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Bone is a highly dynamic tissue that undergoes continuous remodeling by bone resorbing
osteoclasts and bone forming osteoblasts, a process regulated in large part by
osteocytes. Dysregulation of these coupled catabolic and anabolic processes as in the
case of menopause, type 2 diabetes mellitus, anorexia nervosa, and chronic kidney
disease is known to increase fracture risk. Recent advances in the field of bone cell
metabolism and bioenergetics have revealed that maintenance of the skeleton places a
high energy demand on these cells involved in bone remodeling. These new insights
highlight the reason that bone tissue is the beneficiary of a substantial proportion of
cardiac output and post-prandial chylomicron remnants and requires a rich supply of
nutrients. Studies designed for the specific purpose of investigating the impact of dietary
modifications on bone homeostasis or that alter diet composition and food intake to
produce the model can be found throughout the literature; however, confounding dietary
factors are often overlooked in some of the preclinical models. This review will examine
some of the common pre-clinical models used to study skeletal biology and its
pathologies and the subsequent impact of various dietary factors on these model
systems. Furthermore, the review will include how inadvertent effects of some of these
dietary components can influence bone cell function and study outcomes.

Keywords: nutrition, metabolism, diets, bone, fracture
GENERAL INTRODUCTION

Skeletal Health and Background
The human skeleton represents a major organ system that undergoes continuous breakdown and
rebuilding, a process referred to as bone remodeling. In fact, it has been estimated that the adult
skeleton turns over or is replaced once every ~10 years. In support of such a dynamic tissue, bone is
the beneficiary of a substantial proportion of the body’s cardiac output and post-prandial
chylomicron remnants, which presumably supply it with a rich source of nutrients (1). Of
course, the rate of bone turnover is influenced by a multitude of factors, including age, sex,
genetics, hormonal status and lifestyle factors (2, 3). It is this dynamic nature that gives bone tissue
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the ability to adapt to different forces, which will determine its
tensile strength and elastic characteristics. These structural and
material properties in turn confer the bone’s ability to resist
fracture. Our appreciation of the cellular players involved in
bone remodeling has become quite extensive, including the role
of the bone resorbing osteoclasts, bone forming osteoblasts, and
mechano-sensing osteocytes that regulated bone turnover (3).
However, disruptions in these tightly processes can result in an
uncoupling or imbalance in their activity that leads to
skeletal pathologies.

A classic example of a clinically relevant skeletal disease is
osteoporosis, frequently diagnosed based on a low bone mineral
density (BMD). This can be a result of increased bone resorption
and/or reduced bone formation, which ultimately results in a
structural deficit of bone, leading to increased fracture risk.
Osteoporosis and low bone mass (i.e., osteopenia) represent
major public health problems, affecting ~54 million people in
the U.S. and nearly half of all adults aged 50 and older (4, 5).
Perhaps even more alarming is the recent report describing
osteoporosis-related fractures as being responsible for more
hospitalizations than heart attacks, strokes and breast cancer
combined (6). Along with the substantial financial burden (~$19
billion/year), osteoporosis-related fractures often lead to multiple
comorbidities (i.e., hypertension, infections, fluid and electrolyte
imbalance), and patients frequently experience diminished
quality of life due to immobility, pain, and isolation (7–9).
While therapeutic options have significantly aided in the
management of osteoporosis, some patients still experience
undesirable, adverse side-effects, and overall patient
compliance to these drug regimens is low (6, 10–12).
Therefore, continued investigation into the molecular
mechanisms regulating skeletal homeostasis and search for
alternative prevention and treatment strategies is necessary.

