reported to

be p.Leu206Arg (124). Other rare variants have been described

(120, 125, 126), all localized in a region of PRKACA that affects

its interaction with the regulatory subunit 1a. Activating

variants in PRKACA lead to continuous activation of PKA by

abolishing the interaction between its catalytic and regulatory

subunits. In addition, they can lead to hyperphosphorylation of

certain substrates, thereby altering substrate specificity (127). An

activating somatic variant in PRKACB has also recently been

reported in a patient with CPA; in vitro studies showed that this

variant confers higher sensitivity to cAMP (128).

Furthermore, somatic inactivating variants in GNAS and

PRKAR1A have been found in sporadic adrenocortical tumors

(126, 129–133). The genetic alterations in both genes lead to

increased signaling via the cAMP/PKA pathway, however they

activate different downstream effectors. Adrenal lesions that

harbored variants in GNAS or PRKAR1A had overactivation

of the p53 and MAPK signaling pathways, respectively. In

PRKAR1A-mutant tumors, genes related to Wnt-signaling

pathway (CCND1, CTNNB1, LEF1, LRP5, WISP1 and WNT3)

were overexpressed, while in GNAS-mutant tumors, there

was increased expression of extracellular matrix receptor

interaction and focal adhesion pathways (NFKB, NFKBIA and

TNFRSF1A) (134).
3.2.5. Aldosterone-producing benign
adrenocortical neoplasms

Excess of aldosterone production characterizes a group of adrenal

cortical disorders including aldosterone-producing adenomas,

adrenal cortical hyperplasia, familial hyperaldosteronism (FH, <1%)

and rarely, carcinomas (<1%) (135–137).
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3.2.6 Benign adrenocortical tumors
producing aldosterone

Primary aldosteronism (PA) is the most frequent secondary

form of hypertension, accounting for approximately 10-20% of

patients referred with resistant hypertension and 5% of patients

in primary care (138, 139). PA is typically due to unilateral

adenomas that produce aldosterone (APA) (65%), or BAH

(35%) that leads to autonomous aldosterone production (140).

The remaining cases include unilateral hyperplasia (2%), familial

hyperaldosteronism (FH, <1%) and aldosterone-producing ACC

(<1%) (137). The vast majority of PA cases are sporadic and only

6% are familial (141).

3.2.6.1 Inherited forms of PA

Four forms of FH (type I-type IV) have been described so far

and they are inherited in an autosomal dominant manner (136).

The underlying cause of FH I (also known as glucocorticoid-

remediable aldosteronism-GRA) is the formation of a chimeric

gene, resulting from an unequal fusion of the regulatory regions

of CYP11B1, which encodes 11b-hydroxylase, and CYP11B2,

that encodes aldosterone synthase. Both enzymes are responsible

for the last steps of cortisol and aldosterone synthesis,

respectively (142, 143). Formation of the chimeric gene leads

to aldosterone overproduction under the regulation of ACTH

(143). Treatment is based on the use of glucocorticoids (144).

Genetic testing for the chimeric gene (CYP11B1/CYP11B2)

should be considered for patients who are diagnosed with PA

and have a family history of the disease, onset of PA before the

age of 20 years, or family history of stroke at a young age (145).

FH II is due to mutations in the CLCN2 gene, which encodes

the chloride channel CIC2. Among other tissues, CIC2 is

expressed in the adrenal glands. Gain-of-function variants in

CLCN2 lead to increased Cl− ions efflux, which causes cell

membrane depolarization and opening of voltage-gated

calcium channels, triggering aldosterone production (146,

147). FH II is the most common form of FH, with a

prevalence of 1.2-6% in patients with PA (141, 148, 149).

FH III is due to coding variants in the G-protein coupled

inward rectifying potassium channel 4 (GIRK4), which is

encoded by KCNJ5. Genetic defects in this gene cause a lack of

ion selectivity and increased sodium influx, which results in cell

depolarization triggering calcium entry into the cells. This

signals an increase in CYP11B2 expression and increase in

aldosterone production. The severity of hyperaldosteronism

has been shown to be related to the type of KCNJ5 variant in

some patients (150–152), but not in all of them (153). The

majority of patients with germline variants in KCNJ5 present

with polydipsia, polyuria and refractory hypertension during

childhood. In these patients, aldosterone hypersecretion is high

enough to require bilateral adrenalectomy (145). There is

heterogeneity in the age at which patients present the disease,
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and in some cases, the symptoms can be controlled with

mineralocorticoid-receptor antagonists (MRAs) (150–154).

