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misfolded GPCRs leading
to endocrine diseases
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G protein-coupled receptors (GPCRs) are plasma membrane proteins

associated with an array of functions. Mutations in these receptors lead to a

number of genetic diseases, including diseases involving the endocrine system.

A particular subset of loss-of-function mutant GPCRs are misfolded receptors

unable to traffic to their site of function (i.e. the cell surface plasmamembrane).

Endocrine disorders in humans caused by GPCR misfolding include, among

others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial

hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-

linked nephrogenic diabetes insipidus, congenital hypothyroidism, and

familial glucocorticoid resistance. Several in vitro and in vivo experimental

approaches have been employed to restore function of somemisfolded GPCRs

linked to endocrine disfunction. The most promising approach is by employing

pharmacological chaperones or pharmacoperones, which assist abnormally

and incompletely folded proteins to refold correctly and adopt a more stable

configuration to pass the scrutiny of the cell’s quality control system, thereby

correcting misrouting. This review covers the most important aspects that

regulate folding and traffic of newly synthesized proteins, as well as the

experimental approaches targeted to overcome protein misfolding, with

special focus on GPCRs involved in endocrine diseases.
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Introduction

G protein-coupled receptors (GPCR) and their associated

signaling modules represent one of the major systems employed

by the cells to communicate with each other and transmit

information across long and short distances within the body.

Sensory receptors for light, taste, and smell also belong to the

GPCRs superfamily (1–3). GPCRs constitute the largest family

of membrane receptors in many animal species, including

humans. In fact, 4-5% of the human genome codes for these

important plasma membrane proteins (1, 3). The importance of

GPCRs and GPCR ligands in human disease is supported by the

fact that both still continue to be the focus for new drug

discovery (currently in the form of small molecules and

peptides), despite being known as druggable targets for a long

time. Indeed, it is estimated that approximately 30-40% of

approved drugs target this family of membrane receptors (4–6).

Although GPCRs widely vary in molecular size (7–9), they

share a common structure conformed by a single, serpentine-

like, polypeptide chain that crosses the plasma membrane (PM)

seven times forming transmembrane domains (TMD), which are

hydrophobic, a-helix structures connected by extracellular (EL)

and intracellular (IL) loops, with an ectodomain (ECD) and an

intracellular carboxyl-terminal (COOH) domain also called C-

tail (7, 9). These cell surface plasma membrane-embedded

receptors exist in complex with one or several heterotrimeric

G proteins and also associate with membrane-linked

intracellular proteins that activate upon ligand binding and

that regulate activation of a number of G protein-dependent

and -independent signaling cascades (7, 9, 10). Upon activation,

GPCRs are desensitized and internalized through the formation

of endosomes, where a second wave of signaling may occur or

terminate, and the destiny of the internalized receptor is defined

(11–13). Therefore, the net amount of a particular GPCR

expressed at the PM that is exposed to extracellular

messengers, including the cognate ligand, will depend on its

dynamics of intracellular trafficking from the endoplasmic

reticulum (ER), where it is synthesized, to the its final

destination at the PM, the fate of the receptor following

agonist-stimulated internalization (degradation vs. recycling),

and the normal membrane turnover (13). Since GPCRs

participate in an array of functions, it is not surprising that

they are activated by a number of structurally diverse ligands

that include photons, ions, odorants, lipids, peptide and non-

peptide hormones, and several neurotransmitters that vary in

size (7–9). Approximately 50% of GPCRs bind endogenous

ligands, whereas the remaining receptors sense the chemical

environment (1, 14). Therefore, in complex organisms, GPCRs

are intermediate stations that communicate the internal and

external environments of cells.

Mutations in GPCR genes may alter receptor synthesis or

function in a number of genetically- determined disorders (15).
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Loss-of-function GPCR mutations may affect the amino acid

sequence of the protein and lead to alterations in domains

critical for recognition and binding of agonist, receptor

activation and/or coupling to G proteins, or internalization.

They also may cause errors in the three dimensional

configuration of the receptor protein (i.e. misfolding) due to

non-native interactions that may impact in a significant manner

not only the overall architecture of the protein but also its

physicochemical characteristics, leading to its intracellular

retention (13, 16–20). Protein misfolding can also occur as the

result from protein overexpression, thermal or oxidative stress,

and activation of pathways involved in the regulation of protein

folding, maturation, and quality control (16). Although some

non-specific, non-native interactions with other intracellular

peptide or proteins may occur during the normal dynamics of

folding (to mask aggregating-prone regions), abnormally folded

proteins may accumulate as toxic aggregates and form

extracellularly deposited amyloids (21–23).

Recent studies on how the folding process occurs have

provided important information for the design of

pharmacological interventions that may correct misfolding of

defective proteins that cause disease. The finding that some

alterations in the amino acid sequence of a protein leading to

misfolding do not involve domains essential for its function has

further open the way for discovering new therapeutic avenues,

including pharmacologic strategies to correct abnormal folding

and routing to the PM of mutant misfolded ion channels (e.g. the

cystic fibrosis transmembrane conductance regulator protein -

CFTR-) and GPCRs (see below) (20, 24–33).

The present review focuses on GPCR trafficking, misfolding,

and misrouting as a cause of endocrine disorders and how

different genetic, physical and pharmacological strategies may

rescue, partially or completely, function of GPCRs with folding

defects. To better understand these aspects, let’s briefly review

how the cell quality control system works to preserve a stable

and functional proteostasis within the cell, with particular focus

on GPCRs.
The quality control system (QCS)
of the cell and the role of
molecular chaperones

The QCS of the cell is a complex molecular machinery that

continuously surveys and monitors newly synthesized proteins

at the ER, Golgi and the PM (34–36). The molecular chaperones

and companion factors (e.g. co-chaperones, modification

enzymes, and targeting factors) are key elements of this QCS

that play an essential role in maintaining the integrity of the

proteostasis network (35, 37–39). Molecular chaperones are an

essential driving force in the highly dynamic and complex

folding process of the nascent proteins occurring within a
frontiersin.org
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crowded and viscous environment of proteins accumulated in

the ER. Molecular chaperones are resident proteins involved in

the co- and posttranslational regulation of several processes

occurring during protein synthesis, including folding,

assembling, and degradation of defective proteins; they also

regulate ER exit and prevent toxic accumulation and

aggregation of misfolded intermediates (37, 40–42). When

proteins fail to achieve proper folding and an appropriate

minimal-energy configuration, the QCS will promote the

export of the conformationally defective protein to the

degradation pathway, mainly the ubiquitin-proteasome system

(43–45). Contrariwise, achievement of a conformation

compatible with ER export will lead to translocation of the

protein to the Golgi apparatus to complete processing and

maturation (Figure 1A). Surveillance of the QCS relies more

on its capacity to detect misfolding of the nascent proteins based

on non-native structural determinants including exposure of
Frontiers in Endocrinology 03
hydrophobic shapes, unpaired cysteines or immature glycans,

and specific amino acid sequences or motifs involved in the

regulation of protein trafficking within the cell (37).

