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Cellular senescence is a stress or damage response by which a cell adopts of state of
essentially permanent proliferative arrest, coupled to the secretion of a number of
biologically active molecules. This senescence-associated secretory phenotype (SASP)
underlies many of the degenerative and regenerative aspects of cellular senescence -
including promoting wound healing and development, but also driving diabetes and
multiple age-associated diseases. We find that nicotinamide phosphoribosyltransferase
(NAMPT), which catalyzes the rate-limiting step in nicotinamide adenine dinucleotide
(NAD) biosynthesis, is elevated in senescent cells without a commensurate increase in
NAD levels. This elevation is distinct from the acute DNA damage response, in which NAD
is depleted, and recovery of NAD by NAMPT elevation is AMPK-activated protein kinase
(AMPK)-dependent. Instead, we find that senescent cells release extracellular NAMPT
(eNAMPT) as part of the SASP. eNAMPT has been reported to be released as a
catalytically active extracellular vesicle-contained dimer that promotes NAD increases in
other cells and extends lifespan, and also as free monomer that acts as a damage-
associated molecular pattern and promotes conditions such as diabetes and fibrosis.
Senescent cells released eNAMPT as dimer, but surprisingly eNAMPT appeared in the
soluble secretome while being depleted from exosomes. Finally, diabetic mice showed
elevated levels of eNAMPT, and this was lowered by treatment with the senolytic drug,
ABT-263. Together, these data reveal a new SASP factor with implications for
NAD metabolism.
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INTRODUCTION

Age is the greatest risk factor for the development of multiple
degenerative conditions including cancer, cardiovascular disease,
pulmonary fibrosis, Alzheimer’s disease, and diabetes (1, 2). The
increase in incidence of these conditions with age suggests that
common mechanisms that underlie most or all of aging might
drive these diseases, but also implies that multiple morbidities
might be treatable by targeting these common mechanisms. Two
common features of aging include the accumulation of senescent
cells and the loss of NAD in aged tissue (3–5). Importantly,
interventions that target either of these features prevent multiple
age-related conditions in animal models (6, 7).

Cellular senescence is a basic aging process that promotes
multiple degenerative, age-related conditions. While a major
feature of senescence is an essentially permanent arrest of cellular
proliferation, senescent cells also release a myriad of biologically
active molecules in the form of secreted proteins, oxylipins,
exosomes, and other factors collectively known as the senescence-
associated secretory phenotype (SASP). Transgenic and
pharmacological interventions that selectively kill senescent cells
(senolytics) prevent multiple degenerative pathologies, indicating
that senescent cells and the SASP can drive these diseases (6, 8–13).
For example, the BCL-2/w/xL inhibitor ABT-263 eliminates
senescent cells, improving conditions such as myeloid
suppression, pulmonary fibrosis, insulin resistance and diabetes
(8, 14, 15). Conversely, senescent cells also have beneficial effects,
including promotion of normal embryogenesis, wound healing, and
parturition (16–19), so elimination of senescent cells may not be
desirable in some contexts.

Levels of NAD decrease with age across multiple tissues (3, 4),
due at least in part to the activity of the ectoenzyme CD38, which
converts NAD to nicotinamide and cyclic-ADP ribose (20).
NAD levels are maintained in most tissues via the NAD
salvage pathway and its rate-limiting enzyme, nicotinamide
phosphoribosyltransferase (NAMPT), which catalyzes the
conversion of nicotinamide to nicotinamide mononucleotide
(NMN). NAMPT and NMN have been shown to antagonize
multiple degenerative pathologies including diabetes (21, 22),
pseudohypoxia (3), and neurocognitive dysfunction (23).
NAMPT is also released into the extracellular space
(eNAMPT) by hepatocytes (24), macrophages (25), cancer cells
(24, 26), cardiomyocytes (27) and many other cell types. Adipose
tissue releases eNAMPT in the form of small extracellular
vesicles (EVs) which can be endocytosed by recipient cells to
elevate NAD in other tissues, preventing diabetes (22),
influencing behavior and neural activity (28, 29), and
extending lifespan (22). Conversely, eNAMPT also occurs in a
non-vesicle contained, monomeric form that acts as a damage-
associated molecular pattern (DAMP), drives macrophage
activation and survival (30–32), and promotes degenerative
conditions such as pulmonary fibrosis and, ironically, diabetes
(33–35). Thus, much like senescent cells, eNAMPT can have
beneficial or detrimental effects depending on how it is packaged.