Although clinical randomized control trials are the gold
standard for the study of osteoporosis, they are limited by the
time required to detect significant treatment effects in BMD and
fracture risk, and the ability to study mechanistic alterations
occurring at the tissue and cellular levels. Given these limitations
of human-based research, rodent models have proved to be an
invaluable tool when studying skeletal health. Rodent models,
particularly mice, are an ideal system as they are relatively cheap,
their genome has been sequenced, short lifespan for aged studies,
and perhaps most importantly, their regulation of bone is like
that of humans. In this regard, mice and rats both experience
bone turnover by osteoclasts, osteoblasts, and osteocytes, albeit
this remodeling unit is much faster than humans with a total
remodeling unit occurring in ~1 month in mice (3). While this
could be a limitation is some instances, it is also advantageous as
structural changes can be observed in mice ~4-6 weeks in
response to treatments. Therefore, mouse models have been
widely used to study skeletal pathologies, including age-related
osteoporosis, disuse osteoporosis, post-menopausal osteoporosis,
secondary osteoporosis including glucocorticoid treatment,
anorexia nervosa, and chronic kidney disease, as well as
diabetes-related bone fragility. However, while using such
models’ investigators should exercise caution as to control for,
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or at the very least consider, potentially confounding variables to
yield reproducible, reliable data that supports major conclusions.
This seems intuitive, but diet for example, is sometimes
overlooked and/or not taken into full consideration. It’s true
that calcium and vitamin D have long been considered key
nutrients in bone health, however, even these micronutrients
are sometimes underappreciated in the field. Additionally,
macro- and micro-nutrient (i.e., vitamins and minerals) dietary
composition along with non-nutrient dietary components such
as phytochemicals are not always accounted for in the diets fed to
laboratory animals. Therefore, it is the aim of this review to bring
attention to commonly used preclinical, rodent models to study
bone diseases and how dietary components can impact study
design and/or confound results.

History of Rodent Diet Formulations
To begin, it’s important to revisit the historical perspective of
rodent diets. Unbeknownst to some scientists, nutritional status
of laboratory rodents was an active and heavily discussed topic in
the 1970’s. In fact, in 1973 an ad hoc committee was formed by
the American Institute of Nutrition (AIN) to identify dietary
standards for laboratory rodents, which aimed to assist scientists
by providing a nutritionally adequate diet that could be
standardized among studies (13). This need grew out of
concern from commonly used cereal or grain-based diets,
referred to as “chow”, which are suspect to inherent variation
(Figure 1A). While sufficient to sustain rodent life, chow diets
are rudimentary in their nutritional composition and vary
greatly depending on the manufacturer, season, and harvest
location, introducing experimental variability (14). Thus, the
AIN committee formulated a purified diet (Figure 1B), termed
AIN-76, in which all components were ‘purified’ thus allowing
for precise ingredient formulation and subsequent
standardization. Once the AIN-76 diet started to be used, some
important concerns arose, namely nephrocalcinosis or kidney
calcification and insufficient blood clotting (15),. These concerns
along with the fact that the diet had been based on studies with a
maximum of 6 months duration and the need to periodically
revisit the dietary requirements prompted an ‘AIN-76
Workshop’ to convene in 1989, which addressed these
concerns, along with refining the diet to thoughtfully establish
the AIN-93 diets (16, 17). After almost 3 decades of testing, the
AIN-93 diets currently stand today and are available in a growth
formula (AIN-93G) and adult maintenance formula (AIN-93M)
(Table 1); however, recent discussions have highlighted the need
to periodically review the diet formulation. Nonetheless, given
the purified nature of this diet it establishes specified amounts
and proportions of macro- and micronutrients, ultra-trace
elements, along with ensuring the diet palatability and stability.
Therefore, in addition to providing researchers a reproducible
diet, this diet establishes a “base”, which can be easily
manipulated to test scientific research questions related to
nutritional aspects and model systems. In the sections to
follow, rodent models commonly used for bone-related
research will be highlighted, along with dietary factors that
need to be considered during study design.
July 2022 | Volume 13 | Article 932343
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PRECLINICAL RODENT MODELS TO
STUDY BONE AND RELEVANT
NUTRITIONAL ASPECTS