Major molecular chaperones represent a key machinery for

quality control [e.g. the heat shock proteins of 70 kDa and 90

kDa (HSP70 and HSP90, respectively)]; these chaperones assist

proteins in folding and remodeling (47–49). HSP70 ATP-

dependent molecular chaperones are highly conserved and the

best studied heat shock proteins (49). Nascent polypeptides are

recognized by HSP70 chaperones, which promote their folding,

stabilization, translocation, and degradation when necessary

(48–52). One of the most important folding factors is BiP/

Grp78 which is a member of the HSP70 family of proteins of

the endoplasmic reticulum (47, 53–55) and a key folding factor

of the ER. Several GPCRs interact with BiP; these include the

luteinizing hormone/chorionic gonadotropin receptor

(LHCGR), the angiotensin II AT1 receptor, rhodopsin, and the
BA

FIGURE 1

Intracellular trafficking of GPCRs belonging to the rhodopsin-like family of receptors. (A) Newly synthesized proteins fold in the endoplasmic reticulum
(step 1), where misfolded proteins interact with molecular chaperones and co-chaperones (oval black and white structures, respectively), which attempt
to correct folding and stabilize the protein in a conformation adequate for endoplasmic reticulum export. When correction of misfolding fails, the
abnormal protein is dislocated into the cytoplasm for proteasomal degradation (step 2). Folded GPCRs are translocated to the Golgi apparatus to
complete their maturation process including glycosylation (arbor-like structure within the magnifier). Mature receptors then traffic to the plasma
membrane where they bind their cognate ligands (steps 4 to 6). Following activation of the receptor by agonists, phosphorylation and recruitment of
b-arrestins occur, which provoke endocytosis and internalization of the receptor–ligand complex (step 7). The internalized complex is embedded in
clathrin-coated vesicles, which may be either targeted to lysosomes for degradation or dissociate with subsequent sorting of the receptor to the
recycling pathway (step 4). (B) Rescue of misfolded receptors by pharmacoperones. Misfolded/misrouted receptors that could not be stabilized by
molecular chaperones are submitted to degradation (step 1). The pharmacoperone drug crosses the cell surface plasma membrane, penetrates into the
cell (step 2) and specifically binds the misfolded GPCR (step 3). Receptors stabilized by the pharmacoperone are then exported to the Golgi apparatus
for further processing (step 4), and finally to the plasma membrane (step 5); here, the pharmacoperone (in the case of antagonists or agonists of the
receptor) must dissociate from the rescued receptor for allowing the agonist to recognize and bind the rescued receptor promoting its activation (steps
6 and 7). Interaction of pharmacoperones with intracellularly trapped receptors also may occur in compartments other than the ER before degradation
(step 3, left) (46).
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thyroid-stimulating hormone (or thyrotropin) receptor (TSHR)

(56–59). This chaperone is assisted by the DnaJ family members

of cofactors (HSP40) to recognize hydrophobic regions during

the protein folding process, aiding to keep proteins in a

conformation permissive for continuing folding and

oligomerization (55). Among the roles of nucleotide-bound

BiP is on the protective unfolded protein response (UPR),

which is an important stress reaction that decreases unfolded

protein load to maintain proteostasis, cell viability, and function

during cellular stress (60, 61).

Calnexin/calreticulin and protein disulfide isomerases also belong

to the major chaperone family. Calnexin/calreticulin works on N-

linked carbohydrates and unfolded regions in the protein, assisting in

folding through the so-called calnexin/calreticulin cycle (62–66).

Meanwhile, the protein disulfide isomerases (PDI), such as the

oxidoreductase PDI, decreases the thermodynamic stability of the

protein by introducing disulfide bridges, thereby promoting

reorganization of folding intermediates (67–70). Several GPCRs,

associate with calnexin and calreticulin; in this vein, mutations that

impair protein glycosylation may result in misfolding, which when

detected by the ER-QCS, limits the anterograde traffic of the

misfolded conformer to the PM (71). PDI works as a co-chaperone

with calnexin and calreticulin during their association with

glycoproteins (72). Their study have allowed to recognize

differences in folding between species of particular mutant proteins

such the inactivating Ala593Pro and Ser616Tyr mutants of the

LHCGR, which lead to male pseudohermaphroditism; patients

with this disorder exhibit severely impaired response to LH and

hCG due to misfolding and intracellular trapping of the mutant

receptors [reviewed in (73)]. Similar to the wild-type (WT) LHCGR,

the Ala593Pro and Ser616Tyr LHCGR mutants were detected

associated with calnexin, whereas the WT receptor interacted with

PDI. Although both of this receptor mutants appeared to interact

with BiP/Grp78, only Ala593Pro was found to associate with Grp94

(74). Their distinct association with molecular chaperones (57)

suggests that these mutant receptors differ in conformation.

Other chaperones (called non-classic private chaperones) and

interacting proteins also associate with GPCRs during their upward

trafficking. As these interacting proteins regulate protein folding

and trafficking in different ways, they may be considered as

molecular chaperones with a specific function on particular

GPCRs [reviewed in (75)]. Among these non-classic chaperones

are: a.ANKRD13 (ankyrin repeat domain-containing protein 13C);

GPCRs that interact with this chaperone include the prostaglandin

D2 receptor, the thromboxane A2 receptor, the chemoattractant

receptors, and the b2-adrenergic receptor (b2AR) (76); b.

Ribophorin I, a chaperone that interacts with the m-opioid
receptor (77); c. ATBP50 (angiotensin II receptor-binding protein

of 50 kDa), which associates with the C-tail of the angiotensin II

AT2 receptor (78); d. Golgin-160 (which localizes in the Golgi) and

gC1q-R (receptor for globular heads of C1q), which promote

upward trafficking of the b1AR and a1BAR, respectively (79); e.