Loss of NAD and cellular senescence are notably
interconnected. For example, both decreases in NAD+/NADH
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ratios and depletion of NAD+ can drive senescence, but also
limit parts of the SASP (36, 37). Furthermore, supplementation
with the NAD precursor, nicotinamide riboside, prevents cellular
senescence and extends lifespan in mice (7). Senescent cells,
through their SASP, can also drive age-related NAD depletion by
activating macrophages, resulting in CD38 activation (38, 39).
Thus, NAD metabolism and senescence are clearly linked.
However, the relationship between senescence and eNAMPT is
less clear.

Here we show that senescent cells have increased levels of
NAMPT. However, we do not observe a commensurate increase
in NAD levels. Instead, senescent cells release eNAMPT as part
of the SASP, and it is primarily released as a dimer. Furthermore,
in a mouse model of diet-induced diabetes, we find that
eNAMPT is increased, and is in turn lowered by the senolytic
compound ABT-263. Our results highlight a new feature of
senescent cells and identify a new mechanism by which
senescent cells might drive or prevent degenerative pathologies.
MATERIALS AND METHODS

Cell Culture and Induction of Senescence
IMR-90 human fibroblasts (ATCC) were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) and penicillin/streptomycin. Unless
otherwise stated, all non-senescent cells were quiescent for this
study. Quiescence was induced by reducing FBS to 0.2% for at
least 48 hours, and senescent cells were similarly treated prior to
analysis. Senescence was induced by 10 Gy ionizing radiation
[SEN(IR)], lentiviral shRNA-mediated depletion of sirtuin 3
[shSIRT3], lentiviral overexpression of constitutively active
HRAS [RasV12] (RRID : Addgene_22262), or 10 days of
continuous culture in 1 mM sodium butyrate (NaBu) or 500
nM antimycin A (MiDAS). Bleomycin-treated cultures were
described previously (40). Briefly, cells were treated with either
100 ug/mL bleomycin or a matching volume of PBS stock in
growth media for 3 hours at 20% oxygen. Media was then
changed and cells were returned to 3% oxygen. Bleomycin-
treated cells were analyzed 10 days after treatment. All cultures
were considered senescent if they showed a <5% EdU labeling
and > 75% senescence-associated beta-galactosidase positivity.
GSE-22 (RRID : Addgene_22253) expressing cells were described
previously (41). Conditioned media were generated by 24 hours
of continuous culture in serum-free DMEM. All cells were
confirmed mycoplasma-free.

Quantitative Real-Time PCR
RNA was isolated from 200,000-500,000 cells using the Isolate II
RNA Extraction Kit (Bioline). RNA (250 ng/ml) was used to
synthesize cDNA using a High Capacity cDNA synthesis kit
(Thermo) according to the manufacturer’s instructions. Gene
expression was analyzed by qPCR using universal probe library
primers (Roche) previously described (36) or listed below and a
LighterCycler 480 II Real Time PCR System (Roche). RNA levels
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were normalized to beta-actin. Primer sequences were: NAMPT
forward – aagggatggaactacattcttga, Reverse – ctgtgttttccaccgtgaag,
UPL Probe #6; NMNAT1 forward – gaaatccctagagccaaaaaca,
reverse – ggaacagcaaaggactccaa, UPL Probe #43; NMNAT2
forward – gatcctgctgctgtgtggta, reverse - cctccatatctgcctcgttc,
UPL Probe #67; NMNAT3 forward – cgtttccctctcggacct, reverse
– ctgctatttgcagggctca, UPL Probe #3; NAPRT1 forward –
tgctctgcctggtcagcta, reverse – tctagcagccgcttctctg, UPL Probe
#64; NMRK1 forward – tcctgactattccatatgaagaatgta, reverse –
tggaggctgatagacccttg , Probe #63; NADK forward –
acgctgctgtacgcttcc, reverse - agctgaatggggtcagga, UPL Probe #37.

