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Background: Coronavirus disease 2019 (COVID-19), caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic in

many countries around the world. The virus is highly contagious and has a high

fatality rate. Lung adenocarcinoma (LUAD) patients may have higher susceptibility

andmortality toCOVID-19.WhilePaxlovid is thefirstoral drugapprovedby theU.S.

FoodandDrugAdministration (FDA) forCOVID-19, its specificdrugmechanismfor

lung cancer patients infected with COVID-19 remains to be further studied.

Methods: COVID-19 related genes were obtained from NCBI, GeneCards, and

KEGG, and then the transcriptome data for LUAD was downloaded from TCGA.

The drug targets of Paxlovid were revealed through BATMAN-TCM, DrugBank,

SwissTargetPrediction, and TargetNet. The genes related to susceptibility to

COVID-19 in LUAD patients were obtained through differential analysis. The

interaction of LUAD/COVID-19 related genes was evaluated and displayed by

STRING, and a COX risk regression model was established to screen and

evaluate the correlation between genes and clinical characteristics. The Venn

diagram was drawn to select the candidate targets of Paxlovid against LUAD/

COVID-19, and the functional analysis of the target genes was performed using

KEGG and GO enrichment analysis. Finally, Cytoscape was used to screen and

visualize the Hub Gene, and Autodock was used for molecular docking

between the drug and the target.

Result: Bioinformatics analysis was performed by combining COVID-19-

related genes with the gene expression and clinical data of LUAD, including

analysis of prognosis-related genes, survival rate, and hub genes screened out

by the prognosis model. The key targets of Paxlovid against LUAD/COVID-19

were obtained through network pharmacology, the most important targets

include IL6, IL12B, LBP. Furthermore, pathway analysis showed that Paxlovid

modulates the IL-17 signaling pathway, the cytokine-cytokine receptor

interaction, during LUAD/COVID-19 treatment.
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Conclusions: Based on bioinformatics and network pharmacology, the

prognostic signature of LUAD/COVID-19 patients was screened. And

identified the potential therapeutic targets and molecular pathways of

Paxlovid Paxlovid in the treatment of LUAD/COVID. As promising features,

prognostic signatures and therapeutic targets shed light on improving the

personalized management of patients with LUAD.
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Introduction

COVID-19 is an acute respiratory infectious disease caused by

a new pathogen infecting the human body, the causative virus of

which is SARS-CoV-2 (1). Common symptoms include cough (2),

sore throat, fever, and dyspnea (1). If the patient has

comorbidities, it may develop into acute respiratory distress

syndrome (3, 4), shock (5, 6), metabolic acidosis (7), and

multiple organ failure (8, 9). Studies have shown that cancer

patients, including lung cancer (10), esophageal cancer (11),

colorectal cancer (12), breast cancer (13), etc., are more

susceptible to SARS-CoV-2 infection and have a higher

mortality rate (14, 15). Lung cancer is one of the most common

malignant tumors in humans (16). In terms of epidemiology, lung

cancer has the highest mortality rate worldwide, with 1.6 million

deaths per year from lung cancer, and the morbidity and mortality

are increasing in recent decades. In China, statistics in 2021 show

that in 2015, the incidence and mortality of lung cancer ranked

first among all malignant tumors (17), with about 787,000 new

cases and about 631,000 deaths, seriously threatening people’s

lives and health. In the early stage of the outbreak, the hospital was

the main infection site, and lung cancer patients who were located

in the hospital (18) for anti-tumor treatment greatly increased the

probability of contracting COVID-19. Most lung cancer patients

are immunocompromised (19), and it is urgent to find effective

drugs against lung cancer and COVID-19 with few side effects.

Paxlovid (20) is a COVID-19 treatment drug developed by

Pfizer and consists of two parts (21), Nirmatrelvir and Ritonavir.

The lead compound of Nirmatrelvir is SARS-CoV-2 virus 3C-

like protease (3CL protease) protease inhibitor PF-00835231 (22).

3CL protease is a major cysteine protease that processes viral

polyproteins, and its activity is in the viral essential in the

replication process. Currently, 3CL protease inhibitors have been

successfully tested in clinical trials against hepatitis C virus (HCV)

(23) and human immunodeficiency virus (HIV) (24).

There is a Cys145-His41 catalytic dimer between the SARS-

CoV-2 3CL protease domains, and nimarprevir inhibits the

recombinant SARS-CoV-2 3CLPro enzyme through a
02
reversible covalent mechanism in which the cyano group

reacts with the catalytic Cys145 residue (25), the biological

activity of nimarprevir can reduce the viral load in the organism.