Receptor activity modifying proteins (RAMPs) interact with a
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number of GPCRs from different classes, including the calcitonin-

receptor-like receptor, the corticotropin-releasing factor 1 receptor,

and the calcium-sensing receptor (CaSR), promoting their

translocation to the PM as well as desensitization and recycling of

particular GPCRs (80); f. RanBP2, which binds red/green opsin

molecules (81); g. The molecular chaperone ODR4, facilitates

folding, exit from the endoplasmic reticulum, and PM targeting

of a subset of olfactory GPCRs, such as such as ODR10 in C. elegans

and rat U131 in undifferentiated olfactory-derived odorant receptor

activatable (odora) cells and Chinese hamster ovary cells (82–84).

Its homolog in humans, C1orf27, interacts with the a2A-AR to

regulate its anterograde traffic (85); h. Melanocortin-2 receptor

(MC2R) accessory protein (MRAP), which enhances MC2R traffic

(86, 87); i. RTP1 and RTP2, which interact with odorant receptors,

and enhance responses to odorants (88); and j. DRiP78, the ER-

membrane protein, dopamine receptor interacting protein of 78

kDa, which associates to the F(x)3F(x)3F hydrophobic motif at the

proximal COOH-terminus of a-helix8 of several GPCRs (89, 90)

Molecular chaperones and the chaperone network at the ER

and the Golgi as well as the peripheral quality control

checkpoints [see for review (91)], are attractive therapeutic

targets for exogenously regulating protein trafficking and

secretion (92–94).
Structural determinants and GPCR-
dependent factors that regulate
anterograde trafficking from the ER
to the plasma membrane

Several sequences present in GPCRs have been identified

associated with components of coat complex protein II transport

machinery and Ras-related small GTPases necessary to allow the

protein to exit the ER and enter the ER-Golgi intermediate

compartment (90, 95–98). These motifs are particularly localized

in the C-tails and less frequently in the loops and ectodomain of

GPCRs, and include the above mentioned F(x)3F(x)3F motif

identified in helix-8 of the angiotensin II AT1 receptor,

the dopamine D1 receptor, and the M2-muscarinic receptor

(99), and the E(x)3LL and FN(x)2LL(x)3L leucine motifs in the

human vasopressin 2 (V2R) and vasopressin 3 (V3R) receptors,

respectively (100–103). Alterations in these motifs lead to

trapping of the protein and hence markedly impact receptor

export to the PM. Some GPCRs employ these motifs for

anterograde trafficking from the trans-Golgi network to the

cell surface PM through association with the small GTPase

Rab8 (97). The export sequence F(x)6LL motif identified in

the proximal NH2-terminal end of the C-tail of several GPCRs

(104, 105), including the gonadotropin receptors, the

angiotensin AT1 receptor, and the a2B-, a1B-, and b2-ARs, is
an important motif that controls the upward trafficking of

GPCRs. The location of this latter motif is important given the
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known interaction of DRiP78 with the overlapping conserved

(hydrophobic) sequence F(x)3F(x)3F present in several GPCRs;

alteration in this motif leads to intracellular retention of the

receptor (89). Modifications in retention motifs that limit GPCR

ER exit for further processing may improve trafficking of the

cargo protein. Some of these motifs are: a. the RSRR

sequence in the GABA-B1 receptor (106); b. the 5R (penta-

arginine) sequence in the a2CAR (107); and c. the conserved

ALAAALAAAAA hydrophobic sequence in the extracellular

NH2-terminal region of the a2-AR (108). These retention

signals probably act by limiting intracellular traffic of receptors

that do not hide retention motifs as a consequence of misfolding

or that fail to heterodimerize (109). Therefore, export and

retention signals are mechanisms that regulate that only

adequately folded and assembled receptor complexes are

exported to the PM.

Two highly conserved motifs present in GPCRs belonging to

the rhodopsin/b-adrenergic-like receptors are important, the E/

DRY motif at the boundary of the a-helix3 and the IL2 and the

N/DPxxY motif at a-helix7, near its cytoplasmic face of the PM.

Alterations in these sequences may lead to misrouting,

depending on the particular GPCR [e.g. alteration on both

motifs in the gonadotropin-releasing hormone receptor

(GnRHR) and the V2R, and on the N/DPxxY motif in the

endothelin-B receptor, melanocortin-4 rreceptor (MC4R), and

the CC chemokine receptor 5 (CCR5) (110, 111)]. Another

important structural feature of GPCRs belonging to

rhodopsin/b-adrenergic-like family of GPCRs is a disulfide

bond between the EL1 and EL2, which seems necessary for

stabilization of the TMD structure. Alterations in or around this

disulfide bridge severely alter the 3-dimensional structure of the

receptor, and lead to intracellular retention and degradation of

the receptor protein. In fact, mutations at this particular location

make the human GnRHR difficult to stabilize with

pharmacological chaperones (see below) (111).

Few export motifs in the loops and ectodomain of GPCRs

have been identified. A distinct YS motif in the NH2-terminus of

both the a2A- and a2B-AR has been identified as an export motif

from the Golgi apparatus (112). A single and highly conserved

leucine residue at the center of the IL1 seems to play an

important role in ER export of several adrenergic receptors

and the angiotensin II AT1 receptor (113), and lastly, a triple

arginine (3R) motif in the IL3 mediates interaction of the a2BAR

with protein transport Sec24C/D isoforms (95).

Glycosylation and palmitoylation are frequent posttranslational

modifications that in some GPCRs regulate anterograde GPCR

traffic. N-linked glycosylation at the consensus sequence N-x-S/T is

a frequent modification that helps folding by increasing the

solubility of the protein and enhancing its conformational

stability (63, 114). When N-linked glycosylation or early glycan

processing is altered, misfolded glycoproteins are identified by the

QCS blocking further anterograde trafficking to the PM (71).

Mutations at or close to glycosylation sites in GPCRs (in which
Frontiers in Endocrinology 05
glycosylation in their ectodomain is required for anterograde

export), may lead to reduced PM expression (115, 116).