NAD Measurement
NAD was measured using a commercial kit (Biovision)
according to the manufacturer’s instructions. Extractions were
performed using 500,000 cells per sample homogenized in 500
mL of DNA lysis buffer, and fractionated using 10 kDa cutoff
filters (Millipore) spun at 10,000 × g for 45 min. Standard curves
(5–200 pg/ml) were generated for quantification.

Western Blotting
Cells were lysed in 5% SDS in 10 mM Tris, pH 7.4, and protein
content determined by BCA assay. Ten micrograms of cell lysates
were loaded per well. For conditioned media, 200,000 cells were
cultured in 1 mL serum-free DMEM for 24h. Media was
concentrated 20-fold using 30 kDa cutoff filters spun at 10,000
x g for 20 minutes, and 100,000 cell equivalents of media were
added per lane in the absence (non-reducing) or presence
(reducing) of 2-mercaptoethanol. Antibodies were (Cell
Signaling Technology Cat# 2531, RRID: AB_330330), (Abcam
Cat# ab4074, RRID: AB_2288001) and (Abcam Cat# ab45890,
No RRID). Western densitometry was quantified using ImageJ.

eNAMPT ELISAs
For human cell culture supernatants, ~200,000 cells equivalents
per mL were analyzed using a human PBEF/Visfatin ELISA
(BioVision) according to the manufacturer’s instructions. For
mouse sera, 50 mL of serum were diluted 1:1 with Assay Buffer
and analyzed by mouse/rat eNAMPT Dual ELISA (Adipogen)
according the manufacturer’s instructions.

Quantitative proteome analysis of
extracellular vesicular NAMPT
Senescence was induced in IMR90 fibroblast cells by three
different stimuli: irradiation (IR;10 Gy X-ray), doxorubicin
(DOXO; 250 nM, 24 hr treatment), and mitochondrial
dysfunction induced senescence (MiDAS; Antimycin A; 500
nM, continuous) and separately induced quiescent as control
as described previously (36, 42) SASP EV extraction was
performed using size-exclusion chromatography (SEC) and
ultrafiltration as detailed previously (43). Briefly, EV proteins
were extracted using a SDS-based buffer, and quality check was
performed by western blotting with exosome protein-specific
antibodies. EV proteins were then reduced and alkylated using S-
Trap mini (Protifi, Farmingdale, NY) followed by on-column
digestion with trypsin (1:20 (w/w) enzyme:protein ratio).
Frontiers in Endocrinology | www.frontiersin.org 3
Peptides were desalted using stage tips, vacuum dried, and
resuspended in aqueous 0.2% formic acid. Finally, indexed
Retention Time Standards [iRT, Biognosys, Schlieren,
Switzerland) (44)] were added to each sample according to the
manufacturer’s instructions for mass spectrometry-based
quantitative analysis.

LC-MS/MS analyses were performed on a Dionex UltiMate
3000 system coupled online to an Orbitrap Eclipse Tribrid mass
spectrometer (Thermo Fisher Scientific, San Jose, CA). Samples
were acquired in data-independent acquisition (DIA) mode
using a 210-min chromatographic gradient. Full MS1 spectra
were collected at 120,000 resolution (AGC target: 3e6 ions,
maximum injection time: 60 ms, 350-1,650 m/z), and MS2
spectra at 30,000 resolution (AGC target: 3e6 ions, maximum
injection time: Auto, NCE: 27, fixed first mass 200 m/z). The DIA
precursor ion isolation scheme consisted of 26 variable windows
covering the 350-1,650 m/z mass range with a window overlap of
1 m/z (Supplementary Table S1) (45). DIA data were processed
in Spectronaut v15 (version 15.1.210713.50606; Biognosys) using
directDIA. Data was searched against the Homo sapiens
proteome with 42,789 protein entries (UniProtKB-TrEMBL),
accessed on 12/07/2021. Protein identification was performed
requiring a 1% q-value cutoff on the precursor ion and protein
level (experiment), and 5% q-value cutoff on the protein level.
Quantification was based on the peak areas of the best 3-6 MS2
fragment ions, with no normalization, and iRT profiling and q-
value sparse data filtering applied. Differential protein expression
analysis was performed using a paired t-test, and p-values were
corrected for multiple testing, specifically applying group wise
testing corrections using the Storey method (46). NAMPT
(P43490) protein was identified and quantified with 4
unique peptides.