Ritonavir is an antiretroviral proteolytic enzyme inhibitor,

which can effectively inhibit the cytochrome P4503A4 (CYP3A4)

isoenzyme and enhance the effect of protease inhibitor (PI) (26).

The combination of Ritonavir can delay the metabolic

clearance of Nirmatrelvir, and reduce the burden and

frequency of medication. The most common side effects of

Ritonavir were fatigue, diarrhea, nausea, gastrointestinal upset,

and rash (27).

In addition, as a strong inhibitor of CYP3A, itmay significantly

increase the degree of drug toxicity ofNirmatrelvirwhile increasing

the concentration of Nirmatrelvir. In the treatment of COVID-19,

Company data shows that Paxlovid reduces the risk of

hospitalization and death in people with COVID-19 by 89%, with

few side effects (28).

Its effectiveness increases if taken orally within the first 24-48

hours and the duration of treatment is established between 3-

5 days.

Despite the fact that Paxlovid is an effective anti-COVID-19

drug, pharmacological targets and mechanisms of action remain

unclear in LUAD patients infected with SARS-CoV-2.
Materials and methods

Identification of LUAD/COVID-19
associated genes

First, COVID-19 related genes were obtained fromNCBI gene

function module, GeneCards, KEGG (Kyoto Encyclopedia of

Genes and Genomes). LUAD RNA sequences were downloaded

from The Cancer Genome Atlas (TCGA) (https://portal.gdc.

cancer.gov/) and the R package “limma” was used to identify

differential genes in the TCGA cohort (FDR<0.05, |logFC|>1)

(29). The COVID-19 related genes were subsequently obtained

from CNBI, KEGG, OMIM and GeneCards. Finally, the
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differential genes of the TCGA cohort were compared with those

related to COVID-19, and intersecting genes were obtained.
Clinical analysis of LUAD/COVID-19
related genes

To screen out genes associated with prognosis, univariate

COX analysis was performed on LUAD/COVID-19-related

genes. Subsequently, multivariate COX analysis was performed

on prognosis-related genes to establish a risk-prognosis model,

and clinical information was analyzed according to the risk

score value.
Acquisition of Paxlovid targets in LUAD/
COVID-19

By removing the repeated targets of each platform, the target

protein of Paxlovid can be finally obtained. Then, the target gene

and the LUAD/COVID-19 crossover gene are screened out to

obtain a common target.
Enrichment analysis and gene network
construction

In order to obtain the related pathway and functional analysis

of the common genes of LUAD/COVID-19 and Paxlovid, R

packages such as enrichplot, clusterProfiler, org.Hs.eg.db were

used to conduct KEGG pathway enrichment analysis and Gene

Ontology (GO) functional analysis (30). The protein–protein

interactions (PPI) network of intersecting genes was then

constructed using the online analysis tool STRING (V11.5).
Screening core targets for Paxlovid and
LUAD/COVID-19

Download the interaction data between target proteins of

Paxlovid targets for LUAD/COVID-19 from the STRING

database (https://string-db.org/), and obtain the protein–

protein interactions (PPI) network map. The degree of each

gene in the network was analyzed using the Cytoscape (v3.9.0)

cytoNCA app, and the median value of the topology parameters

was used to screen core genes (31).
Molecular docking of Paxlovid and
LUAC/COVID-19 hub target genes

We attempted to dock Nirmatrelvir with 5r84, a known

COVID-19 sensitive target. The molecular structure of
Frontiers in Endocrinology 03
Nirmatrelvir was first obtained from pubchem, and its format

was converted using ChemBio3D Ultra (V14.0). 5r84 and other

targets are available from the Research Collaboratory for

Structural Bioinformatics (RCSB, https://www.rcsb.org/)

database, which is the crystal structure of the COVID-19

major protease in complex with Z31792168. Subsequently,

Nirmatrelvir was docked to the core target using Autodock

(v4.2.6) software and the binding activity was analyzed. Based

on the root mean square deviation (RMSD) of the docked ligand

molecule from the original ligand molecule, it can be used to set

parameter metrics for reference. To match the conformation of

the original ligand, an RMSD < 4 was considered the threshold.
Result

Identification of LUAD/COVID-19 targets

The research process is shown in Figure 1. First, we obtained

a total of 2610 COVID-19 disease-related genes from CNBI,

KEGG, OMIM and GeneCards. Subsequently, differential genes

in the TCGA cohort were identified using the R package

“limma”. The differential genes and COVID-19-related genes

were analyzed, and 478 intersecting genes were obtained, of

which 335 genes were up-regulated and 143 genes were down-

regulated (Figure 2A), which were displayed by volcano

plots (Figure 2B).
Clinical correlation analysis of LUAD/
COVID-19

To explore the relationship between LUAD/COVID-19-

related genes and clinical characteristics, we first screened out

117 LUAD/COVID-19-related genes associated with prognosis

using univariate cox regression analysis, and displayed the genes

for which the model was constructed (Figure 3A). Then,

multivariate cox proportional hazards regression analysis was

performed on prognostic genes, and 6 genes were identified.