FH IV is caused by germline variants in CACNA1H, which

encodes the pore-forminga1 subunit of the T-type calcium channel

Cav3.2. These variants cause alterations in calcium current

properties, leading to increased intracellular calcium concentration

and production of aldosterone. Germline variants in CACNA1D,

which encodes Cav1.3 (the a1D subunit of the voltage-

dependent L-type calcium channel) have also been described

in patients with PA; these variants occur exclusively de novo.

These patients present with a severe early-onset form of

hyperaldosteronism associated with a complex neurological

disorder, with the phenotype also including seizures and

neurological abnormalities (PASNA) (155).

Finally, germline variants in PDE2A, PDE3B and ARMC5

have also been reported in patients with PA (98, 156). The first

two genes were associated with PA within the context of BAH;

however, these are not considered as genetic causes of FH (156).

3.2.6.2 Aldosterone-producing adrenocortical
adenomas (APA)

In the past decade, major advances have been made in

unraveling the molecular background of APAs (157, 158).

Variants have been identified in genes associated with familial

forms of APA, including KCNJ5 and CACNA1D as well as in

ATP1A1 and ATP2B3 (which encode two Na+/K+ and Ca2+

ATPases) (155, 159–161). The most frequent defects are

recurrent variants in KCNJ5, encountered in more than 40% of

APAs in Caucasians, with two particular variants (p.G151R and

p.L168R) being responsible for 36% of cases (162). Variants in

KCNJ5 appear to be more frequent in Asian cohorts (162–166)

(~70% prevalence), and in women compared to men (63% vs

24% prevalence) (163). Variants in CACNA1D are reported in

up to 10% of patients with APA, while ATP1A1 and ATP2B3

variants are less frequent (167).

Additionally, the Wnt/b-catenin signaling pathway has been

shown to play a vital role in the adrenal cortex development and

the biosynthesis of aldosterone (168). It has been shown to be

continuously active in approximately 70% of APAs (169). Under

normal unstimulated conditions, b-catenin is in the cytosol as

part of the axin complex along with Caseine Kinase 1b, glycogen
synthase kinase 3b and adenomatous polyposis coli (APC).

Binding of the Wnt ligand to its receptor causes b-catenin to

dissociate from the axin complex and translocate to the nucleus
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where it induces the expression of the transcription factors T cell

factor (TCF) and lymphocyte enhancer factor (LEF) (168).

Somatic variants in CTNNB1 gene, encoding b-catenin, have
been identified in 2-5% of patients with sporadic APA (155, 170,

171); similarly, to APAs due to KCNJ5 variants, these APAs are

associated with larger adenomas and are more commonly seen

in females. Variants in CTNNB1 have also been reported in two

pregnant patients with APA that exhibited increased

adrenocortical expression of the gonadotropin releasing

hormone (GnRH) and LH/hCG receptors (172). Based on this,

an association with pregnancy or menopause was suggested, but

this was not confirmed in a follow-up study (172). In rare cases,

somatic variants in PRKACA and GNAS have been described in

patients with cortisol and aldosterone co-secreting adenoma as

well (173, 174). However, their role in the development of APA

remains unclear, because those variants are similar to the ones

found in CPAs and ACC (99, 120, 131, 175–177).
3.3 Adrenocortical carcinoma

ACCs are rare tumors derived from the adrenal cortex. They

affect both adults and children with an annual incidence of 0.7-2.0

cases per million per year (178, 179). They are responsible for

steroid excess in 60-70% of cases (52, 180, 181) and they represent

one of the most aggressive class of endocrine tumors with an overall

poor prognosis (5-year survival rate <35%) (129). However, the

exact 5-year survival rate varies depending on the tumor stage, from

82% for tumors in stage I to 18% for tumors in stage IV (182). Thus,

the stage at the time of the diagnosis is a crucial prognostic factor.

Approximately 40-60% of patients present with signs and

symptoms related to hormone excess (183–185). Another 30-40%

present with non-specific symptoms associated with local tumor

growth (30-40%), including early satiety, abdominal fullness and

flank or abdominal pain (184, 185). The remaining 20-30% of

ACCs are discovered incidentally on imaging studies for unrelated

medical conditions (Table 1) (187). With regards to the age

distribution, ACC seems relatively more common in children

than in adults and is often associated with hereditary tumor

syndromes (186, 188). In fact, the elucidation of genetic

alterations underlying familial syndromes predisposing to ACC

has led to the identification of signaling pathways involved in the

development of cancer such as Insulin growth factor 2 (IGF-2),

Wnt-beta catenin and p53 pathways (189).
TABLE 1 Hormone secretion of functional adrenocortical carcinomas.