Ovariectomy (OVX) Model of Post-
Menopausal Osteoporosis
The lack of estrogen that occurs post-menopause is a significant
risk factor for osteoporosis. In fact, one in two postmenopausal
women will experience osteoporosis, and most will suffer a
fracture during their lifetime (10, 19). As such, bilateral
oophorectomy or ovariectomy (OVX) of rodents is a
commonly used model, which mimics significant bone loss
associated with the early post-menopausal period. While the
use of this model is common in bone research, the nutritional
nuances associated with this model are not always appreciated.
For example, use of chow diet can be particularly concerning. As
described above, this grain-based diet fluctuates in its
components, but these diets are also formulated with soy
protein/soybean meal, which contain high amounts of
phytoestrogens (i.e., isoflavones). Noteworthy, many of these
isoflavones such as daidzein and genistein can act by binding to
estrogen receptors (ER), namely ERb and to a lesser extent ERa,
eliciting either pro- or anti- estrogenic effects (20, 21). To give
context, oral administration of daidzein and/or genistein to OVX
Sprague-Dawley rats has been demonstrated to reduce femoral
bone loss, prevent bone loss, and even increase bone density (22,
23). Although the doses of these compounds in chow are not
likely to be as high as those reported here, it is evident that these
compounds, which are found in many chow diets can have a
direct impact on the OVX-model unbeknownst to the researcher.
Furthermore, given the variability of these compounds across
chow diets, it is expected the use of these diets could yield
Frontiers in Endocrinology | www.frontiersin.org 3
inconsistent skeletal outcomes. Conversely, the AIN-93 diet does
contain soybean oil; however, no phytoestrogens have been
detected in these purified diets (24).

Another nutritional aspect to note when using the OVX model
to study bone, is that OVX often results in hyperphagia or
increased food intake (25–27). This is in addition to global
metabolic alterations associated with the model and menopause.
The increased food intake is important because many researchers
have previously highlighted the complex association between
adiposity and skeletal homeostasis. Therefore, alterations
occurring in the skeletal could be as simple as increased weight
gain and body weight. For that matter, arguably these OVX
animals could demonstrate various skeletal phenotypes due to
altered nutrient intake. A technique often used to control for
OVX-induced increases in food intake is to match- or pair-feed
OVX group to that of Sham controls. In the case of pair feeding,
the amount fed to the OVX group is based on the food intake of
the Sham group the prior day so that feeding is adjusted daily. In
contrast match feeding, the amount of food consumed by the
Sham control over a few days, (e.g., a week) would then be fed to
the OVX-group the following week. Our labs and others have
demonstrated that regardless of this matched diet, OVX animals
gain more weight relative to Sham, but in this scenario this
observation is not due simply to increased food intake and
reflect alterations occurring in systemic metabolism.

High-Fat Diet Induced Obesity
(DIO) Models
One of the most striking health consequences related to the
prevalence of obesity has been the staggering increase in cases of
type 2 diabetes mellitus (T2DM). Over the last two decades, studies
designed to determine whether T2DM influenced fracture risk
FIGURE 1 | Commonly Used Rodent Diets. (A) Grain-based ‘chow’ diet is often closed label and varies based on environment, location, and season. (B) Purified
diet (AIN-93M) which has documented nutritional composition and formula.
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based solely on the assessment of BMD revealed mixed results, with
the preponderance of the evidence indicating that patients were not
at increased risk (28–30). However, subsequent studies with
fracture as the primary outcome variable have challenged these
initial findings and the clinical evidence now indicates that patients
with T2DMhave an increased risk of fracture, independent of BMD
(31–34). This likely results in the fracture risk of patients with
T2DM being underestimated when using BMD. The apparent
disconnect between BMD and fracture risk in T2DM has
perplexed researchers and clinicians alike, however, a consistent
finding appears to be that diabetic patients (32, 35–37) and obese
animal models of T2DM (38, 39) demonstrate impaired bone
turnover, particularly reduced bone formation. Therefore, these
animal models provide a valuable tool for the continued
investigation behind molecular mechanisms contributing to
fragility fractures in T2DM.

