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Hydrogen sulfide (H2S) is one of most important gas transmitters. H2S

modulates many physiological and pathological processes such as

inflammation, oxidative stress and cell apoptosis that play a critical role in

vascular function. Recently, solid evidence show that H2S is closely associated

to various vascular diseases. However, specific function of H2S remains unclear.

Therefore, in this reviewwe systemically summarized the role of H2S in vascular

diseases, including hypertension, atherosclerosis, inflammation and

angiogenesis. In addition, this review also outlined a novel therapeutic

perspective comprising crosstalk between H2S and smooth muscle cell

function. Therefore, this review may provide new insight inH2S

application clinically.
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Introduction

Hydrogen sulfide (H2S) is recently recognized as the third gas signaling transmitter

after nitric oxide (NO) and carbon monoxide (CO) despite it was once considered as

toxic gas. Endogenous H2S production is mainly mediated by cystathionine-b-synthase

(CBS), cystathionine-c-lyase (CSE), 3-mercaptopyruvate sulfur transferase (3-MST),

which are the most pre-dominant enzymes of H2S production (1–3). Exogenous

administration of H2S is mainly performed with NaHS salts and H2S related compounds.

Recent studies have proved H2S to be vasculoprotective by participating different

cellular pathways and interfering with a variety of vascular diseases (4–7). H2S is

endogenously produced by vascular cells or exogenously administered by H2S

releasing donors. In the vasculature, H2S regulates the proliferation and migration of

endothelial cells and vascular smooth muscle cell, regulates the apoptosis, oxidative stress

and inflammation of vascular cells. Furthermore, H2S has been widely proved to regulate
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many vascular diseases, including hypertension, atherosclerosis

(AS) and angiogenesis (8). Although the beneficial effects of H2S

have widely been recognized, the mechanisms into the molecular

pathways largely remained unknown. Deeper understanding of

the working mechanisms will help put their way into further

clinical application.

In this review, we review the recent findings about H2S in

vascular diseases, including hypertension, AS and angiogenesis,

as well as recent working mechanisms. The role of H2S will be

separately discussed endogenously and exogenously here.

Finally, we will discuss the possible perspectives of H2S in

the future.
H2S in hypertension

Hypertension has been a worldwide disease, accounting for

30-40% of the whole population, posing great danger to people’s

health (9, 10). It is reported that H2S plays a role in blood

pressure regulation. Despite emerging evidence from

experimental studies targeting H2S to protect against

hypertension, these results need further clinical research.
Endogenous H2S in hypertension

The concentration of H2S in human blood has been reported

within a normal range under physical conditions. However, the

change of H2S concentration has been reported to be reduced in

high blood pressure (HBP) patients, suggesting the potential

regulatory role of H2S in HBP (11, 12). Several clinical studies

have reported the relationship between H2S and hypertension

related disorders (13). Additionally, decreased H2S plasmatic

levels were also found in lead-induced HBP patients (14).

Furthermore, the three major generating enzymes, CSE, CBS

and 3-MST were reported to be reduced in HBP patients,

suggesting the endogenous synthesis of H2S may participate in

the pathogenesis of HBP (15). Aging is an important

predisposing factor for HBP. Loss of 3-MST using a genetic

mouse model recuses the mouse cardiovascular system from

aging-dependent disorders, thus regulating progression of HBP

(16). Innate immune and adoptive immune cells are essential in

the genesis and target-organ damage of hypertension. In a recent

study, Cui reported that CSE-derived H2S promotes Treg

di fferent ia t ion and prol i ferat ion in an adenosine

monophosphate activated protein kinase (AMPK) dependent

pathway, which attenuates the vascular immune-inflammation,

thereby preventing hypertension (17). Furthermore, DL-

propargylgycine (PPG), a CSE inhibitor, was reported to

increase BP in Wistar-Kyoto rats and to promote vascular

remodeling, indicating the potential regulatory role of CSE in

maintaining normal BP (18). Interestingly, in another study,

treatment of Sprague-Dawley rats with CSE inhibitor, DL-
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propargylglycine (PAG) or CBS inhibitor, aminooxyacetic acid

alone, did not alter the BP levels, while treatment with both

inhibitors would significantly increase mean arterial pressure.