Hormone Symptoms Incidence

Cortisol (186) Osteoporosis, early onset hypertension, hyperglycemia/diabetes, facial plethora, muscle weakness 50-80%

Androgen (49, 186) Acne, hirsutism, menstrual abnormalities, male baldness 40-60%

Estrogen (186) Testicular atrophy, gynecomastia 1-3%

Aldosterone (157) Hypertension, muscle weakness Rare
fro
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3.3.1 Molecular basis of ACC: As part of a
tumor predisposition syndrome
3.3.1.1 Li-Fraumeni syndrome (LFS)

LFS is an autosomal dominant disorder that predisposes to

various types of cancer including brain cancer, leukemia, soft

tissue sarcoma and osteosarcoma, premenopausal breast cancer

and ACC. LFS accounts for 50-80% of pediatric cases of ACC

(190–192). The clinical criteria for the diagnosis of ‘classic’ LFS

include a sarcoma diagnosis before the age of 45, with a first-

degree relative diagnosed with any type of cancer before 45 years

and another first or second-degree relative with any cancer

diagnosis before the age of 45 years or a sarcoma diagnosis at

any age (193). Germline variants in TP53, the underlying genetic

cause of LFS, have been identified in 70% of cases, while de novo

variants have been shown to have a prevalence of 7-20% (129,

190, 194). In a cohort of 286 TP53+ patients from 107 families,

the cumulative cancer incidence was 50% by 31 years for females

and by 46 years for males (190). Of those patients, 67% had their

first cancer diagnosis before the age of 17 years, while five

patients were diagnosed with ACC before the age of 17 years.

Of those patients, 50% had a second cancer diagnosis and ACC

was present in one of them (190).
3.3.1.2 Beckwith-Wiedemann syndrome (BWS)

BWS is a systemic overgrowth disorder caused by genetic or

epigenetic changes that ultimately result in upregulation of

insulin-like growth factor 2 (IGF2) (195). Loss of heterozygosity

of the 11p15 locus, which harbors IGF2, is a common finding in

childhood ACC (196). BWS is characterized by hemihypertrophy,

macrosomia, macroglossia, hyperinsulinism, omphalocele and

distinct facial features (197). In addition, in the first 8 years of

life, patients with BWS are at increased risk for embryonal tumors

including hepatoblastoma, neuroblastoma and Wilms’s tumor

(197–201). The risk of developing intra-abdominal tumors is

approximately 5-10% and thus patients with BWS need to

undergo regular screening for early diagnosis and management.

ACC is the next most common type of tumor reported in BWS

patients; other common benign adrenal pathologies include

adrenal cysts and ACAs (200).
3.3.1.3 Multiple endocrine neoplasia 1 (MEN1)

MEN1 is inheritedinanautosomaldominantmannerandiscaused

by germline heterozygous variants in theMEN1 gene on chromosome

11q13. Itsmainmanifestations arehyperparathyroidism(95%), entero-

pancreatic neuroendocrine tumors (50%) and pituitary adenomas

(40%). Associated adrenal lesions, mostly ACA and hyperplasias, are

presentin20-55%ofMEN1cases(202).Mostoftheseadrenallesionsare

nonfunctional (87, 203, 204). ACC occurs only in a small fraction of

patients withMEN1 (87, 205, 206). In two cohorts of sporadic ACC,

somatic variants of MEN1 were shown to have a prevalence of 7%

(207, 208).
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3.3.1.4 Lynch syndrome

ACC has also been reported in cases of Lynch syndrome

(hereditary nonpolyposis colorectal cancer, HNPCC) (209–213).

Lynch syndrome is an autosomal dominant disorder caused by

germline heterozygous coding variants in DNA-mismatch repair

genes (MSH2, MSH6, MLH1 and PMS2). Patients have a

significantly increased risk of cancer, especially colorectal and

endometrial cancer, and thus screening for Lynch syndrome is

recommended in all patients that are diagnosed with colorectal

cancer (209, 214). The prevalence of Lynch syndrome in a large

cohort of patients with ACC was reported to be approximately

3% (215).