Regarding preclinical animal models to study skeletal related
outcomes associated with T2DM some debate exists relative to the
“best” model system. While some investigators rely on genetically
modified transgenic and congenic mouse models, others utilize
nutritional interventions in the form of high fat diets. We have
previously provided an in-depth review regarding this model system
(40). When performing these studies some key considerations
include percent fat of diet, fat source, compensatory carbohydrate
source of the control diet (i.e., added fat decreases the proportion of
carbohydrate and/or protein), feeding schedule, and food/calorie
intake. It is important to appreciate that the term, “high fat” is
relative to the standard AIN diet. Since the AIN-93M diet contains
~10% kilocalories (kcal) derived from fat (soybean oil), anything
above this amount would constitute as “high” fat. Two of the more
Frontiers in Endocrinology | www.frontiersin.org 4
commonly used commercially available high fat diets used to induce
obesity are a 45% and 60% kcal from fat diets. These high fat diets
are typically formulated with less soybean oil but use lard or beef
tallow to increase fat content. These lard-based high fat diets are
high in saturated (myristic, palmitate, and stearic) and unsaturated
(oleic and palmitoleic) fatty acids relative to the AIN-93 diets.
Conversely, some labs have used the commercially available Surwit
diet to induce obesity and/or glucose intolerance (41). A major
difference between this diet and the previously described high fat
diets is that while fat is comparable at 58% kcal, the primary fat
source in the Surwit diet is hydrogenated coconut oil, which
contains a high amount of medium chain, saturated fatty acids
(i.e., lauric acid and myristic acid). Additionally, the major
carbohydrate source in the Surwit diet is sucrose, as opposed to
cornstarch in the other high fat diets. This large amount of sucrose,
which is digested to yield glucose and fructose, can have a profound
effect on systemic metabolism aside from the high fat content (42).
As such, the carbohydrate source, along with the full dietary
formula, should be considered. Another example of dietary
carbohydrate modifications impacting study related outcomes is
that control diets relative to the experimental selected high fat diets,
must be formulated with higher carbohydrates. This can be
accomplished by increasing purified carbohydrate sources such as
cornstarch, sucrose, or maltodextrin. Of these ingredients,
cornstarch appears to impact metabolic response the least and is
generally comparable to the AIN-93 diet (18). Therefore, it’s likely
that increasing the amount of sucrose to account for carbohydrates
can impair glucose tolerance in the absence of weight gain (42).
Therefore, if obesity is the required outcome this may not be of
concern, but if obesity-related metabolic perturbations such as
TABLE 1 | Key nutritional components and dietary formulation of the AIN-93M diet.

Nutrient kcal
(%)

Ingredients g/kg Notes

Protein 14.7
Casein 140 Casein provides >85% protein. While multiple protein sources exist, casein was selected as it provides an

adequate amino acid composition and is readily available. The major limitation is that casein contains a low
amount of cystine, therefore, L-cystine is added to the diet. Casein also contains significant amount of
phosphorous.

L-Cystine 1.8

Carbohydrate 75.9
Cornstarch 495.69 Starch was selected as the carbohydrate source to replace the high amounts of sucrose in the AIN76 diet, which

caused many off-target effects. A diet high in starch will not pellet properly, therefore, dextrinized starch
(maltodextrin) is added. A small amount of sucrose is added to provide sweetness and improve palatability.

Maltodextrin 125
Sucrose 100

Fat
9.4 Soybean Oil 40 Soybean oil provides the essential fatty acids, linoleic and linolenic acid. The amount for AIN93M diet was

selected to provide an (n-6):(n-3) ratio of 7 and a polyunsaturated: saturate ratio of 4. An additional margin of
safety was added for the AIN93G diet.

Fiber Cellulose 50 Cellulose is wood-fiber, and while fiber is not considered a ‘nutrient’ it provides beneficial regulation of the gut
microflora populations. Of the various fiber sources, iron seems to be the largest mineral contaminant.

Minerals Mineral Mix* 35 Mineral mix contains essential minerals and ultra-trace elements such as calcium, potassium, phosphorous,
sodium, chloride, sulfur, magnesium, iron, zinc, copper, selenium, chromium, manganese, fluoride, nickel, iodine,
molybdenum, and vanadium. Mineral mix also contains powered sucrose as a dispersal medium for vitamins.

Choline bitartrate 2.5

Vitamins Vitamin Mix* 10 This vitamin mix provides the known essential vitamins for laboratory rodents including, nicotinic acid,
pantothenate, pyridoxine, thiamin, riboflavin, folic acid, biotin, vitamin B12, vitamin E, vitamin A, vitamin D3,
vitamin K1. Vitamin mix also contains powered sucrose as a dispersal medium for vitamins. These vitamins are
especially sensitive to light degradation.