This finding could partly explain the interaction of different H2S

producing enzymes in regulating BP (19).

As important gas transmitters, H2S and NO share crosstalk

in regulating pathological and physical conditions (20, 21). In

hypertension, endogenous H2S production regulated by CSE,

inhibits endogenous endothelial NO bioavailability, therefore

contributing to blood pressure control (22). Sodium

nitroprusside (SNP), a NO donor, was reported to increase

H2S production via upregulating the CSE or CBS activity,

suggesting the crosstalk between the endogenous production

of two gases (23). However, the details of two gases interaction

regulating blood pressure remain to be elucidated.

Taken together, endogenous H2S production acts as an

important physiological mediator that regulates BP

homeostasis and H2S deficiency will contribute to the progress

of HBP.
Exogenous H2S in hypertension

Apart from endogenous regulation of H2S in HBP,

exogenous administration of H2S would regulate the process of

HBP. The effects of exogenous H2S donors have been widely

studied in animals in different experimental settings.

NaHS was the most widely used H2S donor for examining

the effects in treating HBP. It is reported that early treatment

with sodium hydrosulfide (NaHS) (14umol/Kg/day daily

intraperitoneal injection for 4 weeks) was proved to prevent

the transition from pre-hypertension to hypertension in

spontaneously hypertensive rats (SHRs) (24). In another study,

NaHS was reported to improve endothelial dysfunction by

inhibiting the NLRP3 inflammasome and oxidative stress in

SHRs. However, the protective effects were abolished by

knocking out Nrf2 (25). The protective effects of NaHS was

also testified in an Ang-II induced HBP model, suggesting the

universal effects of H2S in treating HBP (26). Xiao and colleagues

reported that 20-week administration of NaHS lowered the

arterial pressure and increased the production of NO,

enhancing eNOS phosphorylation through the activation of

peroxisome proliferator-activated receptor/protein kinase B/

AMP-activated protein kinase (PPAR-d/Akt/AMPK) signaling

pathway (27). Administration of NaHS exerted anti-

hypertensive effects, promoted non-NO-mediated relaxation,

and decreased oxidative stress in rats with plumbum-induced

hypertension (14). Injection of NaHS was demonstrated to

ameliorate soluble FMS-like tyrosine kinase 1 (sFlt1)-induced

hypertension, proteinuria, and glomerular endotheliosis in rats

by increasing vascular endothelial growth factor (VEGF)

expression (28). NaHS administration in SHRs were proven to

reduce hypertensive related inflammation, partly through
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regulation of T cell subsets balance by Connexin (Cx) 40/Cx43

expressions inhibition (29). These experiment results

demonstrate that NaHS dramatically suppressed the

progression of HBP in different experimental settings via

different mechanisms.

GYY4137 was synthesized in 2018, characterized as a novel,

water-soluble and long-releasing hydrogen sulfide-releasing

molecule (30). GYY4137 has been reported to have anti-

hypertensive effects, due to upregulating the expression of

VEGFR2 (31). In another study, GYY4137 reversed blood

pressure increase after Ang-II inducement, which was

accompanied by upregulation of microRNA-129 (32).

Exogenous GYY4137 supplementation in the paraventricular

nucleus (PVN) attenuated sympathetic activity and hypertensive

response, partly due to decrease of reactive oxygen species (ROS)

and pro-inflammatory cytokines within the PVN in high salt-

induced hypertension (33).

Apart from GYY4137 and NaHS, various H2S releasing

organic compounds have been shown to exhibit protective

effects in treating HBP. Allicin, which comprised a variety of

sulfur-containing compounds, has been reported to exert anti-

hypertensive effects in an endothelium dependent pathway (34).

Sodium thiosulfate, a reversible oxidation product of H2S, has

vasodilating and anti-oxidative properties in a N-w-nitro-L-
arginine (L-NNA) induced hypertension model (35). N-

phenylthiourea (PTU) and N,N’-diphenylthiourea (DPTU)

compounds have been investigated as potential H2S-donors,

and also demonstrated typical H2S-mediated vascular

properties (36). This experimental evidence advocates more

extensive discovery of new H2S donors to exert more extensive

application in treating HBP.