Nevertheless, it is important to note that that alterations in the

structure of the receptor ectodomain bearing particular

glycosylation sites may also hamper folding and thereby lead to

limited PM expression. Meanwhile, the reversible addition of fatty

acids to the cysteine residues in the C-tail of several GPCRs is

another frequent posttranslational modification (117). This

modification anchors the receptor to the PM forming a fourth

intracellular loop (117), and also regulates several functions of the

receptor, including upward trafficking, coupling to G proteins, b-
arrestin recruitment, and the fate of the internalized receptor

(118–121).

It has been shown that a number of GPCRs associate in

multi-unit complexes during their biosynthesis or processing in

the Golgi (122). Oligomerization as an effective quality control of

protein folding before export to the PM has been demonstrated

in a number of GPCRs (122–132). A typical example is the

association between the GABA-B receptor-1 and GABA-B

receptor-2, which is apparently an obligatory requisite for cell

surface PM expression of a functional receptor; in this particular

GPCR, association between the C-tails of these GABA-B

receptors hides a retention motif (e.g. the RxR ER retention

signal in the GABA-B1 receptor C-tail), thereby promoting

export of the heterodimer to the PM (133). In this vein,

mutations in GPCRs may provoke dominant negative effects

via protein-protein association, thereby interfering with WT

and/or mutant receptor upward trafficking and PM expression

(131). This effect of mutant receptors on upward trafficking

occurs in several GPCRs (134–139) and might have a

physiopathogenic role in the phenotypic expression of disease

in individuals carrying simple heterozygous mutations.

In ensemble, upward trafficking of GPCRs through the

secretory pathway relies on several factors, including: a. The

molecular chaperones of the QCS of the cell; b. Retention and

export motifs present within the nascent GPCR protein; c. The

well-organized association and interaction between GPCRs; and

d. Particular posttranslational modifications involved in export

of the GPCR from the ER to the Golgi and from the latter to the

PM, as well as on the post-endocytic fate of the receptor after

agonist-stimulated internalization.
Misfolding of GPCRs as a cause of
endocrine disorders

A wide variety of genetic diseases in humans occurs as a result

of mutations in GPCR genes, some of which lead to defects in

receptor folding and intracellular trapping of the receptor protein.

Examples of endocrine diseases caused by GPCR misfolding and

misrouting are shown in Table 1. These include a significant

number of Class II loss-of-function mutants [which lead to

intracellular retention of receptors due to misfolding of the
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protein (20, 162)] causing familial hypocalciuric hypercalcemia

and neonatal hyperparathyrodism provoked by mutations in the

CaSR (calcium-sensing receptor), hypogonadotropic

hypogonadism [mutations in the GnRHR and the prokineticin

receptor 2 (PROKR2) genes], X-linked nephrogenic diabetes

insipidus (mutations in the V2R gene), congenital

hypothyroidism (mutations in the TSHR gene), morbid obesity

caused by mutations in the MC4R gene, adrenocorticotropic

hormone (ACTH) insensitivity with adrenal insufficiency

(mutations in the MC2R gene), and reproductive disorders

[LHCGR and follicle-stimulating hormone receptor (FSHR)

gene mutations], among others (73, 75, 140, 149, 157, 163, 166–

168) (Table 1). Diseases caused by mutations that lead to GPCR

misrouting are of particular interest because they may be

specifically treated with drugs that correct trafficking and rescue

function of the mutant receptors, whenever critical domains

involved in essential functions (i.e. binding to agonist, activation

of the receptor and/or coupling to effectors) are not compromised

by the mutation. Some examples of drugs whose development is

based on targeting trafficking of misfolded, mutant GPCRs in

endocrine diseases include small molecules designed for rescuing

function of the V2R, MC4R, GnRHR, and more recently

gonadotropin receptors (169–171). The discovery of this

pharmacological approach suggests that by screening drugs for

treating variant GPCRs may efficiently detect novel therapeutic

approaches (172). Probably one of the most notable examples of

pharmacological rescue of misfolded membrane proteins is the

case of the DF508 defective cystic fibrosis transmembrane

conductance regu la tor -CFTR- for which severa l

pharmacoperones have succeeded in restoring membrane

expression and function of the mutant Cl- channel in

individuals with cystic fibrosis (25, 28–33).
Experimental strategies to rescue
misfolded GPCRs

Among the experimental strategies that may promote rescue

of misfolded GPCRs in vitro and/or in vivo are genetic, physical,
Frontiers in Endocrinology 06
chemical, and pharmacological approaches. Genetic strategies

for increasing PM expression of misfolded proteins are intended

to introduce or delete particular sequences into the mutated

protein (173–175). By using this approach, the defective receptor

may be overexpressed or conformationally stabilized without

global changes in the ER secretory activity. This may be

achieved, for example, by adding residues or motifs for

glycosylation at the NH2-terminal domain of the receptor

protein or COOH-terminal sequences to expression-deficient

GPCRs, thereby markedly enhancing ER export to the PM. In

some cases, the genetic modification increase PM expression of

the misfolded receptor (Figure 2A), but also may affect receptor

activation because of the conformational modification in the

domain involved in this particular function (174) (Figure 2B). In

others, such as the P320L human GnRHR mutant, the abnormal

protein is unrescuable by genetic approaches because proline´s

peptide backbone is constrained in a ring structure; the presence

of proline is associated with an imposed turn in the sequence of

the a-helix in TMD7, whose structure is severely disturbed when

replaced. One example of efficient genetic rescue is the

mammalian GnRHR; this particular receptor lacks the

intracellular C-tail extension and by adding this domain from

the catfish GnRHR or by deleting de arginine residue at position

K191 [whose presence limits PM expression of the primate

receptor (177)], significantly increased cell surface PM

expression (175) of the mutant GnRHR protein (Figure 2A).

Genetic approaches, albeit effective, are somehow impractical for

in vivo application because the mutation could be directly

corrected by modifying the corresponding DNA gene

sequence (178).

Physical approaches to rescue misfolded proteins include

incubating the cells at lower (e.g. 28-32 °C) than the physiological

temperature. Lower incubation temperatures has resulted in

enhanced PM expression of several conformationally defective

vasopressin 2, GnRH, and FSH receptors with distinct point

mutations (16, 176) (Figure 2C). It seems that for some misfolded

receptors that are temperature-sensitive, the mechanism of this

rescuing effect (75, 141, 179–182) is by preventing association and/

or aggregation of the conformationally abnormal receptor with
TABLE 1 Endocrine diseases caused by misfolded, trafficking defective GPCRs.