3.3.2 Other
ACC has been reported in patients with neurofibromatosis

type 1, familial adenomatous polyposis, and Werner syndrome

(186, 216–223). In addition, ACC has been reported in two cases

of patients with CNC (224, 225).

In general, the discovery of genetic syndromes that confer an

increased risk for ACC has yielded important clues into the

molecular basis of ACC development. For example, the

association between FAP and adrenal tumors provided the basis

for the insights into the role of b-catenin signaling in adrenal

tumors, while the link between ACC and BWS combined with

gene expression profiling suggested the IGF-1 receptor as a target

for ACC therapy. The latter hypothesis has now been tested in

clinical trials (226).
4. Treatment approaches and
clinical trials

Patients with unilateral adrenal adenomas that are hormonally

active receive treatment with unilateral adrenalectomy (25).

Individuals diagnosed with CS are evaluated for the need of

adrenalectomy based on the degree of cortisol excess,

comorbidities, age and preference of the patient; typically,

surgical resection of the is the first-line treatment (50). However,

in some cases where hypercortisolemia is resistant to surgery or in

cases where surgical treatment is contraindicated due to patient co-

morbidities pharmacotherapy is indicated (227). This includes

ketoconazole along with metyrapone, mitotane, or etomidate

(227, 228). Recently, two new drugs were approved by the FDA,

levoketoconazole and osilodrostat, which are both inhibitors of

steroidogenic enzymeactivity.Non-functioningadrenal tumorsare

evaluated toverify eligibility forpartial adrenalectomybasedon size

and potential to malignancy (229). In general, surgery should be

considered in lesions >4cm in size or those that are hormonally

indeterminate, even if imaging characteristics resemble those of a

benign lesion (50). Based on the guidelines from the Endocrine

Society, the diagnosis of PA in patients with hypertension should

include screening (elevated aldosterone-renin ratio) followed by
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confirmatory testing (including salt loading, fludrocortisone or

captopril administration, which all fail to sufficiently lower

aldosterone levels in patients with PA) (140). Regarding ACCs,

complete surgical resection remains the only curative treatment in

patients with resectable stages I-III (187, 230), while adjuvant

therapies are used to decrease recurrence. In addition, Mitotane,

a dichlorodiphenyltrichloroethane analog (DTT), is the only

medication that is specifically approved for ACC and can be used

either as adjuvant or in advanced stages in combinationwith classic

cytotoxic agents (231). Phase I trial studies using cixutumumab, an

insulin growth factor receptor (IGF-1R) antibody have showed

promising results in terms of lower toxicity and better disease

outcome compared to mitotane (232). Moreover, a trial

investigating the combination of cixutumumab with the mTOR

inhibitor, temsirolimus, showed that almost half of the patients

achieved prolonged stable disease and therefore, current treatment

options may be improved (233).

There are at least 15 clinical trials currently recruiting

patients diagnosed with ACC. Location includes United States,

Europe and China. Over 20 studies, all over the world, are

recruiting patients diagnosed with hyperaldosteronism,

comprising either observational or interventional studies.

There are also about 20 studies currently recruiting patients

with CS and many other studies are now recruiting for other

adrenal cortex-related diseases. Information about current and

past trials, as well as institution and collaborators, can be found

at clinicaltrials.gov, a resource provided by the United States

National Library of Medicine.
5. Conclusion

Here, we summarized the main genetic and molecular

aspects of adrenocortical diseases, which are, in some cases,

difficult to diagnose. The rapid progress of next generation

sequencing (NGS) techniques has opened new horizons to

examine and diagnose adrenocortical diseases with unbiased

mechanisms. For example, exome sequencing may be used in

patients with a clinical phenotype but no identified variant in

one of the known causative genes, in order to perform an
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unbiased scan and potentially identify causative variants in

genes previously not associated with the disorders. This not

only yields a diagnosis, but also provides new clues into disease

pathophysiology. Despite the progress, diagnosis based on

genetic screening is still limited to either large centers and/or

patients with financial access to these analyses. Therefore,

heath care providers still face limitations in offering access to

precise medicine to all patients. Considering that a great

number of adrenocortical diseases is due to genetic onset, we

believe that increasing access to NGS will greatly improve early

and precise diagnosis of adrenocort ical disorders .

Consequently, more accurate treatments will be delivered to

individuals that harbor genetic alterations leading to disorders

of the adrenal cortex.
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