H2S does share interplay with NO and CO, regulating the

pathogenesis of HBP. H2S and NO are both vasodilating

mediators. H2S donors were reported to induce vasorelaxation

and promote NO-donor induced vasorelaxation in rat thoracic

aorta, showing the possible interaction between NO and H2S in

vascular regulation (37). In L-NAME induced hypertensive rats

a dysfunctional H2S pathway was revealed and exogenous H2S

attenuated the elevated blood pressure in this model (38).

Reducing CO levels in Brown-Norway rats increases H2S

generation and prevents hypoxia-induced pulmonary edema.

Increasing CO levels in SHR has been found to enhance carotid

H2S generation, prevent hypersensitivity to hypoxia and control

hypertension in SHR (39). H2S has also been demonstrated to

exert protective effects for acute CO poisoning patients (40).

As for the mechanisms of H2S in regulating HBP, they share

similar functions and several similar pathways to regulate

hypertension. The possible mechanisms of H2S on vascular tone

include: KATP- channel dependent relaxation, other K+ channels,

PKG activation, hyperpolarization, eNOS inhibition, inhibition of

cytochrome C oxidase and anti-oxidant effects (21, 41–47).

H2S not only exert anti-hypertensive effects in systematic

hypertension, it also has a regulatory role in pulmonary
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hypertension (PHT). PHT is characterized by blood pressure

increased in pulmonary artery, associated with high incidence of

mortality and morbidity (48). H2S was reported to exert anti-

hypertensive effects in pulmonary hypertension via vaso-

relaxative actions (49, 50). H2S has been proven to effectively

inhibit hypoxia-induced increase in cell proliferation, migration,

and oxidative stress in pulmonary artery smooth muscle cells

(PASMCs) in an endoplasmic reticulum (ER) -dependent

pathway, therefore exerting protective effects in PHT (51).

Rashid et al. demonstrated that the relaxation response of to

NaHS in porcine lungs was reduced in the presence of a high

concentration of K+, indicating that the mechanism of relaxation

depends, in part, on K+ channel activity (52). Du group showed

that H2S treatment attenuated the oxidative stress accompanied

by PHT, by reducing oxidized glutathione content (53). It was

also reported that endogenous sulfur dioxide pathway was

down-regulated in rats with PHT, indicating the involvement

of sulfur dioxide/aspartate aminotransferase 2 pathway (54).

To summarize, due to the complexity of HBP management

and lack of adequate therapy, H2S is gaining increasingly attention

as a potential therapeutic target. Therefore, we summarized the

role of H2S in regulating hypertension in Table 1. However, the

effects and mechanisms by which H2S regulates HBP are

complicated and still remaining largely unknown.
H2S and atherosclerosis

Atherosclerosis (AS) is a long-term, chronic inflammatory

disease of the vessel wall, which is widely recognized as a high

risk for cardiovascular diseases (55). The progression of AS is

extremely complex, involving numerous pathophysiological

processes, including endothelial dysfunction, oxidative stress,

inflammation, vascular smooth muscle cell proliferation and

migration (56).

H2S has been reported to be a vaso-relaxant agent, which

processes the property of ameliorating vascular dysfunction and

mitigating the progression of AS. The potential therapeutic

effects in anti-AS include maintaining endothelial cell

dysfunction, inhibiting inflammation, suppressing vascular

smooth muscle cell (VSMC) proliferation, migration and

mitigating oxidative stress (57). However, the mechanisms of

H2S to be protective against AS have not been fully elucidated

and the therapeutic potential of H2S for AS treatment needs

further exploration. Herein, we will review the recent findings of

H2S in anti-AS from two main perspectives: endothelial cell

dysfunction and inflammation.
Endothelial cell dysfunction

The endothelial cell represents a fundamental barrier for the

maintenance of vascular homeostasis. Dysfunction in the
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endotheliummay lead to several cardiovascular diseases (58, 59).

Therefore, protecting the vascular endothelium from damage is

one of the key factors against AS and AS related disorders.