Animals
Experiments were conducted at Joslin Diabetes Center with
approval of its Animal Care and Use Committee. Mice were
kept on a 12-hour light/dark cycle with water and food ad
libitum. DIO very high fat diet (VHFD) 60kcal% fat (Fisher
Scientific) was administered during 4 or 8 weeks to C57Bl6/J 8-
week-old male mice acquired from Jackson Labs. Mice were
treated with ABT-263 (Selleck Chemicals, in ethanol:
polyethylene glycol 400:Phosal 50 PG) or vehicle. ABT-263 was
administered to mice by gavage at 50 mg/kg body weight per day
(mg/kg/d) for 4-5 d per cycle, with a week between the cycles
during 8 weeks. For the 4 weeks HFD experiment, the period
between ABT-263 cycles was increased to two weeks.
RESULTS

NAMPT Levels Increase During
Senescence Without Increasing Cellular
NAD Levels
Genotoxic stress is a common inducer of both senescence and
NAD depletion. To evaluate the relationship between genotoxic
July 2022 | Volume 13 | Article 935106
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stress, NAD, and senescence - we irradiated human IMR-90
fibroblasts with 10 Gy of ionizing radiation (IR) and measured
both NAD and NAMPT RNA levels over the next 24-48 hours.
IR promoted an immediate acute loss of NAD over the first 3
hours, in agreement with previous studies (47, 48), followed by a
gradual recovery until reaching pre-irradiation levels by 24 hours
(Figure 1A). Since NAMPT is the rate-limiting enzyme in NAD
salvage, we hypothesized that this recovery might be due to
elevation of NAMPT levels. In agreement with this, NAMPT
RNA levels increased over the first 3 hours and rapidly returned
to pre-IR levels by 24 hours (Figure 1B). Since senescence is a
chronic condition, and previous reports indicate that NAMPT is
elevated during senescence (37), we also measured NAMPT and
NAD levels in senescent cells 10 days after IR. Senescent cells had
elevated NAMPT levels (Figure 1C), but this was not linked to an
increase in NAD (Figure 1D). To determine if this was a
common feature of senescent cells, we also assayed senescence
induced by overexpression of constitutively active RAS (RasV12)
(Figures 1E, F) and mitochondrial dysfunction-associated
senescence (MiDAS) induced by shRNA-mediated depletion of
sirtuin 3 (shSIRT3) (Figures 1G, H). In each case, senescence
was accompanied by increased NAMPT levels, but no
commensurate increase in NAD levels. Indeed, RAS-induced
senescence was associated with lower levels of NAD (Figure 1F),
despite strongly elevated NAMPT levels. We also measured RNA
levels of other NAD synthetic enzymes at 3 hours and 10 days
after IR, but only observed small (<2 fold) increases in these, and
none showed the strong increases with senescence that we
observed for NAMPT (Figure 1I).
Frontiers in Endocrinology | www.frontiersin.org 4
AMPK Is Required for Acute NAMPT
Elevation and NAD Recovery, but
Dispensable for NAMPT Expression
During Senescence
Loss of NAD results in AMPK activation (36, 37), and poly-ADP
ribose polymerase (PARP) activity during recovery from
genotoxic stress also elevates AMP levels and AMPK activation
(48). We therefore sought to assess the role of AMPK in elevation
of NAMPT in genotoxic stress and senescence. AMPK was
rapidly phosphorylated following IR, and this phosphorylation
decreased over time (Figure 2A). To address the role of AMPK
in NAD recovery, we treated irradiated cells with an AMPK
inhibitor (Compound C) (49) or vehicle (DMSO) and measured
both NAD (Figure 2B) and NAMPT RNA levels (Figure 2C).
Compound C treatment prevented recovery of NAD levels
following irradiation (Figure 2B), and this was coupled to a
failure to elevate NAMPT levels (Figure 2C). Therefore, AMPK
activity is required for NAMPT elevation following genotoxic
insult. Conversely, 24 hours of compound C treatment had no
effect on NAMPT levels once senescence was fully established 10
days after irradiation (Figure 2D). Thus, distinct mechanisms
elevate NAMPT during the acute DNA damage response and
during chronic senescence.
Extracellular NAMPT Is a SASP Factor
Since NAMPT was elevated during senescence, but NAD levels
were not, we considered the possibility that NAMPT is secreted by
senescent cells. We first analyzed our previously reported single cell
E