Anti-oxidant tert-
Butylhydroquinone
(TBHQ)

0.01 Oxidation of highly polyunsaturated oils/fats are likely and therefore, TBHQ is added to effectively prevent from
oxidation. Of note, when fats are altered in diets, it is likely that additional considerations should be taken
including storage temperatures and frequency of food replacement.
Each component was thoughtfully considered during the formulation process (17, 18). (*) Mineral mix and vitamin mix are specific to the AIN-93 diets.
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impaired glucose tolerance, control mice could exhibit a similar
phenotype compared to experimental high fat group. It is also worth
noting that high sucrose content in the diet will also produce a
sweeter, more palatable food, that could impact food intake. These
details again underscore the importance and care which should be
taken when dietary modifications are the model and the need to
include the details of these modifications in published reports.

Calorie Restriction Model of
Anorexia Nervosa
Anorexia nervosa is an eating disorder characterized by the severe
restriction of food/nutrient intake, which results in abnormally low
bodyweight and an intense fear of gaining weight. This disorder is
associated with a significant reduction is BMD accounting for ~40%
of patients being diagnosed with osteoporosis (92% osteopenia) and
a 3-fold increase in lifetime fracture risk (43). Another striking
skeletal phenotype associated with anorexia is despite the
lipodystrophic response, bone marrow adipocytes increase in
both their number and size (44). While the precise function of
bone marrow adipocytes remains unclear, a general inverse
association exists between bone marrow adipose tissue (BMAT)
and BMD clinically (45). Therefore, this unique adipose depot has
been of particular interest in clinical pathologies such as anorexia.

Relative to preclinical modeling, dietary manipulation in the
form of calorie restriction is often used to mimic anorexia as it
results in reduced BMD and expansion of BMAT. While it
remains somewhat debated, a 30% reduction in total calories is
often used in this model as it produces the desired outcome of
reduced skeletal parameters and increases marrow adiposity (46,
47). Of note, investigators should consider formulating the diet
such that a 30% reduction in calories does not result in
micronutrient deficiencies. For example, we have previously
used a formula which resulted in a 30% reduction in total
kilocalories, but calcium and phosphate were matched to that
of controls. In this regard, bone loss was evident and our ability
to control these variables allowed us to determine that mineral
deficiency was not the sole culprit (48). Similarly, phosphate
restriction has also been shown to increase bone marrow
adiposity and given the matched diet in our experiments, the
same can be said for calorie restricted expansion of BMAT (49).

Other major nutritional and metabolic considerations using the
calorie restriction model of anorexia nervosa involves the feast-
famine feeding schedule and individual housing. Relative to the
feeding schedule, animals are often food restricted during their
active or dark cycle, only to be fed during the day, at which time
they often consume most of their food. Therefore, the precision of
the model relative to anorexia remains somewhat under debate.
Additionally, animals are often individually housed to ensure each
animal is consuming a known amount of food and to avoid a
dominate animal from ingestingmost of the food, thereby restricted
others further. While controls should also be individually housed,
this does introduce metabolic and behavioral disruption to the
animals. Individual housing of mice has been shown to reduce
growth rate while increasing energy intake and expenditure, due in
part to maintain thermal neutrality without huddling of litter (50).
Behavioral and endocrine alterations are also noted during
Frontiers in Endocrinology | www.frontiersin.org 5
individual housing and vary in degree amongst different mouse
strains (e.g., BALB/c demonstrate increased anxiety-like behavior
versus Swiss Webster which are considered ‘normal’); however,
they should be considered when using this model (51).