Endogenous regulation of H2S are observed to play a role in

regulating AS. The concentration of H2S was found to be

decreased in AS mice, indicating the potential regulatory role

of H2S in AS (60). As mentioned previously, the synthesis of H2S

are regulated by 3 enzymes: CBS, CSE, and 3-MST. Loss of

enzyme functions may lead to endothelial dysfunction in AS. For

example, CSE/H2S pathway is reported to involve in AS via the

H2S/CSE-TXNIP-NLRP3-IL-18/IL-1b-nitric oxide (NO)

signaling pathway (61). Furthermore, Tian and colleagues

observed that H2S deficiency derived from CSE depletion

contributes to the development of endothelial dysfunction. In

their study, MAPK/TXNIP (thioredoxin interacting protein

signaling) is positively involved in CSE/H2S deficiency-

associated endothelial dysfunction (62). CSE/H2S pathway may

be protective against the formation of uremia accelerated

atherosclerosis (UAAS) by affecting the expression of

downstream molecule endothelial nitric oxide synthase

(eNOS), which may be mediated by conventional protein

kinase C (PKC) bII/Akt signaling pathway (63). Besides CSE,
Frontiers in Endocrinology 04
CBS was also observed to play a role in the process of AS.

Mutations in the CBS gene are known to cause endothelial

dysfunction responsible for cardiovascular and neurovascular

diseases, and CBS/H2S pathway interacts with mitochondrial

function and ER-mitochondrial tethering, therefore interfering

with endothelial cell dysfunction-related pathologies (64).

However, the role of 3-MST in maintain endothelial cell

function in AS needs to be investigated. Collectively, the level

of H2S and CSE/CSB/3-MST level can be considered as potential

biomarkers and therapeutic targets for AS patients.

Numerous studies have demonstrated that exogenous H2S

supplementation is another source contributing to the anti-AS

effects. For instance, NaHS was proved to be protective against

AS by upregulating angiotensin converting enzyme 2 (ACE2)

expression in endothelial cells (65). Besides, H2S can reverse the

endothelial dysfunction induced by AngII in HUVECs by ER

stress pathway (66). Furthermore, H2S can enhance activator

protein 1 (AP-1 binding) activity with the sirtuins 3 (SIRT3)

promoter, thereby upregulating SIRT3 expression and ultimately

reducing oxidant-provoked vascular endothelial dysfunction

(67). Also Ford reported that NaHS treatment significantly

reduced endothelial dysfunction and inhibited vascular
TABLE 1 Role of H2S in Regulating Hypertension.

Source Gene/
Compound

Effects Mechanism Reference

Endogenous CSE Inhibit inflammation Dependent on AMPK pathway (17)

CSE inhibitor Increase hypertension Not applicable (18)

CSE inhibitor or
CBS inhibitor

Increase hypertension Not applicable (19)

Exogenous NaHS Prevent HBP restores NO bioavailability, and blocks the RAS system in the
kidney

(22)

Prevent hypertension in SHR improve endothelial dysfunction by inhibiting the NLRP3
inflammasome and oxidative stress

(25)

Protective in Ang II induced HBP mice reduces blood pressure, endothelial dysfunction and vascular
oxidative stress

(26)

Protective in HBP increased the production of NO, enhancing eNOS
phosphorylation via PPAR-d/Akt/AMPK pathway.

(27)

anti-hypertensive in plumbum-induced hypertension promoted non-NO-mediated relaxation, and decreased
oxidative stress

(14)

anti-hypertensive Ameliorate proteinuria, and glomerular endotheliosis by
increasing VEGF expression

(28)

reduce hypertensive related inflammation regulation of T cell subsets balance by Cx 40/Cx43 expressions
inhibition

(29)

GYY4137 anti-hypertensive upregulating the expression of VEGF receptor 2 (31)

anti-hypertensive after Ang-II inducement upregulating of micro RNA-129 (32)

attenuated sympathetic activity and hypertensive
response in the paraventricular nucleus

decrease of reactive oxygen species and pro-inflammatory
cytokines

(33)

Allicin exert anti-hypertensive effects Dependent on endothelium (34)

Sodium thiosulfate Protective in HBP vasodilating and anti-oxidative properties (35)

thiourea vasorelaxing effects membrane hyperpolarization, mediated by activation of KATP
and Kv7 potassium channels.

(36)
fro
CSE, cystathionine-c-lyase; CBS, cystathionine-b-synthase; HBP, high blood pressure; AMPK, adenosine monophosphate activated protein kinase; RAS, renin-angiotensin system; NLPR3,
Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3; NO, nitric oxide; eNOS, endothelial nitric oxide synthase; Cx, Connexin; VEGF, vascular
endothelial growth factor; KATP, ATP-sensitive potassium channel.
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superoxide generation in high-fat diet ApoE(-/-) mice, and

therefore impaired atherosclerotic lesion development (68).