A B C D

F G IH

FIGURE 1 | NAMPT is induced both acutely and chronically during senescence. (A, B). IMR-90 fibroblasts were irradiated with 10 Gy of ionizing radiation (IR) and
analyzed at the indicated timepoints for (A) NAD levels and (B) NAMPT RNA expression by quantitative PCR (qPCR). (C, D). IMR-90 fibroblasts were irradiated with
10 Gy of IR [SEN(IR)] or mock-irradiated and analyzed 10 days later for (C) NAMPT expression, or (D) NAD levels. (E, F). IMR-90 fibroblasts were transduced with a
lentiviral RasV12 expression vector or and empty vector and analyzed for (E) NAMPT expression, or (F) NAD levels. (G, H). IMR-90 fibroblasts were transduced with
a lentiviral SIRT3 shRNA vector (shSIRT3) or a scrambled shRNA (Scr) and analyzed for (G) NAMPT expression, or (H) NAD levels. (I) RNA from (B and C) was
analyzed for NAD metabolism gene expression by qPCR. All RNA measurements were normalized to beta-actin. Data are presented as means ± SEM for ≥ 3
experiments. * = p<0.05. ** = p<0.01 (t-test with Welch’s correction for (A–H). One-way ANOVA for I). NS, non-senescent.
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gene expression dataset (40) for NAMPT expression (Figure 3A).
Unlike cyclin-dependent kinase inhibitors and housekeeping genes,
SASP factors show increased variance with senescence –with only a
subset of cells showing clear elevation (40). NAMPT expression was
Frontiers in Endocrinology | www.frontiersin.org 5
similar to that observed with SASP factors such as IL8 or IL1A -
suggesting that it might be secreted. We therefore measured
extracellular NAMPT (eNAMPT) levels in conditioned media
from senescent cells by ELISA. Cells induced to senesce by IR
E

A B C

D F G

IH J

FIGURE 3 | eNAMPT is a SASP factor. (A) PBS control non-senescent and bleomycin-induced senescent cells were analyzed for NAMPT RNA expression at the
single cell level. [Dataset originally described in (40)]. (B–D) Cells were induced to senesce by IR, shSIRT3, or sodium butyrate (NaBu). Ten days after induction, cells
were cultured in serum-free media for 24 h. Conditioned media was then analyzed by ELISA and normalized to cell number. (E) NAD levels were measured in cells
from (D). (F, G) Cells were transduced with either a GSE22 expression lentivirus or an empty vector and either mock irradiated or induced to senesce with 10 Gy of
IR. Conditioned media were generated as in (B), and cells were collected, counted and analyzed for (F). eNAMPT secretion by ELISA, and (G). NAD levels. (H)
Conditioned media from non-senescent and senescent [SEN(IR)] cells were analyzed by western blot under non-reducing (left) and reducing (right) conditions. (I)
Relative intensities of eNAMPT dimer blots were quantified by densitometry. (J) Extracellular vesicles were isolated from quiescent (QUI) or senescent cells induced
by IR, doxorubicin (DOXO) or mitochondrial dysfunction (MiDAS – antimycin A) and analyzed mass spectrometry for eNAMPT. Data are presented as means ± SEM
for ≥ 3 experiments. * = p<0.05. ** = p<0.01 (t-test with Welch’s correction for A–E, I, J. One-way ANOVA for F, G). NS, non-senescent.
A B C D