Disease GPCR involved Reference

X-linked nephrogenic diabetes
insipidus

Vasopressin 2 receptor (V2R) (140–148)

Hypogonadotropic hypogonadism Gonadotropin-releasing hormone receptor (GnRHR), prokineticin receptor 2 (PROKR2) (73, 140, 149–
152)

Familial hypocalciuric hypercalcemia Calcium-sensing receptor (CaSR) (153–156)

Hypergonadotropic hypogonadism Luteinizing hormone receptor and follicle-stimulating hormone receptor (LHCGR and FSHR,
respectively)

(73)

Congenital hypothyroidism Thyrotropin receptor (TSHR) (157–159)

Adrenal insufficiency Melanocortin-2 receptor (MC2R) (160, 161)

Obesity Melanocortin-3 and -4 receptors (MC3R and MC4R) (75, 162–165)
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inhibitory chaperones (e.g. HSP90) (19, 183, 184), allowing the

misfolded protein to be exposed to those mechanisms that favor

processing and anterograde trafficking through the secretory

pathway (185).

Chemical rescue is a general mechanism through which cell

surface PM expression of misfolded proteins may be achieved
Frontiers in Endocrinology 07
(186) Chemical chaperones (e.g. non-specific stabilizing agents

like polyols and sugars) are low molecular weight compounds

that do not interact with the misfolded proteins or interefere

with their function, and that correct folding by stabilizing their

conformation. Osmolytes stabilize misfolded proteins by

reducing their free movement and increasing their hydration
B

C

A

FIGURE 2

The effects of genetic (A, B) and physical (C) maneuvers on the expression and function of misfolded mutant human (h) GnRHR and hFSHR in
vitro. (A) Left image: The E90K mutation at the TMD2 of the hGnRHR leads to hypogonadotropic hypogonadism and provokes misfolding and
intracellular trapping of the receptor protein (169). Two genetic modifications rescued membrane expression and function of the receptor: (a)
Deletion of a lysine residue at position 191 in the EL2, which connects TMDs 4 and 5 (K191 is absent in the rat GnRH receptor, which exhibits a
high membrane expression of the corresponding receptor); and (b). Addition of the C-tail of the catfish GnRHR (the C-tail is absent in the
hGnRHR) (left image). In the right graphic of A, it can be observed how deletion of K191 (-) in both the WT and mutant E90K GnRHR and/or
addition (+) of the C-tail from the catfish GnRHR increased total inositol phosphates production upon stimulation with the GnRH analog
Buserelin. Different letters above bars indicate statistically significant differences among inositol phosphate values. Data taken from ref (169).
(B) This figure shows the effect of different amino acid replacements on the hFSHR at position D408 (D408Y, D408R, and D408A) in the TMD2,
on the plasma membrane expression of the receptor (top) and activation of the cAMP-sensitive pSOMLuc reporter plasmid (bottom). Top:
Western blot of hFSHR WT and mutants (D408Y, D408R, and D408A, respectively) hFSHRs. The blot shows the migration of hFSHRs from
protein extracts of HEK293 cells transiently transfected with the WT (lane 3) or mutant hFSHR (lanes 4-6) cDNAs inserted in the pSG5 vector.
The first lane from left to right shows the migration of the WT hFSHR from HEK293 cells stably expressing the receptor. The immunoblot shows
that the naturally occurring mutant D408Y is mainly detected as an intracellular, immature (i) form of the receptor [≤ 75 kDa], whereas in the
case of the D408R, laboratory-manufactured mutant, the replacement leads to an FSHR molecule that is present as both mature [plasma
membrane expressed, ~80 kDa; (m)] and immature forms, albeit the expression of the mature form is lower compared with that of the WT
hFSHR (lane 3). In the case of the D408A mutant, the expression of the mature form is marginal and that of the immature form predominates.
Bottom: Recombinant FSH-stimulated intracellular signaling of the WT and the D408Y, D408R, and D408A hFSHR mutants, as assessed by a
reporter gene assay, in HEK293 cells transiently cotransfected with the WT or mutant hFSHRs and the cAMP-sensitive pSOMLuc reporter
plasmid. The results showed that the WT hFSHR induced a robust dose-dependent response in luciferase activity, whereas the D408Y and
D408A mutants showed markedly reduced responses to FSH stimulation, and the D408R mutant showed virtually absent response to agonist.
Thus, replacement of aspartate with arginine at position 408 rescued membrane expression but not function of the receptor, whereas
replacement with alanine was ineffective in restoring PM expression and marginally effective in rescuing function of the mutant hFSHR (from ref
(174). (C) The effect of reducing the incubation temperature of HEK293 cells transiently expressing the WT and mutant D408Y hFSHR, on the
plasma membrane expression of the FSHRs and the trafficking defective D408Y mutant. Incubation at a reduced temperature (30°C) enhanced
PM expression of the mutant D408Y receptor (left immunoblot), with the corresponding increase in the mature (m) to immature ratio (i) (m/i
ratio) (right graph). From ref (176).
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(186), thereby preventing aggregation of immature conformers.

They modify the free-energy difference between partially folded

and more compact native structures. Since high concentrations

of chemical chaperones are required to be effective in promoting

folding of mutant proteins they are too toxic as an in vivo

therapeutic strategy. Since chemical chaperones unspecifically

rescue misfolded proteins, the risk exists of increasing retention

in different cellular compartments or enhancing secretion of

proteins unrelated to the mutant one, thereby leading to

inappropriate changes in their local levels and/or secretion

that may compromise cell function (187). As an exception,

TMAO (trimethylamine-N-oxide) , glycerol , and 4-

phenylbutyric acid, may increase the secretion efficiency of

misfolded a1-antitrypsin in a selective manner, without an

impact on levels of other proteins or proteasomal

degradation (188).

Rescue of intracellularly trapped GPCRs can also be

achieved through the manipulation of the ER and/or post-ER

regulatory mechanisms involved in protein export. For example,

in the P23H mutation in the rhodopsin gene, which leads to

autosomal dominant retinitis pigmentosa due to rhodopsin

misfolding, overexpression of BiP/Grp78 may reduce

photoreceptor apoptosis and retinal degeneration, thereby

allowing recovery of retinal function in rats (189). Another

strategy to manipulate the QCS to correct misrouting is by

using cell-penetrating peptides, which modify cytosolic Ca2+

stores and, consequently, impact on Ca2+-regulated chaperones

that regulate post-ER quality control (93). However, similar to

chemical chaperones, a major problem with these approaches is

their poor specificity for the target protein.