Apart from supplementation of traditional donors,

administration of organic H2S donors would also be protective

in maintaining EC function against AS. GYY4137 can induce

autophagy and can protect ECs from Ox-LDL-induced apoptosis

by activating Sirt1 (69). AP39 and AP123, the newly synthesized

mitochondria-target H2S donors, are reported to protect

endothelial cells from highglycemia-induced injury via

preserving mitochondria function (70). With the development

of pharmacy technology, the synthesis of new H2S releasing

compounds are promising against AS.

There is crosstalk between H2S and NO in regulating the

pathogenesis of AS. H2S was reported to increase NO production

and upregulated the expression of inducible nitric oxide synthase

(iNOS) (71). ApoE-/- mice fed with PAG was found with

enhanced atherosclerotic lesion area, and with decreased NO

levels, suggesting H2S could regulate atherosclerosis progression

through NO crosstalk. H2S partially restores aortic endothelium-

dependent relaxation in ApoE-/- mice, which may be related to

increased phosphorylation of eNOS in the aorta (72).

To summarize, large numbers of studies have demonstrated

the protective role of H2S in anti-AS viamaintaining normal EC

function, however, the mechanisms need deeper understanding.

As a result, this will further facilitate the development of drug

therapy for treating AS.
Inflammation

AS is a chronic vascular inflammatory disease and

inflammation exists at all stages of AS (73). H2S has been

reported to have anti-inflammatory effects, further regulating

the pathogenesis of AS. Deeper understating of the protective

effects of H2S donors via inhibiting inflammation will help

provide a new way for future AS treatment.

Endogenous H2S production has been reported to regulate

inflammation in AS by its producing enzymes. Alterations of

CSE/H2S pathway may thus be involved in atherosclerosis

pathogenesis (74). However, the underlying mechanisms are

poorly understood. Endogenous CSE/H2S can directly

sulfhydrate SIRT1, promote its deacetylation activity, and

increase SIRT1 stability, thus reducing atherosclerotic plaque

formation, by reducing vascular related inflammation (75). In

another study, zofenopril at, the active metabolite of zofenopril

has been reported to exert anti-inflammatory activity in vascular

cells through its ability to increase H2S availability, therefore

providing a potential target for treating AS (76). Moreover, CSE/

H2S pathway has been reported to play an anti-inflammatory

role in oxidized low-density lipoprotein (ox-LDL)-stimulated

macrophage by suppressing c-Jun N-terminal kinase (JNK)/NF-

kB signaling pathway (74). Furthermore, high fat diet is a

predisposing factor for the progression of AS. It is reported
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that high fat diet might cause impaired function of CSE/H2S

pathway, aggravating inflammation and posing risks to the

development of AS (77). Apart from CSE regulation pathway,

it is shown that deletion of CBS would impair endogenous H2S

production and promote inflammatory reaction in AS-

susceptible mice (78). This provided evidence that H2S

releasing diet may help protect against AS.

Apart from endogenous H2S in regulating AS related

inflammation, exogenous H2S administration also had an

important role in AS. NaHS was originally the most widely

used H2S donor in studying the effects of H2S in anti-AS.

Numerous studies have demonstrated NaHS to be protective

against AS by reducing inflammation (74, 75, 79, 80). In addition

to traditional H2S releasing salts, new synthesized H2S donors

have shown great potential with physiological properties.

Whiteman and et al. demonstrated that GYY4137 could

significantly inhibit lipopolysaccharide (LPS) -induced release

of pro-inflammatory mediators and promoted the release of the

anti-inflammatory chemokines. While NaHS exerted a

bidirectional effect at high concentrations. This finding can

partly explain the complex regulation system of H2S in

inflammation (81). GYY4137, has also been proved to be

protective against the development of diabetes-accelerated AS

by preventing the activation of NLPR3 inflammasome (82).