FIGURE 2 | Acute, but not chronic, NAMPT induction requires AMPK activity. (A) IMR-90 fibroblasts were irradiated with 10 Gy of ionizing radiation (IR) and
analyzed by western blot for phosphorylated AMPK and tubulin-alpha (Tub-A) at the indicated timepoints. (B) IMR-90 fibroblasts were irradiated with 10 Gy of
ionizing radiation (IR) in the presence of DMSO or compound C and analyzed at the indicated timepoints for (B) NAD levels and (C) NAMPT expression normalized
to beta-actin. (D) IMR-90 fibroblasts were irradiated with 10 Gy of IR [SEN(IR)] or mock-irradiated. 9 days after IR, cells were treated with either DMSO or compound
C (Comp C) and analyzed for NAMPT RNA levels by quantitative PCR. All RNA measurements were normalized to beta-actin. Data are presented as means ± SEM
for ≥ 3 experiments. * = p<0.05. ** = p<0.01, *** = p<0.001 (t-test with Welch’s correction) for all values. NS, non-senescent.
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(Figure 3B), mitochondrial dysfunction (Figure 3C), and HDAC
inhibition (sodium butyrate – NaBu) (Figure 3D) all released
eNAMPT. In agreement with other inducers of senescence,
NaBu–induced senescent cells also did not have elevated NAD
levels (Figure 3E).

Release of many SASP factors is restrained by the activity of
p53 (41, 50), though DAMPs such as HMGB1 are released in a
p53-dependent manner during senescence (51). We therefore
used a dominant negative p53 genetic suppressor element
(GSE22) (52) to eliminate p53 activity and assess its role in
eNAMPT release. Like many proinflammatory SASP factors,
such as IL-6, elimination of p53 activity elevated eNAMPT
release (Figure 3F). Conversely, loss of p53 activity lowered
NAD levels, regardless of senescence inducer status (Figure 3G).
Thus, eNAMPT release is regulated in a manner similar to
proinflammatory SASP factors such as IL-6 or IL-1B.

eNAMPT is released in multiple forms. For example,
eNAMPT is released as a catalytically active dimer in
extracellular vesicles (EVs) from tissues such as visceral fat
(22). This form of eNAMPT can be endocytosed by recipient
cells, where NAMPT then elevates NAD levels (22). This has
been shown to antagonize age-associated NAD loss, prevent
diabetes, and extend lifespan in mice (22). Alternatively,
eNAMPT has been reported to occur outside of EVs, where it
can bind TLR4 and act as a DAMP to drive inflammation (53).
The DAMP form of eNAMPT is also at least partly monomeric,
as opposed to the catalytically active version which appears as a
disulfide-linked NAMPT dimer (34, 35). We therefore analyzed
conditioned media from non-senescent or senescent cells by
western blot using reducing and non-reducing conditions, as
described previously (34). Virtually all eNAMPT detected in
non-reducing conditions was dimerized (Figure 3H), while
reducing conditions showed only monomer, as expected.
Under non-reducing conditions, virtually all eNAMPT was
detected in conditioned media from senescent cells, and
virtually none from non-senescent cells (Figures 3H, I).
Frontiers in Endocrinology | www.frontiersin.org 6
We previously used mass spectrometry to identify new SASP
factors as part of a large proteomic SASP Atlas (54). In these
datasets, which also used IMR-90 fibroblasts, eNAMPT was
found exclusively in the soluble secretome of conditioned
media from senescent cells induced by IR or RAS (54), and no
eNAMPT was found in exosomes. Since we expected at least
some eNAMPT in EVs, we analyzed an additional proteomic
dataset from EVs from either non-senescent cells or cells induced
to senesce by IR, doxorubicin (DOXO), or mitochondrial
dysfunction (MiDAS). EVs from senescent cells induced by
DOXO or MiDAS showed depleted levels of eNAMPT relative
to quiescent cells, although IR-induced senescence did not show
significant changes (Figure 3J). Regardless of inducer, no EVs
from senescent cells showed increases in eNAMPT, even though
total eNAMPT is increased with senescence. These data indicate
that eNAMPT is primarily released from senescent cells as a
soluble dimer.