Molecular chaperoning has been a tremendously useful

paradigm to develop pharmacoperones (or pharmacochaperones),

which may regulate with high specificity folding and intracellular

trafficking of WT and mutant, misfolded proteins (Figure 1B). In

contrast with the poor specificity of chemical chaperones (190)

(which is similar to that exhibited by a number of molecular

chaperones), small molecule pharmacoperones have several

advantages: a. they exhibit highly selective binding to the

conformationally abnormal protein; and b. they do not interfere

with the degradation of other misfolded proteins that are normally

cleared by the QCS (191, 192). Pharmacoperones serve as a

molecular template to help misfolded proteins to properly fold

and become more stable, minimal free-energy conformers that may

pass the scrutiny of the QCS (193). Of course, the efficiency of

pharmacoperones to stabilize the target protein and restore its PM

expression and function relays on several factors, including their

specific structure and mode of action (either as agonist, antagonist

of the natural ligand or allosteric modulator of the receptor, which

in turn determine the selectivity towards the target receptor), the

degree of the folding defect, and the specific location of the

mutation which should not involve motifs essential for receptor

function (see above) (194).
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For instance, human V2R mutants (which cause X-linked

nephrogenic diabetes insipidus) displaying amino acid

exchanges at the TMD2 and TMD4 interface (H80R, W164R,

and S167L mutants), are recalcitrant to pharmacoperones,

probably because the replaced residues provoke a severe

folding defect (195). This is also the case of the human

GnRHR S168R and S217R mutants at the TMDs 4 and 5,

which cause congenital hypogonadotropic hypogonadism;

replacement of any of these serine residues (at the lipid

membrane-contact phase of those TMDs) with arginine

(which is a highly hydrophilic amino acid) provokes a

thermodynamically unfavorable exchange that causes rotation

of the TMDs 4 and 5, thereby changing the orientation of the

EL2, making extremely difficult the formation of the C14-C200

disulfide bridge, which in this particular receptor is essential for

receptor trafficking and function (17, 111). Mutational defects

that interfere with agonist binding would also display limited

functional recovery of the misfolded receptor in response to

pharmacoperones, despite the successfully increased cell surface

PM expression of the mutant receptor.
Pharmacoperones and functional
rescue of misfolded GPCRs

Pharmacological chaperones are molecules that correct

folding of misfolded proteins preventing their aggregation

and/or degradation, thereby facilitating escape of the abnormal

protein from the QCS to correct misrouting. Characteristics of

pharmacoperones for in vivo administration should include at

least the following features (193):
I. To easily reach physiologically effective concentrations

with minimal side effects when administered in vivo.

II. To easily cross the cell surface PM and bind with high

specificity the misfolded protein, primarily in the ER,

but also in other intracellular compartments (Figure

1B).

III. To localize and act where the misfolded protein is

intracellularly retained.

IV. To exhibit high specificity and enough residence time

in the ER or other post-ER compartment so that

mutants can be effectively rescued, and

V. To bind the target protein in a reversible manner,

facilitating its dissociation after routing the stabilized

receptor to its functional location, to prevent any

competition with the endogenous ligand, particularly in

the case of agonist and antagonist pharmacoperones.
Antagonist pharmacoperones aid the misfolded GPCR

mutant to reach its minimal energy, and stabilize its native

conformation allowing trafficking of the protein to the PM.
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Nevertheless, pharmacoperone antagonists should be removed

after promoting receptor trafficking and PM expression so that it

may be recognized by and bind its cognate ligand (194).

Interestingly, in vivo studies administering the antagonist IN3

to male mice harboring the E90K mutation did not require an

additional maneuver to rescue function of the misfolded

receptor other than administration of the pharmacoperone in

a pulsatile manner, so that during the inter-pulse intervals the

antagonist can be “washed” from the rescued receptor (196,

197). Ideally, antagonist pharmacoperones should be effective at

the lowest concentration, so that it may easily dissociate from the

rescued receptor (198).

Unlike antagonists, agonist pharmacoperones do not need to

dissociate from the receptor protein after rescue, albeit the

potential problem of promoting receptor desensitization and

internalization should be considered since this may provoke

decreased response to the endogenous ligand. Interestingly,

some particular pharmacoperones with agonist acitivity may

promote rescue and PM expression of misfolded human V2R

mutants and enhance arginine vasopressin-stimulated cAMP

signaling without promoting b-arrestin recruitment, ligand/

receptor internalization, and b-arrestin-mediated mitogen

activated protein kinase (MAPK) activation, similar to the

effects of biased agonists (199), which may have some

therapeutic implications because of their selective effect on a

particular function. Finally, allosteric ligand pharmacoperones

(see below) are compounds that specifically bind the receptor

protein at a site different from the orthosteric binding site of the

receptor, and thus do not interfere with binding of the natural

ligand, albeit positive allosteric modulators may also lead to

increased desensitization/internalization of the rescued receptor.

The efficacy of pharmacoperones to prevent abnormal

intracellular accumulation and rescue misfolded GPCRs has

been demonstrated for a number of receptors, including those

associated with endocrine disease (Table 1). Some of these

misfolded GPCR mutants leading to endocrine disorders

have shown functional rescue in response to different

pharmacoperone molecules in vitro and in vivo. Some

examples follow.
Fron
• In patients with X-linked nephrogenic diabetes insipidus

(NDI), concentration of urine by the kidney is not

possible due to defects in the V2R, which is localized

in the basolateral membrane of principal cells in the

renal collecting duct (142, 200). Occupancy of the V2R

by its ligand, arginine-vasopressin (AVP), stimulates

translocation and exocytic insertion to the luminal

membrane of the water channel protein aquaporin-2,

leading to water reabsorption in the kidney (201).

Mutations in the V2R are associated with the

development of NDI, a disease in infants that has an

unfavorable prognosis if untreated early in life
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(142, 202–204). Given that a number of mutant V2Rs

can be included in Class II GPCR mutants (18, 75), they

can be rescued either by genetic or pharmacologic

means. In this regard, it has been shown that a

number of PM permeable antagonists may specifically

bind and rescue function of several misfolded,

trafficking-defective V2R mutants in in vitro conditions

(110). V2R non-peptide antagonists include SR49059

(relcovaptan, which is a V1A receptor antagonist

exhibiting moderate affinity for the V2R), OPC31260,

OPC41061 (tolvaptan), and SR121463B (satavaptan).