Furthermore, H2S rich compounds are reported to upregulate

the expression of glutathione (GSH) and glutamate-cysteine

ligase catalytic (GCLC) subunit, inhibiting inflammation, and

exerting beneficial effects of mitigating AS (83). The effects of

endogenous H2S and exogenous H2S in AS were listed in Table 2.
H2S and angiogenesis

Angiogenesis is a process of new vessel formation from the

existing vasculature (84). It is found that H2S might be a pro-

angiogenic factor, promoting angiogenesis in different diseases

and increase the expression of angiogenesis related biomarkers,

including diabetes mellitus (DM), ischemic diseases and

cancer (85).
H2S and DM related angiogenesis

DM is the leading cause of mortality worldwide, causing a

variety of vascular complications (86). Impaired angiogenesis is

a strong feature of DM and it can commonly induce refractory

wound lesions. Therefore, promoting angiogenesis is of crucial

importance for DM patients.

DM patients are reported with lower concentration of H2S in

serum and in curtenous tissues, indicating the impaired synthesis of

H2S production in DM patients (87, 88). Therefore, regulation of

endogenous H2S production and production enzymes are a

potential treatment for DM related wound healing. CSE down-
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regulation is reported to play a role in the pathogenesis of diabetic

impaired wound healing (89). Danhong, a traditional Chinese herb

medicine, has been reported to promote angiogenesis in the diabetic

hind limb ischemia model through activation of local CSE-H2S-

vascular endothelial growth factor (VEGF) axis (90). Furthermore,

DM leads to the dysfunction of 3-MST/H2S and 3-MST might be a

therapeutic target for DM patients (91). Besides, 3-MST/H2S axis

was also reported to exert pro-angiogeneic effects via modulating

mitochondrial respiration and increasing mitochondrial adenosine

triphosphate (ATP) production (92).

Numerous studies have proved H2S to be a pro-angiogenetic

factor (89, 93, 94). For example, H2S has been reported to increase

angiogenesis in injured ischemic adductor muscle and to promote

the ischemic diabetic wound healing in type 2 diabetic db/db mice

(95). H2S improves wound healing by restoration of endothelial

progenitor cell (EPC) functions and activation of Ang-1 in type 2

diabetic mice (94). H2S can also improve diabetic impaired wound

healing by attenuating inflammation and increasing angiogenesis

(96). These findings together imply that H2S played a role in DM

mediated angiogenesis.

Apart from traditional widely-know H2S releasing donors, new

and effective donors containing H2S moiety have been synthesized

and utilized in DM related diseases. HA-JK1 and SA/JK-1 have

been synthesized as examples. For HA-JK1, an in situ forming

biomimetic hyaluronic acid (HA) hydrogel was used as a matrix to
Frontiers in Endocrinology 06
dope a pH-controllable H2S donor, JK1, to form a novel HA-JK1

hybrid system. This HA-JK1 hydrogel was designed as an ideal

delivery scaffold for JK1 with pH-dependent prolonged H2S

releasing profile (97). For SA/JK-1, which was capable of

releasing H2S consistently under acidic pH conditions by

absorbing exudate at the wound interface. The SA/JK-1 sponge

exhibited biocompatibility to fibroblasts and promoted cell

migration in vitro, and exhibited obviously positive influence on

wound healing, therefore providing an effective treatment for non-

healing wound (98). Interestingly, microparticles containing NaHS,

have been synthesized using the emulsion technique, called NaHS@

MPs. It can sustainably release H2S under physiological conditions

and promote angiogenesis, further accelerating the healing of full-

thickness wounds in diabetic mice (99).

Collectively, the role of H2S in DM related angiogenesis is

gaining increasingly attention. However, there remains large

space to be explored to clinical practice.
H2S and angiogenesis in
ischemic diseases

Ischemic diseases are accompanied by shortage of blood

supply. Angiogenesis would potentially increase the blood flow,

therefore exerting the treating effects.
TABLE 2 Effects of Endogenous H2S and Exogenous H2S in AS.