LDHA, TRPA1, PKP2, FBN2, ERO1A, and FSCN1 were all risk

factors (HR>1). The risk score of each sample was calculated by

the coefficient of multivariate cox risk regression analysis, and

the TACA cohort samples were divided into high and low risk

groups based on the median risk score (Figure 3B). The study

found that high-risk patients usually have a shorter survival time

(Figure 3C), and the kaplan -meier curve found that the OS of

patients in the low-risk group was significantly higher than that

of the high-risk patients within 5 years or even 10 years

(Figure 3D), and there was a statistically significant difference.

The 6 genes used to construct the model were different between

high and low risk groups (P<0.05) (Figure 3E). In addition, the

ROC curve showed that both Stage in LUAD and risk score had

high predictive effects, which are 0.714 and 0.711, respectively.
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A B

FIGURE 2

Analysis of intersecting genes in CRC/COV ID-19. (A) Venn diagram depicting intersecting genes in LUAD/COVID-19. (B) Volcano-plot
representation of differential gene expression (DGE).
FIGURE 1

Workflow of the study. The figure indicates the antiviral action and mechanism of Paxlovid against LUAD/COVID-19 using the network pharmacology
and computational bioinformatics analysis approach.
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(Figure 3F). Clinical prognosis analysis showed that risk score,

ERO1A, FSCN1, LDHA and advanced LUAD were closely

related, and the score or the expression levels of these three

genes were related to lymph node metastasis and stage in LUAD

(Figures 4A–H).
Identification of Paxlovid’s target genes
and the intersection of LUAD/COVID-19
genes

Online analysis websites BATMAN-TCM, DrugBank,

SwissTargetPrediction, and TargetNet predict 16,433 drug

targets for Paxlovid. There are 400 intersecting genes
Frontiers in Endocrinology 05
between drug target genes and LUAD/COVID-19 related

genes by analyzing (Figure 5A). Enrichment analysis of

intersecting genes showed that Paxlovid affects some

signaling pathways (Figure 5B), including: Coronavirus

disease COVID-19, Complement and coagulation cascades,

IL-17 signaling pathway, Cytokine-cytokine receptor

interaction, HIF-1 signaling pathway, Renin-angiotensin

system, Lipid and atherosclerosis, Viral protein interaction

with cytokine and cytokine receptor, Chagas disease,

Influenza A, Rheumatoid arthritis Malaria, Fluid shear stress

and atherosclerosis, Protein processing in endoplasmic

reticulum, African trypanosomiasis, AGE-RAGE signaling

pathway in diabetic complications, Toll-like receptor

signaling pathway, Alcoholic liver disease, JAK-STAT
A B

D

E F

C

FIGURE 3

Prognostic value of CRC/COVID-19 associated genes. (A) Partial presentation of prognostic related genes identified by univariate Cox analysis.
(B) Distribution of patients based on the risk score. (C) The survival status for each patient (low-risk population: on the left side of the dotted
line; high-risk population: on the right side of the dotted line). (D) Kaplan-Meier curves for the OS of patients in the high- and low-risk groups.
(E) Expression of LDHA, TRPAI, PKP2, FBN2, ERO1A and FSCN1 in high and low risk groups. (F) ROC curves demonstrated the predictive
efficiency of risk scores and clinical characteristics.
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signaling pathway, Legionellosis, TNF signaling pathway,

Leishmaniasis, Measles, Amoebiasis, Arginine and proline

metabolism. biological process (BP) (Figure 5C) includes:

wound healing, cytokine-mediated signaling pathway,

neutrophil chemotaxis, humoral immune response, negative

regulation of response to external stimulus, regulation of

systemic arterial blood pressure, regulation of cell-adhesion,

positive regulation of response to external stimulus, regulation

of systemic arterial blood pressure mediated by a chemical

signal, regulation of systemic arterial blood pressure by

hormone. In conclusion, bioinformatics highlighted that

antiviral and anti-inflammatory are key targets/pathways of

Paxlovid in LUAD/COVID-19 therapy (Figure 6).
Identification of Paxlovid’s core genes
against LUAD/COVID-19

The PPI network of Paxlovid’s target proteins against

LUAD/COVID-19 was obtained from STING (Figure 7A).