These pharmacoperones have been shown to promote

maturation and basolateral membrane localization of

some V2R mutants stably transfected in MDCK cells

(143). In a proof-of-concept in vivo study, the effects of

the V1AR/V2R antagonist SR49059 to rescue function of

three V2R mutants (R137H, W164S, and des185-193

V2R mutants) expressed by young patients with NDI

were studied (110). Urine production and water intake

decreased, and concomitantly urine osmolarity was

significantly enhanced in response to this compound.

More clinically safe than SR49059 (which is hepatotoxic)

for rescuing misfolded V2Rs at feasible concentrations in

vivo are the pharmacoperones OPC31260 and

OPC41061, which represent promising candidates to

specifically treat NDI (143).

• Contrary to pharmacoperone antagonists, pharmacoperone

agonists activate the cAMP/PKA signaling cascade after

binding to V2R mutants. It has been shown that the non-

peptide agonists MCF14, MCF18, and MCF57 may

selectively rescue cell surface plasma membrane expression

and restore the response to AVP of several V2R mutants,

includingL44P,A294P, andR337XmisfoldedV2Rs,without

stimulating receptor internalization and MAPK activation

(199, 205). On the contrary, the cell membrane-permeable

agonists VA999088, VA999089, and OPC51803 only

stimulated intracellular signaling but not PM expression

(144).Analogously to the S168R andS217RhumanGnRHR

mutants, the V2Rs with amino acid exchanges at the TMD2

and TMD4 interface (H80R, W164R, and S167L mutants)

also showed recalcitrance to pharmacoperone treatment,

most probably due to the severity of the folding defect as a

consequence of the nature of the amino acid replacement

(111, 195). These data underline the importance of the

location of the amino acid substi tut ion, the

physicochemical properties of the replacing residue, and

the nature of the pharmacoperone drug administered on the

response of misfolded V2R mutants (and also of other

GPCRs). Finally, it has been shown that the

aminoglycoside antibiotic (G418) can rescue X-linked NDI

caused by a V2R mutant bearing a premature truncation

(206). Cultured kidney collecting duct cells expressing the
frontiersin.org

https://doi.org/10.3389/fendo.2022.934685
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ulloa-Aguirre et al. 10.3389/fendo.2022.934685

Fron
V2R E242Xmutant and exposed to this particular antibiotic

exhibited enhanced AVP-stimulated cAMP responses. In

addition, G418 suppressed the premature stop codon

present in mice bearing the E242X replacement; in this

model, mRNA translation proceeded effectively to the

normal end of the gene, improving urine concentration. In

addition, it has also been shown that stop codons can be

suppressed by aminoglycosides in vitro and in vivo (207).

• MC3R and MC4R are GPCRs mainly expressed

in the central nervous system and involved in

energy homeostasis, regulating food intake and energy

expenditure (75, 163, 208); mutations in their

corresponding genes lead to early-onset severe obesity.

A large number of mutant MC3 and MC4 receptors

correspond to Class II loss-of-function mutants. Several

MC4R Class II loss-of-function mutants may be rescued

by pharmacological chaperones in vitro and in vivo. For

example, the small molecule ML00253764, which is a

MC4R antagonist and partial inverse agonist permeable

to the blood-brain barrier, enhanced cell surface PM

expression and ligand-stimulated cAMP response of

mutant MC4Rs in vitro (163, 209). Nonetheless, this

molecule has a relatively high EC50 rescue dose (∼10
mM), which is not practical for in vivo rescue. In

contrast, Ipsen 5i and Ipsen 17 are more potent

pharmacoperones for MC4R mutants (EC50 dose

approximates 10 nM) (210); in fact, the former has

been shown to correct misrouting and signaling of

intracellularly trapped MC4R mutants (75, 162). More

recently, in vivo studies in humanized mouse models

bearing the R165W human MC4R mutant showed that

UM013086 rescued PM expression and function of this

obesity-causing mutant MC4R in mice; treated animals

restored the anorexigenic response to the MC4R agonist

melanotan II (211). This study represents a proof-of-

principle for pharmacoperone application as a

therapeutic strategy for severe obesity associated with

mutations in the MC4R.

• The CaSR is a GPCR essential to maintain blood Ca2+

homeostasis by sensing fluctuations of extracellular Ca2+,

modulating parathyroid hormone secretion by parathyroid

cells and Ca2+ reabsorption by the kidney (153, 154). Loss-

of-function of the CaSR caused by heterozygous mutations

in this receptor gene leads to familial hypocalciuric

hypercalcemia, whereas homozygous mutations cause

severe neonatal hyperparathyroidism (155). A number of

CaSR loss-of-function mutations (e.g. R66C, R185Q,

R680C, R795W, and V817I, which affect proper

trafficking of the CaSR through the secretory pathway),

can be partially or completely rescued in vitro by the

membrane-permeant allosteric agonist NPS R-568 or

MG132 (which prevents proteasomal degradation) (156,
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212). The finding that the location and function of

inactivating CaSR misfolded mutants can be rescued by

pharmacoperones, opens the possibility for novel

therapeutic approaches for diseases caused by structural

alterations leading tomisrouting of this important receptor.

• Hypogonadotropic hypogonadism (HH) in humans

may or ig ina te at d i fferent leve l s a long the

hypothalamic pituitary unit (73, 213). Kallmann

syndrome is an X-linked recessive inherited disease

whose phenotype includes delayed puberty and

anosmia or hyposmia due to failure of GnRH

producing neurons to migrate from the olfactory

placode to the basal hypothalamus and to the presence

of insufficient projections from the lateral olfactory

placode to the forebrain, resulting in aplasia or

hypoplasia of the olfactory bulbs. Mutations in the

PROKR2, some of which provoke misfolding and

misrouting of the receptor, may be associated with this

syndrome (150, 214). In this particular receptor, the

small molecule PROKR2 antagonist A457 has been

shown to rescue PM expression and signaling of the

misrouted P290S PROKR2 mutant (150).