Source Gene/
Compound

Effects Mechanism Reference

Endogenous CSE CSE deficiency upregulated the levels of IL-1b and IL-18 inflammatory
cytokines

Via activating TXNIP-NLRP3-IL-18/IL-1b-
NO signaling pathway

(47)

CSE depletion contributes to the development of endothelial dysfunction in
AS

Via activating MAPK/TXNIP pathway (48)

protective against the formation of uremia accelerated atherosclerosis Via activating eNOS/PKC bII/Akt signaling
pathway

(49)

reducing atherosclerotic plaque formation, by reducing vascular related
inflammation

sulfhydrate SIRT1, promote its deacetylation
activity, and increase SIRT1 stability

(59)

anti-inflammatory role in ox-LDL-stimulated macrophage suppressing JNK/NF-kB signaling pathway (58)

Exogenous NaHS protective in endothelial cells upregulating ACE2 expression (51)

NaHS reverse the endothelial dysfunction induced by AngII in HUVECs via ER stress pathway (52)

NaHS improve vascular function by reducing vascular superoxide generation and
impairing atherosclerotic lesion development

reducing endothelial dysfunction and
inhibiting vascular superoxide generation

(54)

GYY4137 reducing oxidant-provoked vascular endothelial dysfunction upregulate activator protein 1 activity with
the SIRT3 promoter

(53)

GYY4137 protect endothelial cells from Ox-LDL-induced apoptosis by activating Sirt1 induce autophagy (55)

GYY4137 inhibit lipopolysaccharide -induced release of pro-inflammatory mediators
and promoted the release of the anti-inflammatory chemokines

Not applicable (65)

GYY4137 be protective against the development of diabetes-accelerated AS preventing the activation of NLPR3
inflammasome

(66)

AP39 and
AP123

protect endothelial cells from highglycemia-induced injury preserving mitochondria function (56)

zofenoprilat exert anti-inflammatory activity in vascular cells In a CSE/H2S-mediated manner (60)
fro
CSE, cystathionine-c-lyase; NO, nitric oxide; TXNIP, thioredoxin-interacting protein; NLPR3, Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-
containing 3; NO, nitric oxide; MAPK, mitogen-activated protein kinase; eNOS, endothelial nitric oxide synthase; PKC, protein kinase C; SIRT, Sirtuin; ox-LDL, oxidized low-density
lipoprotein; JNK, c-Jun N-terminal kinase; ACE2, angiotensin converting enzyme 2; ER, endoplasmic reticulum; HUVEC, human umbilical vein endothelial cell.
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Modulation of endogenous H2S generation has a role in

angiogenesis. CBS, CSE and 3-MST responded differently to

angiogenesis. CSE is reported to promote VEGF-dependent

angiogenesis through H2S generation under amino acid

restriction (100). However, in another study, Tao and et al.

found that CBS could promote vascular endothelial cell

migration both under normoxic and minor hypoxia conditions

(10% oxygen), while CSE had the opposite effects. 3-MST can

accelerate the migration of endothelial cells in hypoxia, while no

such effect was observed under normoxic conditions. They further

found that 3-MST can modulate the endothelial cell migration,

rather than CSE or CBS. Their study highlighted the need to get

deeper understanding of the different functions of the H2S

producing enzymes under different conditions (101).

Furthermore, thiosulfate, one of the products formed during

oxidative H2S metabolism, has surprisingly demonstrated

inhibitory effects on VEGF-dependent endothelial cell

proliferation, combined with reduction of CSE expression level

(102). Therefore, the role of endogenous H2S on angiogenesis is

controversial and requires more study to elucidate the

potential mechanisms.

GYY4137 was reported to promote HHcy-mediated

neoangiogenesis impairment in the ischemic hind limbs of post

femoral artery ligation model via peroxisome proliferator-

activated receptor (PPAR)-g/VEGF axis (103). DATS, an

organic polysulfide releasing H2S, has been demonstrated to

promote angiogenesis in hindlimb ischemia via Akt-eNOS

signaling pathway (104). Furthermore, NaHS could increase NO

bioavailability and promote angiogenesis in ischemia hindlimb

(105). NaHS exert proangiogeneic effect mediated by interaction

between the upregulated VEGF in the skeletal muscle cells and the

VEGF receptor 2 (106). In another report, NaHS exerts pro-

angiogeneic effects through dependent on activation of Akt (107).