Dietary Models of Chronic Kidney Disease
The chemical composition for the mineral portion of bone, or the
hydroxyapatite [Ca10(PO4)6(OH)2], inherently emphasizes the
importance of mineral metabolism on skeletal health. Therefore,
mineral imbalances that occur during chronic kidney diseases
(CKD) significantly impact bone resulting in reduced BMD,
promoting skeletal fragility and increased incidence of fracture
(52). Traditional techniques for inducing renal failure have
included surgical methods and currently, the most widespread
methods are unilateral ureteral obstruction and 5/6
nephrectomy. Both methods lead to interstitial fibrosis by
infiltration of macrophages and tubular cell death by apoptosis
and necrosis, thus causes significant renal dysfunction (53).
Limitations of these surgical models include the dependence
on surgical skills, demand of post-operative care, high mortality
rates, and reduced flexibility of dynamic urea alterations which
results in the inability to study graduate disease progression (53).
Additionally, dietary modification by means of using an adenine
supplemented diet, commonly 0.2-0.25% adenine, has been
shown to induce phenotypic CKD in rats (54). This method
takes advantage of a mechanism by which adenine is oxidized via
xanthine dehydrogenase, which yields 2,8-dihydroxyadenine.
Given the low solubility of 2,8-dihydroxyadenine, stones are
precipitated in the kidney tubules resulting in nephrolithiasis
with extensive tubular dilation, necrosis, and fibrosis,
accompanied by renal dysfunction. The adenine model has the
advantage of sharing similar pathological features with human
CKD (e.g. , tubulointerstit ial fibrosis , inflammation,
glomerulosclerosis and moderate vascular calcification), with
little variation between animals and develops over a relatively
short period of time (54, 55). Up until recently, this model was
exclusive to rats, as mice were reluctant to consume the adenine-
based diets, which resulted in high morbidity and mortality due
to starvation and malnutrition rather than renal failure. This
limitation was recently circumvented by mixing the adenine in a
chow-based diet supplemented with casein (56). In this capacity
the casein effectively removed the inherent smell and taste of
adenine, which resulted in mice sufficiently consuming the diet
to replicate the renal dysfunction noted in rats (56).

Based on reports in the literature, some investigators
supplement adenine into a purified casein-based diet, but many
incorporate adenine into chow-based diets, with or without the
addition of casein (56–59). The practice of incorporating nutrients
into chow-based diets can still result in closed label formulations
that leave researchers with little control over ingredient variability.
Particularly noteworthy when incorporating the adenine into
chow-based diets, these diets fluctuate in their mineral content
which could significantly impact study-related outcomes. Despite
this CKDmodel being driven by dietary alterations, its striking how
few publications provide nutritional or dietary information.
Additionally, some reports mention a gradual reduction in food
July 2022 | Volume 13 | Article 932343
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intake with the adenine supplemented diet, but given the chow
component, it remains unclear what this “reduction” accounts for
in terms of actual kcal and other nutritional components. It is
noteworthy that along with the CKD phenotype induced by
adenine supplementation, mice also demonstrate reduced bone
parameters to include expansion of BMAT. It is of particular
interest whether this phenotype is directly driven by the CKD, by
a relative decrease in food intake or both. Thus, monitoring of food
intake is warranted. In the same vein, phosphate restriction alone
has been shown to exert a similar outcome by decreasing bone
formation and increasing BMAT. Therefore, when using
these models, it is important to consider variables such as
dietary modifications and components to fully scrutinize
molecular mechanisms.

Other Nutritional Considerations When
Studying Skeletal Metabolism
In addition to the issues highlighted above, other considerations and
limitations exist relative to dietary influence on preclinical rodent
models while studying skeletal-related outcomes. A topic that has
attracted much attention from the scientific community is that of
the gut-microbiome and its influence on health and disease, to
include bone homeostasis (60, 61). In fact, the gut microbiome has
been shown to influence all the of the preclinical models previously
discussed (62–66). Because the study of the gut microbiome often
requires the use of germ-free or immune-compromised models,
several dietary factors should be considered. To start, diet
sterilization is required common practices include ɣ-irradiation
and high-vacuum autoclaving of the diets, both of which can
have profound effects on diet integrity. For example, ɣ-irradiation
can result in profound losses of vitamins C, B1, and A, in addition to
destruction of unsaturated fatty acids (67, 68). Furthermore,
autoclaving rodent diet has recently been shown to increase (~3x)
dietary advanced glycation end-products (AGEs) which impacts the
progression of CKD (69). Therefore, the potential loss of nutrients
along with potential dietary modifications should be considered
when using diets that have been irradiated and/or autoclaved.
Another diet issue that should be considered relative to the gut
microbiome is the fiber content of diets. Grain-based chow and
purified diets can vary greatly in their fiber content. Chow diets
typically contain very high levels of soluble and insoluble fiber
(~20% of total composition) compared to purified diets, which
historically contain ~5% total fiber (14, 63). This is critical as
bacteria residing in the gut produce short-chain fatty acids upon
fermentation as well as other secondary metabolites which can affect
bone (70). It is also worth noting, the coprophagic behavior of both
rats and mice, is an important behavioral and nutritional habit used
to supply essential nutrients upon a “second digestion” of fecal
content. This practice results in substantially higher microbial loads
in the large intestine, some 100 times higher than if coprophagia was
deterred (71). Therefore, diet handling along with rodent behavior
can directly impact the bioavailability of nutrients which may not
have been accounted for based on original composition of the diet.