Senescent Cells Release eNAMPT in
Diabetic Mice
Diabetes is causally linked to the release of eNAMPT. Notably,
EV-contained eNAMPT antagonizes diabetic phenotypes,
whereas the soluble monomeric form has been shown to
promote diabetes (21, 34, 35). Since senescent cells can
promote diabetes, we hypothesized that they might be a source
of eNAMPT during metabolic stress. To determine if pancreatic
beta cells also elevate NAMPT during senescence in vivo, we
analyzed our previously generated RNA-seq data from either
beta-galactosidase positive or beta-galactosidase negative
pancreatic beta cells from 7-8 month old mice for NAMPT
expression (Figure 4A) (8). We then analyzed sera from diabetic
mice that were given a diabetes-inducing high fat diet (HFD)
treated with either the senolytic drug ABT-263 (ABT) (14) or a
vehicle for 4 weeks (Figure 4B) or 8 weeks by gavage (Figure 4C)
for eNAMPT by ELISA. Animals from the 8-week study were
previously described (8). In either treatment protocol, HFD
A B C

FIGURE 4 | Senescent cells promote eNAMPT increases during diabetes. (A) Pancreases from 7-month-old mice were stained for senescence-associated beta-
galactosidase, FACs sorted by beta-galactosidase positivity, and analyzed by RNA-seq for NAMPT, and expressed as counts per million (CPM). [Dataset previously
described in (8)]. n = 7 mice. (B, C) Mice were fed either a normal or high fat diet and treated with either ABT-263 or vehicle via gavage for either (B). 4 weeks, or
(C). 8 weeks. Sera from treated mice were analyzed for eNAMPT by ELISA. N’s for (B, C) are shown by individual data points. * = p<0.05 (t-test with Welch’s
correction) for all experiments.
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elevated eNAMPT levels, and these were lowered by ABT-263
treatment. Together, these data indicate that senescent cells are a
source of eNAMPT during diabetes.
DISCUSSION

Our results reveal a new aspect of senescent cells and a potential
additional role for senescence in NAD metabolism. While it is
known that senescent cells elevate NAMPT, the prevailing
understanding is that this allows senescent cells to increase
intracellular NAD+/NADH ratios and potentiate a highly
inflammatory state by antagonizing AMPK activation (37). By
comparison, the SASP activates macrophages and increases
CD38 levels and activity, and thereby drives age-related NAD
depletion. Here we show that NAMPT itself is a SASP factor.
Both the SASP and eNAMPT promote some of the same
diseases, including diabetes (8, 10, 12, 34, 35) and pulmonary
fibrosis (9, 11, 15, 33), so it is appealing to consider senescent
cells as a source of eNAMPT in these diseases.

Since eNAMPT is reported to exist in at least 2 states – EV-
contained or a free soluble form – the effects of eNAMPT can either
be anti-diabetic and anti-geronic by elevating NAD levels via the
EV-contained form (22), or diabetogenic and disease-driving via
activation of TLR4 in a soluble and/or monomeric form (33–35, 53).
Further, eNAMPT can also promote M1 polarization of
macrophages in a TLR4-independent manner (32). Ironically,
since M1 polarization of macrophages elevates CD38 levels (38),
it is possible that free eNAMPTmonomers may actually lowerNAD
levels in vivo, and the secretions of senescent cells are known to do
this (38). Importantly, previous work showed that even though the
predominant form of eNAMPT in biological fluids is dimeric, the
shift from dimer to monomer can drive diabetes, and soluble
eNAMPT undergoes a dose-dependent conformation shift that
promotes this process (34, 35). Since it is still unclear if the
eNAMPT released by senescent cells retains its catalytic activity,
the precise nature and effects of senescence-derived eNAMPT are a
potentially important area for future study.

Our results also imply a potentially novel mechanism that could
be targeted for aging, diabetes, and related conditions. If the
eNAMPT produced by senescent cells could be shifted into its
EV-contained form, senescent cells might be able to elevate NAD
levels in surrounding tissues. Additionally, if this prevents free
eNAMPT from binding and activating TLR4 in macrophages, this
might lower CD38 levels and prevent age-related NAD depletion. In
this way, identification of the mechanism that determines whether
eNAMPT appears as a free versus a vesicle-contained protein could
potentially be exploited to shift cellular senescence from a NAD-
depleting process to a NAD-increasing process. Notably, blocking
antibodies to eNAMPT have been used to prevent multiple
degenerative diseases including pulmonary fibrosis (55), diabetes
Frontiers in Endocrinology | www.frontiersin.org 7
(34), and colitis (56). Such interventions would hold strong
therapeutic potential for the treatment of diabetes and other
senescence-driven degenerative diseases.
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