Recently, with the development of material synthesis

technology, various H2S releasing compounds have been

synthesized to enhance H2S releasing properties. For instance, A

poly (D, L-lactic-co-glycolic acid) microparticle system that

contains DATS, called DATS@MPs, possess the property of slow

and long-term H2S release. DATS@MPs have been reported to

promote therapeutic angiogenesis in an ischemic mouse limb

model through activating nuclear respiratory factor 2 (Nrf2)

translocation, thus providing therapeutic potential in treating

ischemic diseases (108). Moreover, ZYZ-803, a novel synthetic

H2S-NO hybrid molecule, which can slowly release H2S and NO,

has been reported to exert pro-angiogenetic effects via SIRT1

dependent pathway. The pro-angiogenetic effects of H2S are also

dependent on CSE and eNOS expression via cross-talk between

signal transducer and activator of transcription 3 (STAT3) and Ca2

+/CaM-dependent protein kinase II (CaMKII) activation (109, 110).

Apart from ischemic limb diseases, myocardial infarction

(MI) is another serious ischemic disease, which poses great

danger to people’s health. GYY4137 was reported to exert pro-

angiogenic effects following MI via endogenous natriuretic
Frontiers in Endocrinology 07
peptide activation (111). Diallyl trisulfide, a long-lasting H2S

donor, can mitigate left ventricular dysfunction via inducing

angiogenesis in over-loaded heart failure (112). NaHS was

reported to increase angiogenesis and improve left ventricular

function after MI (113). Besides, NaHS was also reported to

promote angiogenesis, and mitigating the progression of heart

failure by inducing matrix metalloproteinase (MMP)-2

activation and inhibiting MMP-9 and tissue inhibitor of

matrix metalloproteinase (TIMP)-3 expression (114).

Newly and novel H2S releasing compounds have been

synthesized, with the aim to over the limitations of traditional

H2S releasing donors. Liang and et al. developed a

macromolecular H2S prodrug. The compound comprised of a

2-aminopyridine-5-thiocarboxamide (a small-molecule H2S

donor) on partially oxidized alginate (ALG-CHO), to obtain

the slow and continuous release of endogenous H2S. They

further formed a stem cell-loaded conductive H2S-releasing

hydrogel through the Schiff base reaction between ALG-CHO

and gelatin. They utilized the hydrogel in treating MI,

demonstrating a dramatical improvement of the cardiac

functions in rats (115). Moreover, S-Propargyl-Cysteine

(SPRC), a novel water-soluble modulator of endogenous H2S

production, has been demonstrated to exhibit pro-angiogenetic

effects via the activation of STAT3. SPRC therefore provides a

novel therapeutic strategy for ischemia heart diseases (116).

H2S and NO shared interactions in regulating angiogenesis.

Aortic rings harvested from eNOS−/− mice exhibited no

microvessel outgrowth in response to NaHS, compared with

wild-type controls, demonstrating that NO was essential for the

pro-angiogenic effect of H2S. Besides, chemical inhibition of CSE

attenuated NO-mediated cGMP angiogenesis (44). Apart from

this, NO donors increased CSE dependent H2S biogenesis in a

cGMP-dependent manner. Pre-treating NO donors increased

CSE mRNA and protein levels in smooth muscle cells increased

H2S production (117). Taken together, NO and H2S contributed

mutually in regulating angiogenesis.

In summary, H2S plays an important role in different vascular

diseases. The structure of normal artery consisted of 3 layers. The

inner layer lined by a monolayer of ECs is closely contacted with

blood; the middle layer composed of VSMCs is located at the

complex extracellular matrix; and the outer layer of arteries is

composed of mast cells, nerve endings, and microvessels.

Imbalance and dysfunction of the 3 layers lead to the

pathogenesis of vascular diseases, especially dysfunction of EC

and SMC (7). This indicates the universal functions of H2S in

regulating different vascular diseases. Studied have focused on the

effects of H2S from endogenous H2S production and exogenous

H2S administration. However, the application of H2S in vascular

diseases is still in the basic research stage. Studies and experiments

of H2S in treating vascular diseases are required.

Future research should focus on the role and mechanism of

H2S and different H2S releasing donors in treating vascular

diseases. Synthetic H2S donors have been developed to
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overcome the disadvantages of traditional H2S donors. They can

be categorized by their class of triggering mechanisms,

possessing their specific delivery system and H2S releasing

properties (118). Continuous improvements in the interaction

and crosstalk between different gas transmitters in the control of

vascular diseases. Exploring the therapeutic potential in

regulating vascular diseases will be promising in the near future.
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