The topological parameters of the PPI network were calculated

by Cytoscape and core genes were obtained, including: CXCL2,

CCL2, IL12B, CSF3, LBP, IL6, CXCL10 (Figure 7B).
Molecular docking

The proteolytic enzyme of COVID-19 is a known core target

and its structure is available from the PDB database (ID 5r84).

Molecular docking of 5r84 and Nirmatrelvir shows that the two

can be tightly connected by hydrogen bonds, which proves that

the two have strong affinity. Subsequently, Paxlovid was

analyzed against the core targets of LUAD/COVID-19
Frontiers in Endocrinology 06
(CXCL2, CCL2, IL12B, CSF3, LBP, IL6, CXCL10) and

Paxlovid, and the results showed that IL-6, IL12B, LBP and

Paxlovid could be combined. Amino acid residues GLN-190

and GLU-283 in IL-6, amino acid residues ASP-119, LEU-117

and THR-114 in IL12B, amino acid residues ASN-27 and ALA-

23 in LBP, and Paxlovid Form hydrogen bonds tightly. Overall, it

showed that Paxlovid has high affinity for IL-6, IL12B, LBP

(Figures 8A–D).
Discussion

SARS-CoV-2 emerged in 2019 and started a global

pandemic in early 2020. In the past two years, relevant

research on vaccines, drugs, and therapies for COVID-19

has been continuously followed up, and the severe and

fatality rates of patients have also been significantly reduced

(32). But at the same time, SARS-CoV-2 also has a variety of

virus variants, including: Delta (33), Omicron (34) and

Deltacron (35), a mixture of Delta and Omicron. Even if the

vaccine has been injected, there is still a risk of infection. By

2022, the cumulative number of confirmed COVID-19

infections in the world has exceeded 500 million, and

patients continue to be infected every day. In developing

countries, the incidence of malignant tumors has continued

to increase in recent years (36). Many cancer patients have

compromised immune function, and their general health may

worsen during radiotherapy and chemotherapy (37). Due to

the COVID-19 epidemic, patients with malignancies treated in

high-risk settings such as hospitals may be at increased risk of

contracting COVID-19. According to the statistics of 2021,

lung cancer is currently the first cause of cancer death in the

world, accounting for about 19% of all malignant tumors (16).
A

B D
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C

FIGURE 4

Clinical prognostic analysis of the 6 genes and risk score. (A-H) Association of gene expression of ERO1A, FSCN1, LDHA and risk score with
tumor stage and Lymph node metastasis in LUAD patients.
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Lung cancer patients admitted to hospital are more likely to be

infected with COVID-19 than patients with other diseases.

Lung cancer patients infected with COVID-19 may affect

current anti-tumor therapy and reduce their own survival rate.
Frontiers in Endocrinology 07
In a phase III clinical study in the United States, Paxlovid

demonstrated that it can reduce the risk of hospitalization and

death in patients with new coronary pneumonia by 89% (28). On

December 22, 2021, the U.S. Food and Drug Administration
A

B

C

FIGURE 5

Functional characterization of Paxlovid against LUAD/COVID-19 intersecting genes. (A) Venn diagram depicting intersecting genes of Paxlovid
and LUAD/COVID-19. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of intersecting genes of Paxlovid and CRC/COVID-19.
(C) Gene ontology analysis of intersecting genes of niacin and CRC/COVID-19.
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FIGURE 6

Interaction network showing core biotargets, pharmacological functions, and signaling pathways of Paxlovid against LUAD/COVID-19.
A

B

FIGURE 7

Gene network analysis of Paxlovid against LUAD/COVID-19. (A) STRING analysis indicating protein-protein interaction networking mediated by
400 intersecting targets of niacin against LUAD/COVID-1 9. (B) Cytoscape analysis representing the protein interaction network related to the
action of Paxlovid against LUAD/COVID-19. Seven core targets-CXCL2, CCL2, IL12B, CSF3, LBP, IL6 and CXCL10-are highlighted.
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(FDA) granted emergency approval to Paxlovid for use in people