• Other mutat ions caus ing hypogonadotropic

hypogonadism, without affecting olfaction, include

mutations in the GnRHR (73, 149, 215, 216). This

receptor binds GnRH, a hypothalamic decapeptide

released into the median eminence at the base of the

hypothalamus, which serves as an interface between the

neural and the endocrine system governed by the anterior

pituitary (217). Here, several hypothalamic hormones,

including GnRH, are released into the portal capillary

bed to be transported to the anterior pituitary. GnRH

binds to the GnRHR to promote the synthesis and

secretion of the pituitary gonadotropins, which are

essential for gonadal function. The molecular

mechanisms through which small molecules rescue

misfolded human GnRHRs has been dilucidated with

some detail (46, 191, 198). Using a number of methods

including site-directed mutagenesis, confocal microscopy,

computational modeling, and pharmacoperone docking,

it has been possible to elucidate the mechanism whereby

distinct pharmacoperones (e.g. the indole IN3) stabilize

misfolded GnRHRs (191). In the E90K mutant (and

probably in other GnRHR mutants as well), whose PM

expression and functional rescue in vitro is complete

when pharmacological approaches are applied (see

above) (173), this effect occurs through the association

of residues D98 and K121 (at the extracellular face of the

TMD1 and at the TMD3, respectively) via formation a

surrogate bond for the highly conserved, naturally

occurring E90-K121 salt bridge; the pharmacoperone

IN3 leads to stabilization of the TMD2-TMD3
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configuration which has been severely altered by the E90K

substitution (191). Notably, all GnRHR pharmacoperones

tested, including indoles, the quinolone Q89, and two

erythromycin macrolides, A177775 and TAK-013, which

were originally developed as GnRH peptidomimetic

antagonist molecules, rescued function of the majority

of the human GnRHR mutants studied in vitro, including

the T32I, E90K, C200Y, C279Y, and L266R GnRHR

mutants identified in patients with HH (198, 218),

despite their different distribution accross the receptor

protein. This finding indicates that the orientation

between the TMD2 and 3 is a critical structural feature

monitored by the QCS of the cell (17, 191, 198).

Even more importantly, employing a HH murine model

expressing the E90K GnRHR mutation (178), it was

demonstrated that pulsatile administration of IN3 was

able to induce changes in several biomarkers, of

h y p o g o n a d i sm , i n c l u d i n g r e s t o r a t i o n o f

spermatogenesis, providing evidence on the efficacy of

pharmacoperone treatment on this mutant receptor

(196).

• Loss-of-function mutations in the LHCGR and the

FSHR may lead to hypergonadotropic hypogonadism

in humans (73, 219, 220), whenever both alleles are

affected by the mutation. Loss-of-function mutations in

the LHCGR gene lead to different phenotypes in

male patients, from severe genital ambiguity to

cryptorchidism and micropenis, whereas women with

inactivating mutations in this receptor frequently exhibit

primary or secondary amenorrhea and infertility (73). In

men, loss-of-function mutations in the FSHR gene, may

cause decrease in the quality of spermatogenesis but with

normal testosterone production; this latter feature

probably contributes to the preservation of fertility

exhibited by some patients bearing these mutations

(221). In women, inactivating mutations in the FSHR

lead to more severe phenotypes, mainly varying forms of

premature ovarian failure (222–224). Approximately

fifty percent of loss-of-function mutations in the

LHCGR and ∼30% in the FSHR are misfolded,

trafficking defective proteins which fail to be recruited

to the secretory pathway (185). Exposure of cells

expressing the A593P and S616Y misfolded LHCGR

mutants (which cause in men varying degrees of

genital ambiguity due to hypoplasia of testicular

interticial cells; Table 1) to the cell-permeant, small

molecule agonist Org 42599 rescued PM expression

and function of these LHCGR misfolded mutants

(225),whereas in misfolded FSHR mutants, in vitro

exposure to the thienopyr(im)idine Org41841 (226) or

to the FSHR alloster ic agonist CAN1404 (a

dihydrobenzoindazole analogue) resulted in increased
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PM expression and function of some misfolded mutants

[e.g. the A189V mutant (at the receptor ectodomain) by

Org41841, and the D408Y, A419T, A575V, P587H,

P519T, and F591S FSHR mutants (at the serpentine

region of the receptor) by CAN1404] (170, 171).
Conclusions

Current challenges in the area of targeting trafficking of

misfolded proteins as a pharmacological approach include

identification of novel small molecules that may effectively

exert its therapeutic effect in vivo to cure conformational

diseases, including those due to GPCR misfolding. It is also

important to discover molecules that may increase PM

expression of WT receptors and provoke conformational bias

with positive effects on GPCR-signalosome assembly and

signaling upon exposure to agonist (227). Assays to identify

pharmacological chaperones lacking antagonistic activity are

currently available (172, 228–234), but nevertheless, new

assays are still needed to bypass the complex pharmacological

interact ions occurr ing when both antagonis t and

conformational biased activities are present.

An example of pharmacoperones as a feasible therapeutic

approach to ameliorate the effect of misrouting is the case of the

misfolded DF508 CFTR chloride channel leading to cystic

fibrosis (235, 236). This CFTR mutant is retained by the

chaperone HSP70 and its co-chaperone CHIP in the ER and

retro-translocated into the cytosol for degradation by the

ubiquiting-proteasome machinery (237–239). Nevertheless, in

the presence of small molecule correctors, the DF508 CFTR

mutant may route to the PM and exert function. An additional

problem is that the peripheral QCS of the cell may recognize this

particular mutant when is present at the PM and accelerate its

internalization, thereby enhancing its lysosomal degradation,

which may reduce the net amount of functional CFTR molecules

at the PM. To overcome this problem, combination of

modulators (correctors and potentiators) of this channel,

which may be considered as pharmacoperone drugs, have been

succesfully administered to patients with cystic fibrosis bearing

the DF508 CFTR mutation (25, 27, 30, 240–246), resulting in a

significant improvement on some primary and secondary end

points (30, 242). Small molecule modulators of CFTR are thus

highly promising therapeutic interventions for patients with

cystic fibrosis, particularly those expressing the DF508 mutation.

It is currently possible to obtain valuable information on the

mechanism of action of different chemical classes of small

molecule pharmacoperone drugs and how they interact with

the misfolded GPCRs, applying high-throughput screening

assays coupled with virtual computed, artificial intelligence-

aided structural approaches (172, 247–253). This might
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provide new medicines to cure endocrine diseases caused by

mutations leading to misfolding and misrouting of GPCRs.
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