As much of this review has focused on rodent diets, another
important nutritional consideration is that of food intake. This
issue has been raised in conjunction with several of the models:
Frontiers in Endocrinology | www.frontiersin.org 6
1) the OVX model often consumes more food relative to Sham
mice; 2) the high-fat diet model of obesity, typically consume less
food compared to control, but greater calories per gram; 3) the
calorie restricted model relies of restriction based on ad libitum
feeding group; and 4) the adenine diet of CKD often consume
less due to reduced palatability/preference. However, other
preclinical models used to study bone could also impact food
intake including dental defects and hormonal status, and as such,
care should be taken if nutritional intervention is used in the
study design. Additionally, many studies within the field of bone
and mineral metabolism use optical imaging of live mice
fluorescent reporter mice, as in the case of multiple cancer
models and with the Thermo-UCP1 promoter (72, 73). In this
case, it has recently been reported that the alfalfa meal from chow
diets produces a great amount of autofluorescence in the
abdominal region due to the chlorophyll using the far-red and
near-infrared filters (74). Therefore, its plausible that this
autofluorescence can skew results, especially if time of diet
ingestion is different (i.e., treatment alters food intake and/or
scans done at differing times of the day).

As a final cautionary note, aside from ‘diet’, water consumed by
rodent models can be a source of experimental confounders. Firstly,
water can be considered a source of nutrients, namely minerals,
especially in regions where the water is ‘hard’. While many animal
facilities provide water that is often purified of minerals to some
degree using deionization (DI) or reverse osmosis (RO), only RO
can remove protozoa, viruses, and bacterium from the water.
Therefore, the use of tap water is highly discouraged. Another
consideration relative to the source of water is that some transgenic-
mouse models use a tetracycline (Tet)/doxycycline (Dox)-inducible
Cre recombination system (e.g., osteoprogenitor targeted promoters
such as osterix (Sp7) and chondrocyte targets under the type II
collagen promoter (Col2A1) (75, 76). While these inducible model
systems provide a valuable tool to time the manipulation of gene
expression, the Tet/Dox treatments are often delivered in the water
and could impact bone-related study outcomes as they fluorescently
label bone surface (77, 78), alter gut microbiome, and have been
noted to taste bitter (79–81). This taste-aversion has even been
combatted in some studies by the addition of sucrose in the water,
however, this modification should be considered.
CONCLUSION

When using some of the preclinical rodent models for
osteoporosis research in many ways researchers assume a part
of the role of ‘nutritionist’. In this capacity, researchers can ask
their scientific question while controlling for potential study-
confounders introduced via dietary sources. This review has
aimed to highlight some key dietary considerations of dietary
modifications when studying skeletal outcomes, Figure 2,
however, it is not exhaustive. At a minimum, care should be
taken to provide adequate dietary information when reporting
results and detailing methodology, especially when the
experimental model involves dietary modifications. Arguably,
failure to do so is comparable to using a genetic mouse model
July 2022 | Volume 13 | Article 932343
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without providing the field of ‘osteodietology’ has the exciting
potential to use dietary modifications to better understand and
enhance skeletal health, beyond calcium and vitamin D, key
nutritional considerations must be included.
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