over 12 years old with mild to moderate COVID-19 infection

and weighing at least 40 kg (38), becoming the first approved

oral COVID-19 medicines. Paxlovid has been shown to have a

strong effect in COVID-19 (39), and this study speculates that

Paxlovid may have strong pharmacological activity in patients

with LUAD complicated by COVID-19. First, we identified

genes associated with LUAD/COVID-19 patients by

differential analysis, and screened out the hub genes by COX

risk regression model. A total of 6 hub genes were obtained,

including: LDHA, TRPA1, PKP2, FBN2, ERO1A, FSCN1, all of

which are risk factors for LUAD/COVID-19. Among them,

LDHA is related to glycolysis (40), and there is evidence that

the expression of LDHA is significantly elevated (41) in patients

with severe COVID-19 symptoms. Activators of TRPA1 can

help control symptoms such as coughing in COVID-19 patients

(42, 43). PKP2 inhibits the replication of SARS-CoV-2 (44).

However, there are no related studies on FBN2, ERO1A, and

FSCN1 in COVID-19.After analysis, the above 6 genes are

related to prognosis and survival, and their expression is up-

regulated or down-regulated in LUAD patients with COVID-19,

which can be used as effective markers for screening and grading

of patients with COVID-19.

By means of network pharmacology, The enrichment

analysis of target genes showed that functions or pathways

such as COVID-19, Complement and coagulation cascades, and
Frontiers in Endocrinology 09
IL-17 signaling pathway were more active. Evidence shows that

patients with mild COVID-19 significantly increase

complement activation and help control viral infection (45).

But when it becomes severe, the massive activation of

complement can exacerbate lung and systemic inflammation,

and promote coagulation and thrombosis (46). In addition,

bioinformatics analysis showed that abnormalities in the IL-17

signaling pathway may increase the risk of herpes zoster in

COVID-19 (47).Combined with drug target prediction tools

and PPI network, Cytoscape screened out the core targets of

Paxlovid against LUAD/COVID-19, including CXCL2, CCL2,

IL12B, CSF3, LBP, IL6, CXCL10. Finally, Autodock (48) was

used to dock Paxlovid with the core target to obtain high-

affinity targets IL6, IL12B, and LBP. The expression of the three

was increased in patients with LUAD and COVID-19.

Interleukin (IL)-6 is one of the most typical tumor-promoting

cytokines (49), which can promote the migration and invasion

of lung cancer and angiogenesis, and can promote the

metastasis of NSCLC through the IL-6-STAT3 pathway (50,

51). IL12B acts as a growth factor for activated T and NK cells

and is associated with tumorigenesis (52). Panagiotis T

Tasoudis et al. found that (53) IL-6 inhibitors reduce

mortality from COVID-19. In addition, Gilberto Santos

Morais Junior et al. found that (54) COVID-19 may play a

role in inflammation that may stimulate leprosy response states.

Patients co-infected with leprosy and SARS-CoV-2 have
A B

DC

FIGURE 8

Binding of Paxlovid to COVID-19 and the core target IL6, IL12B and LBP using molecular docking analysis. (A) Hydorgen bond formed between
niacin and 5R84 protein of COVID-19 on LEU-271, LEU-272. (B) Hydorgen bond formed between Paxlovid and 1N26 protein of COVID-19 on
GLN-190, GLU-283. (C) Hydorgen bond formed between Paxlovid and 5mj3 protein of COVID-19 on ASP-119, LEU-117 and THR-114. (D)
Hydorgen bond formed between Paxlovid and AF-P18428-F1 protein ofCOVID-19 on ASN-27 and ALA-23.
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elevated levels of IL-6 and IL-12B and develop neuropathy.

suggest that IL6 and IL12B play a role in the development of

COVID-19. LBP (Lipopolysaccharide Binding Protein) is an

acute phase protein that mediates inflammatory responses. LBP

single nucleotide polymorphisms (SNPs) have been shown to be

associated with colorectal cancer (55), gastric cancer and glioma

(56). Through molecular docking, we found that Paxlovid has

strong binding activity to the 1n26 structure in IL6, the 5mj3

structure in IL12B, and the protein structure of LBP. Network

pharmacology suggests that patients with LUAD who are

infected with SARS-CoV-2 can be treated with Paxlovid, and

the predicted targets and their regulatory mechanisms need

further experimental verification and exploration.
Conclusions

Together, these bioinformatics and computational results

suggest that immune modulation, anti-inflammatory, and

antiviral properties are key mechanisms for Paxlovid in LUAD/

COVID-19 treatment. In addition, network pharmacology also

identified core targets for Paxlovid therapy in LUAD/COVID-19.

Molecular docking data suggest that Paxlovid may have potential

clinical application in patients with LUAD with COVID-19.
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